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Acceptability and feasibility of research
grade wearables for monitoring heat
stress in Kenyan farmers
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Sub-Saharan Africa faces increasing heat events due to climate change, affecting health and
productivity. Wearable technology, though promising for monitoring these impacts, is underexplored
in this region. This pilot study evaluated the acceptability and feasibility of research-grade wearables
for monitoring heat stress among Kenyan subsistence farmers. In Siaya, 48 farmers (50% women)
weremonitored for 14 days using sensors tomeasure heart rate, core temperature, sleep, activity, and
geo-location, alongside environmental data loggers for wet bulb globe temperature. Participants
mostly rated their experience on a 5-point Likert scale and provided additional non-Likert feedback,
with over 95% reporting high device likability and minimal disruption. Data availability was 88% for
actigraphy and 100% for core temperature, with a median completeness of 100% for most devices.
Women experienced greater heat strain than men. These findings demonstrate that research-grade
wearables are acceptable and feasible for real-time heat stress monitoring in rural Africa.

A growing body of evidence indicates that climate change exacerbates the
frequency and intensity of high temperatures in sub-Saharan Africa
(SSA), affecting outdoor workers such as farmers1,2. The combination of
extreme heat and physical labor raises an individual’s heat load, which
refers to the total heat gained from external sources (e.g., temperature and
solar radiation) and internal sources (i.e., metabolic heat)3. This increased
heat load can lead to heat stress, a condition in which there is increased
demand on the body’s thermoregulatory system to dissipate excess heat
and maintain core body temperature (CBT) at 37 ± 5 °C4. Prolonged heat
stress reduces residual work capacity—the remaining ability to perform
tasks before physiological limits—while also increasing the risk of heat-
related illnesses such as heat exhaustion and heat stroke, and compro-
mises occupational safety5. Additionally, heat stress disrupts sleep,
impairing recovery and further diminishing work capacity. Farmers in
SSA are already vulnerable due to limitedfinancial resources and access to
adaptation technologies such as mechanization and cooling solutions;
therefore, they face an increasing risk of worsening poverty and economic
insecurity2.

To effectively address the impact of climate-induced heat stress, it is
essential to monitor both environmental conditions and individual phy-
siological responses5. Wearable technologies enable real-time personal

monitoring of cardiovascular strain, such as increased heart rate (HR) and
thermal strain, as indicated by rising core body temperature (CBT)6. These
responses to heat stress, collectively known as heat strain, represent the
body’s attempt to restore heat balance. By integrating HR and CBT data,
wearables can provide a comprehensive measure of overall physiological
strain through indices such as the Physiological Strain Index (PSI)7. Addi-
tionally, wearables track the intensity of physical activity and sleep quality,
offering valuable insights into physical performance and recovery8. In
addition to health risk monitoring, wearable devices are versatile tools that
have beenused across a variety of healthcare domains to facilitate diagnosis,
track disease progression, and assess patient responses to interventions8,9.
On the other hand, environmental data loggers can monitor factors that
affect heat dissipation, such as air temperature, humidity, wind speed, and
solar radiation4.These indicators are often combined into indices such as the
Wet-Bulb Globe Temperature (WBGT), which is widely used to assess
environmental heat stress10. Integrating individual and environmental data
offers a powerful opportunity to understand heat stress more comprehen-
sively, yet such approaches are underutilized in SSA;moreover, research on
wearables in the region is scarce6,11. An investigation of the acceptability,
feasibility, and practical application of these methods for data collection
is particularly lacking. In addition, existing studies primarily involve
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consumer-grade wearables, with few studies making use of research-grade
wearables.

Personal monitoring with consumer- or research-grade wearables
involves continuous or periodic tracking of physiological and environ-
mental parameters in real time8. Research-grade wearables, such as the
Tcore CBT sensor, are designed for research and have been validated for
accuracy under extreme conditions12. Furthermore, while consumer-grade
wearables may use proprietary algorithms to provide simplified data out-
puts, research-grade wearables retain raw sensor data, allowing researchers
to apply custom algorithms for specific analyses13. In addition, consumer-
grade wearables, such as Fitbit and Apple Watch, are geared toward fitness
and lifestyle tracking, offering less accuracy but widespread use due to
affordability and ease of use13–15. A study by Huhn et al. found consumer-
grade wearables to be feasible and acceptable among rural African farmers,
consistent with global findings16. While these devices are widely used in
Western countries and increasingly in low-resource settings11, research-
grade wearables have not yet undergone broad adoption. Bridging the
evidence gap on the acceptability and feasibility of both research-grade
wearables and environmental sensors is essential for facilitating their wider
adoption in SSA.

In SSA, Health and Demographic Surveillance Systems (HDSSs),
which include large population-based cohorts, offer a platform for incor-
porating research-grade wearables into climate research data. One such
example is the KEMRI/CDC HDSS in western Kenya, which regularly
collectsmorbidity data from a cohort with a currentmid-year population of
approximately 250,00017. Integrating this morbidity information with data
from wearables and environmental sensors enables detailed heat stress
analysis. However, challenges such as infrastructure limitations and lack of
wearables persist inmost HDSSs18. In response, a recent research unit (FOR
2936: ‘Climate Change and Health in Sub-Saharan Africa’), funded by the
GermanResearchFoundation (DFG), has beenaddressing these issues since
2020, among others19. The research unit has facilitated the installation of
automated weather stations and the deployment of various consumer- and
research-grade wearables at the KEMRI/CDC HDSS. The feasibility study
presented in this paper is a component of the “Climate change, heat stress,
and their impact on health and working capacity” subproject, which eval-
uates the impact of weather extremes on the health and residual working
capacity of subsistence farmers at the KEMRI/CDCHDSS. Using research-
grade wearables and portable sensors, several parameters, including phy-
siological parameters (such as heart rate and core body temperature),
physical activity, sleep quality, geographic location, and indoor conditions,
were monitored. The specific inclusion of such physiological parameters,
alongwith indoor/outdoor environmental factors (i.e., theWBGT index), is
specifically designed to quantify heat stress and related reductions in labor
performance and capacity. This study is one of the first to simultaneously
collect physiological, behavioral, and environmental data using research-
grade wearables and data loggers in a real-life setting in SSA.

As mentioned above, the use of research-grade sensors deployed as
wearables and environmental data loggers in SSA remains underexplored.
This study seeks to fill that gap by evaluating the feasibility and acceptability
of these technologies in a rural Kenyan setting. Assessing feasibility is
essential to ensure these devices are functional, culturally appropriate, and
practical in contexts where socio-cultural and environmental factors may
influence usability.Without such assessments, there is a risk of lowadoption
and wasted resources. By identifying adoption challenges, feasibility studies
help ensure that wearables provide high-resolution data to quantify heat
stress impacts, and inform targeted interventions for vulnerable popula-
tions. These findings will lay the groundwork for their broader use in future
studies, helping to examine the effects of environmental conditions on
individual work capacity and health, assess population-level risks, and
identify necessary interventions5.

Results
A total of 48 participants were recruited for the study, with 20 participants
allocated to Group 1 and 28 participants allocated to Group 2. There was

complete follow-up of all participants, without dropouts. Table 1 provides
an overview of the participants’ anthropometric characteristics, revealing
sex-related differences in age, weight, height, and fat mass.

Acceptability of wearables
Figure 1 illustrates the acceptability ratings for the fourwearable devices: the
electrocardiography (ECG), core body temperature (CBT), actigraphy
(ACT), and global positioning system (GPS) devices. Before use, partici-
pants showed a high level of agreement on a positive first impression of
ECG,ACT, andGPS at 100%,withCBT closely followed at 93%. In terms of
the perceived usefulness of the wearable devices, only a minority of the
participants agreed that wearing them made no sense: 25% for both ECG
and GPS, 18% for ACT, and 14% for CBT. Regarding the individual’s
psychological response, all participants expressed happiness while wearing
them. However, a significant proportion (68%) of participants found ECG
andCBTwearables strange towear. Regarding the cognitive burdenof using
a wearable device, varying percentages of participants agreed that their
devices required too much attention: 61% for both ECG and CBT, 68% for
ACT, and 46% for GPS. When assessing the physical burden related to the
wearables, a minority of participants found the devices cumbersome to
wear, with only 4% or fewer reporting such issues. Additionally, 4% of
participants agreed that the wearable GPS devices limited theirmovements,
while none reported such constraints for the otherwearable devices. For the
impact on daily routines, only 4% of participants agreed that the ACT
wearable device affected their daily routines, while none reported such
effects for the other wearable devices. Furthermore, all participants agreed
that wearing wearable devices had some impact on their sleep. Lastly, in
terms of aesthetic appeal, all participants found the ECG, GPS, and CBT
wearable devices likable, with 96% sharing this sentiment for ACT.

There was a notable variation in acceptability between sexes, as
depicted in Figs. 2 and 3. A higher percentage of women expressed that the
purpose of the wearablesmade no sense, ranging from 21% for CBT to 50%
for ECG. On the contrary, the percentage of men who reported that
wearables made no sense was generally very low, ranging from 0% to 14%.
Men were more likely than women to perceive wearing the wearables as
strange, with this difference particularly pronounced for the CBT device
(93% for men vs. 43% for women). Additionally, a higher proportion of
women reported that wearables required too much attention, especially for
GPS (79% for women vs. 29% for men). However, other aspects of
acceptabilitywere similar between the sexes, withminimal or no differences
in positive vs. negative sentiments.

Table 2 summarizes the social interactions experienced by the study
participantswhilewearing variouswearable devices.Overall,CBTwearables
attracted themost public interest, with 29%of individuals being asked about
them and 54% of conversations involving them. On the contrary, the ACT
wearable had the lowest percentage of inquiries (20%), and the GPS wear-
ablewas the least discussed (32%).Compared tomen, ahigherproportionof
women reported public inquiries and discussions about each wearable
device. It is important to note that the social interaction questions were

Table 1 | Characteristics of study participants

Overall Women Men p-value
n = 48
mean (SD)

n = 24
mean (SD)

n = 24
mean (SD)

Age (years) 28.6 (4.7) 26.1 (3.6) 31.1 (4.42) <0.001

Height (cm) 166.4 (8.5) 161.2 (7.1) 171.4 (6.55) <0.001

Weight (kg) 59.8 (9.7) 55.1 (9.1) 64.3 (8.19) 0.001

BMI (kg/m2) 21.5 (2.9) 21.1 (2.6) 21.9 (3.16) 0.356

TBW (L) 33.2 (5.8) 28.2 (3.46) 37.8 (3.33) <0.001

FM (%) 14.8 (5.2) 17.0 (4.87) 12.7 (4.75) 0.004

Anthropometric and body composition data from the study sample.
BMI body mass index, TBW - percentage of total body water, FM fat mass.
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administered toonly 14pairs ofmenandwomen.Anerroneous skippattern
in the CAPI excluded the questions in the first run of the study.

Feasibility of individual and environmental monitoring
Figure 4 shows summary statistics of data availability and completion rates
across different wearables. Notably, only 88% of the people had at least one
good-quality ACT recording available, marking the lowest availability
among the wearables. However, more than 94%of the remaining wearables
had one or more good-quality recordings. The median data completeness
rate was 100% for all wearables except the GPS wearable device, for which
the median completeness rate was 79%. Considerable variations in the
duration of recorded data deemed to be of good quality were observed,
particularly for thewearableGPSdevices, which had thewidest interquartile
range (median 79%, IQR 70%-84%). Although the recordings were
incomplete in some cases, as described above, the study staff reported no

challengeswith operational procedures (e.g., device configuration, donning,
data saving, anddata synchronization). Furthermore, nowearableswere lost
or damaged throughout the study period.

In terms of the external thermal environment, the daily meanWBGT,
when aggregating day and night values, was significantly higher indoors
than outdoors (20.5 °C vs. 19.3 °C, p < 0.05), as shown in Fig. 5. In Fig. 6, the
daily hourly variation in the maximum outdoor WBGT over the study
period is shown, increasing from approximately 8:00, peaking between
14:00 and 15:00, and then decreasing around 19:00 at dusk.

Table 3 presents the physiological indicators of heat-related strain
(mean ± SD) and compares the overall Physiological Strain Index (PSI),
cardiac and thermal components of heat-related strain, andphysical activity
and sleep patterns between men and women. Women had significantly
higher PSI than men did (3.28 ± 0.72 vs. 2.9 ± 0.88, p = 0.010). Cardiac
indices revealed that women had a higher baseline heart rate (51.66 ± 4.94

Fig. 1 | Acceptability ratings for wearables. This divergent bar graph illustrates
overall sentiment ratings for representative Likert scale items. The percentage labels
indicate the distribution of responses across the high (strongly agree, agree), neutral
(undecided), and low (strongly disagree, disagree) segments of the scale. The

wearables are identified by the parameters they recorded: CBT (core body tem-
perature), ECG (electrocardiography), ACT (actigraphy), and GPS (location
tracking with a Global Positioning System device).
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vs. 47.94 ± 7.35 bpm, p = 0.050), a greater relative increase in heart rate
(34.86 ± 13.09% vs. 30.95 ± 12.9%, p = 0.010), and a higher peak heart rate
(99.28 ± 18.35 vs. 90.75 ± 19.54 bpm, p < 0.001), whereasmen had a greater
heart rate reserve capacity (138.76 ± 8.32 vs. 136.63 ± 5.58 bpm, p < 0.001).
Thermal indices revealed thatwomenhad a slightly higher resting core body
temperature (36.11 ± 0.14 °C vs. 36.07 ± 0.11 °C, p = 0.039), but there were
no significant differences inmean core body temperature (37.1 ± 0.41 °C vs.
37.0 ± 0.48 °C, p = 0.353) or relative change in CBT (29.48 ± 10.63% vs.
27.28 ± 13.31%, p = 0.395).

Figure 7 visualizes the 24-hour time series of these physiological
indicators by sex. The relative change in heart rate (Fig. 7a) rises steadily
for both sexes, beginning at midnight and peaking in the late afternoon,

with females consistently showing higher HR values that remain elevated
for a longer period. In terms of core body temperature (Fig. 7b), the
increase in CBT starts at approximately 4:00 a.m. and follows a similar
pattern, with females exhibiting slightly higher values throughout the day,
peaking later in the afternoon, while men peak in the evening. Finally, the
physiological strain index (Fig. 7c) indicated that females experienced
greater overall strain, with a sharper increase in the PSI and higher peak
values than males. Both sexes experience peak physiological strain in the
afternoon, but females endure higher amounts of strain for longer periods
of time.

With respect to physical activity, women spent more time performing
moderate-to-vigorous physical activity (MVPA) thanmen did (3.0 ± 2.0 vs.

Fig. 2 | Sex-stratified acceptability ratings for CBT and ECG wearables. These
divergent bar graphs illustrate sentiment ratings, stratified by sex, for representative
Likert scale items. The percentage labels indicate the distribution of responses across
the high (strongly agree, agree), neutral (undecided), and low (strongly disagree,

disagree) segments of the scale. Panel (a) illustrates experiences with the wearable
core body temperature (CBT) measurement device, while panel (b) focuses on the
wearable electrocardiography (ECG) device.
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2.3 ± 1.9 h, p = 0.408), although the difference was not statistically sig-
nificant (Table 3). Women also had a higher average daily step count
(11,290 ± 6,216 vs. 10,125 ± 8,454 steps, p = 0.863) and greater daily dis-
tance (11.7 ± 6.3 kmvs. 9.3 ± 4.5 km, p = 0.398); however, neither difference
reached statistical significance. In terms of sleep patterns, there were no
significant differences between the sexes in total bedtime, total sleep time, or
sleep efficiency. The 14-day trend for these indicators is illustrated in Fig. 8.
The 14-day periods varied among participants since recruitment occurred
on different days.

Supplementary Figures 1, 2, and 3, show data from a single female
participant and illustrate the feasibility of collecting synchronized physio-
logical, activity, and sleep data in response to environmental changes.

Specifically, Supplementary Fig. 1 shows 24-hour records of the indoor and
outdoor WBGT, CBT, and HR, with data averaging at 5-min intervals. On
the other hand, Supplementary Fig. 2 shows 14-day actigraphy data,
detailing her daily activity intensity, step count, total sleep time, and sleep
efficiency, while Supplementary Fig. 3 visualizes her movements as tracked
via GPS, highlighting a 3.3 km route spanning more than 5.5 hours, with
3.5 hours spent at the farms.

Supplementary Table 1 shows the fixed and random effect estimates
from the mixed-effects model for predicting PSI. The outdoor WBGT was
positively associated with the PSI (β = 0.32, p < 0.001), while sex (male)
(β = 5.33, p < 0.001) and totalMVPAhours (β =−0.16, p = 0.002) were also
significant predictors. The interaction between outdoor WBGT and sex

Fig. 3 | Sex-stratified acceptability ratings for ACT and GPS wearables. These
divergent bar graphs illustrate sentiment ratings, stratified by sex, for representative
Likert scale items. The percentage labels indicate the distribution of responses across
the high (strongly agree, agree), neutral (undecided), and low (strongly disagree,

disagree) segments of the scale. Panel (a) illustrates experiences with the actigraphy
(ACT) wearable device, while panel (b) focuses on the global position system (GPS)
tracking wearable device.
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(male) (β = -0.27, p < 0.001) indicated that WBGT had a smaller effect
on males.

Discussion
In this study, we assessed the acceptability and feasibility of research-grade
wearables in ruralKenya.Our study showed that research-gradewearables are
well received, with more than 90% of participants perceiving them as useful,
nondisruptive of their daily routine, physically comfortable, and aesthetically
pleasing. Nevertheless, some minor discomforts regarding the attention
drawn by the wearables in public and the amount of attention needed were
reported. In addition, the study staff reported no difficulties with device
procedures, and we observed high data availability and completion rates.

The positive initial impression reported by more than 90% of partici-
pants across all wearables (Figs. 1, 2, and 3) reflects strong acceptance and
enthusiasm for these novel technologies. This indicates readiness to engage
with technology and provides a promising foundation for successful
implementation and adoption. Additionally, the majority of participants
responded positively to questions about the key variables for user motiva-
tion that drive acceptance of new technologies as per the Technology
Acceptance Model: high perceived benefits and zero or minimal burden
during use20. A high perceived usefulness (benefit) implies a high degree of
response efficacy, which is the individual belief that technology will help
achieve a desired outcome. To this end,Din et al. (2020), in a paper focusing
on frailty in elderly people in rural Tanzania, found that the acceptability of

Table 2 | Social experiences with wearable devices

Social experience Women (N = 14) Men (N = 14) Overall (N = 28)

ECG People asked about device 4 (29%) 2 (14%) 6 (21%)

Device was topic of conversation 9 (64%) 2 (14%) 11 (39%)

CBT People asked about device 5 (36%) 3 (21%) 8 (29%)

Device was topic of conversation 9 (64%) 6 (43%) 15 (54%)

ACT People asked about device 8 (29%) 3 (11%) 11 (20%)

Device was topic of conversation 15 (54%) 11 (39%) 26 (46%)

GPS People asked about device 6 (43%) 1 (7%) 7 (25%)

Device was topic of conversation 7 (50%) 2 (14%) 9 (32%)

The descriptive table presents the number of individuals, both overall and by sex, reporting public inquiries and discussions about each device, with quantities and in brackets respective percentages for
each group (women, men, and overall). Acronyms for wearables: ECG electrocardiography, CBT core body temperature measurement, ACT actigraphy, GPS global positioning system.
Note: The total number of participants was 28, as these questions were asked during the second run of the study only (including 14 pairs of men and women, instead of 24 pairs).

Fig. 4 | Summary statistics on the availability and completeness of good-quality
data across devices. This multipanel plot comprises panel (a), which displays the
distribution of individual-level percentages of good-quality data recordings across
various devices in a boxplot format, annotated with medians and interquartile
ranges (IQRs, Q1–Q3). Panel (b) presents a bar plot illustrating the percentage of

individuals (for wearables) or households (for whichWBGTdata were used) with at
least one data point for each type of device. The wearables and data logger used are
identified by the parameters they recorded: ACT (actigraphy), CBT (core body
temperature), ECG (electrocardiography), GPS (location tracking with a Global
Positioning System device), and WBGT (wet-bulb globe temperature).
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Fig. 5 | Daily WBGT variation by location and time of day. This multipanel plot
shows the mean WBGT (lines) in degrees Celsius (°C) and its daily range (shaded
areas) for outdoor (dark blue) and indoor (pink) settings, separated into daytime (a)

and nighttime (b) panels. WBGT wet-bulb globe temperature. The daily (aggre-
gating day and night) WBGT for the whole period of recording was significantly
greater indoors than outdoors (20.5 °C vs. 19.3 °C, p < 0.05).

Fig. 6 | Daily outdoorWBGTmaximumvalues.Heatmap showing themaximumWBGT reached during each hour of the day throughout the study period. The color scale
indicates WBGT intensity from lowest (lightest) to highest (darkest red). Each cell represents the maximum value recorded during that specific hour of the given day.
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wearables was linked to expectations of personal benefits in terms of
receiving a diagnosis or treatment21. However, given that our study enrolled
healthy adult farmers, their motivation likely stemmed from collective
benefit rather than individual gains, as they understood that this would
reveal the burden of heat stress in their community and facilitate the
development of adaptation strategies. The notion of collective benefit as
motivation is particularly significant in the context of health research in
rural settings, where community-oriented approaches are often more
effective and well received22. Furthermore, the minimal burden of physical
discomfort and disruption to daily routines, as reported by the majority of
participants, indicates a high degree of self-efficacy, that is, the individual’s
confidence in effectively using the technology. The high acceptability of
research-grade wearables observed in this study aligns with similar findings
on consumer-grade wearables in comparable contexts. For example, Huhn
et al.’s study in Burkina Faso in 202216 showed that consumer-grade
wearables were highly acceptable and practical for producing useful long-
itudinal individual-level data in low-resource rural settings. The study
revealed that more than 95% of the 140 participants had no issues with a

wrist-worn actimetry device or a thermometry patch placed under the
armpit, both of which were worn simultaneously.

While the study revealed positive findings, some challenges emerged,
offering a multifaceted view of wearable technology acceptance in rural
Kenya. These issues are more pronounced with CBT and ECG wearables.
CBT devices, which are noticeable as headbands, have attracted significant
public interest, especially amongmen (Table 2). However, heat-flux sensors
on the forehead are currently themost suitable noninvasive way tomonitor
CBTs continuously. Even though questions on social reactions toward
participants wearing wearables were administered to only 14 out of the 24
participant pairs in the study (seeTable 3), we consider such results relevant,
as they offer valuable insights into how technology use may increase social
burden. This understanding is crucial for comprehending wearable tech-
nology acceptance in community settings where adherence to social norms
is essential. With regard to the ECG wearables, women were particularly
concerned that they required too much attention when worn. They may
have felt the need to constantly monitor the ECG wearables to ensure that
they remained in place and functioned correctly (Figs. 1–3), adding to their
cognitive load and overall discomfort. This increased attention could also be
attributed to the sensory input produced by the ECG device, which heigh-
tened cognitive engagement23. These sensory stimuli from the wearables
may also explain the participants’ reports that there was some impact on
their sleep. Despite these challenges, the overall response to wearable
technology was predominantly positive, suggesting a complex yet favorable
reception in the community. These challenges indicate that there is room for
refinedwearable designs and technical improvement tominimize intrusion
into daily life, reduce sleep disruption, enhance social and psychological
comfort, and alleviate cognitive burden.

The variations we observed in acceptability based on sex and wearable
type (Figs. 2 and 3) highlight the need for tailoreddeployment strategies that
consider these individual differences. This finding is consistent with the
literature that emphasizes the importance of addressing the unique needs of
specific groups definedby sex, age, andother characteristicswhendeploying
wearables24,25. Recognizing and accommodating individual preferences,
even within a setting that prioritizes collective benefits, is key to the suc-
cessful adoption and sustained use of wearable technologies in health
research.

Our findings show high rates of data availability and completeness
across the wearables (Fig. 4). Compared to consumer-grade wearables
deployed in a similar context16, we noted greater data completeness for
research-gradewearables, likely due to greater storage capacity.On theother
hand, research-grade wearables are more expensive than other wearables
and require more effort for data synchronization and post-processing. Our
results alignwith those ofDin et al. in 2020, who demonstrated lowdata loss
(<9%)with ahigh-resolutionwearable accelerometer formeasuringwalking
activity in older, rural-dwelling adults in Tanzania21. Therefore, ourfindings
demonstrate the feasibility of continuous individual and environmental
monitoring in a real-world setting. This robust data collection capability
positions research-grade wearables as promising tools for community-
based health research in rural settings.

The data from the wearable devices showed that women experienced
greater physiological and cardiovascular strain than men despite having
similar physical activity and sleep patterns (Table 3 and Fig. 7). This finding
suggests potential sex differences in experience and response to physical
stress, which could inform sex-specific interventions. The model (Supple-
mentary Fig. 1) indicated that an outdoorWBGT significantly increased the
PSI (β = 0.32, p < 0.001), with males having a higher baseline PSI (β = 5.33,
p < 0.001), but the effect of theWBGTonPSI was less inmales than females
(β =−0.27, p < 0.001). This analysis should be interpreted cautiously due to
the study’s limited statistical power.Despite high physical activity (2.3–3.0 h
of MVPA per day) and low sleep efficiency (61.8% for women, 59.7% for
men), physical exertion may not translate into restful sleep, possibly due to
factors such as heat stress impacting recovery and work capacity.

HR, ACT, and CBT data from the selected wearables allowed con-
tinuous monitoring over time (Fig. 7). These metrics, especially during

Table 3 | Comparisons of physiological activity, physical
activity, and sleep indices between men and women

Parameter Women (n = 24)
Mean ± SD

Men (n = 24)
Mean ± SD

p-value

Cardiovascular indicators

Heart rate (bpm) 82.52 ± 14.91 74.97 ± 16.79 0.010

Coefficient of
variation in HR (%)

5.03 ± 1.9 4.87 ± 2.05 0.610

Resting heart
rate (bpm)

51.66 ± 4.94 47.94 ± 7.35 0.050

Peak heart
rate (bpm)

99.28 ± 18.35 90.75 ± 19.54 0.000

Heart rate reserve
capacity (bpm)

136.63 ± 5.58 138.76 ± 8.32 0.000

Relative change in
HR (%)

34.86 ± 13.09 30.95 ± 12.9 0.010

Thermal indicators

CBT (°C) 37.1 ± 0.41 37 ± 0.48 0.353

Resting CBT (°C) 36.11 ± 0.14 36.07 ± 0.11 0.039

Peak CBT (°C) 37.97 ± 0.42 38.13 ± 0.47 0.569

CBT reserve
capacity (°C)

3.39 ± 0.14 3.43 ± 0.11 0.000

Relative change in
CBT (%)

29.48 ± 10.63 27.28 ± 13.31 0.395

Overall physiological strain indicator

Physiological Strain
Index (PSI)

3.28 ± 0.72 2.9 ± 0.88 0.010

Physical activity indicators

Daily MVPA (hours) 3.0 ± 2.0 2.3 ± 1.9 0.408

Daily steps (count) 11, 290 ± 6, 216 10, 125 ± 8,454 0.863

Daily distance (km) 11.7 ± 6.3 9.3 ± 4.5 0.398

Sleep pattern indicators

Total
bedtime (hours)

8.4 ± 5.3 9.1 ± 5.3 0.337

Total sleep
time (hours)

4.6 ± 2.1 4.9 ± 2.5 0.560

Sleep efficiency (%) 61.8 ± 24.0 59.7 ± 26.7 0.895

The table presents the mean and standard deviation (SD) values for the Physiological Strain Index
(PSI), cardiac strain indicators (including heart rate [HR], thermal strain indicators (including core
body temperature [CBT], physical activity (includingmoderate-to-vigorous physical activity [MVPA]
time) and sleep patterns. p-values were obtained using a linear mixed-effects model (LME) with the
indicator as the response variable, sex as the independent variable, and individual as a random
effect to account for within-subject variability.
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physical effort, provide objective data on heat strain, enabling the use of
indices such as the PSI7. PSI, originally developed for laboratory use, can be
further modified for continuous monitoring in the field and to account for
differences across populations26,27. In addition, by integrating ACT data
(Fig. 8), the physiological and activity strain index (PASI) can account for
both environmental heat and physical exertion28. GPS tracking (Supple-
mentary Fig. 3) further enhances the understanding of subsistence farming
work patterns, offering insights into the timing, duration, and location of
physical activities, helping to assess labor capacity and develop adaptation
strategies in the context of climate change.

Understanding the impact of sex on the adoption of wearable
materials is critical, but it is also vital to consider sex-related differences
in the response to heat stress. For example, as shown in Table 3, women
exhibited a significantly greater physiological strain index (PSI) and
greater relative change in heart rate (HR) than men did, which may
indicate a heightened susceptibility to heat stress. This could be attrib-
uted to a combination of factors, including lower heart rate reserve
capacity and increased exposure to physically demanding tasks, both in
the home and on the farm, where women constitute more than 50% of
the labor force. Notably, physical activity levels were high for both sexes
(mean daily steps >10,000), and there was evidence of pacing, with most
moderate-to-vigorous physical activity (MVPA) occurring in the
morning and early afternoon before outdoor WBGT peaks (Figs.
5 and 6). Interestingly, women tend to reach their peak physical activity

earlier than men do but sustain their effort until men’s peak, after which
both groups experience a decline. These findings suggest that women
may be at greater risk of heat-related strains due to both physiological
differences and sustainedmanual labor; thus, there is a need for targeted
interventions to mitigate heat stress, particularly for women in agri-
cultural settings. One possible consideration is work pacing; a simple
behavioral strategy that seems to be spontaneous in this setup where
laborers are working on their own farms.

A limitation of this study is potential selectionbias, as participantswere
from a specific geographic area and demographic group, limiting the gen-
eralizability of the findings within SSA. In addition, the small sample size
and short follow-up limit inferences about the effects of heat stress on
physiological parameters, activity, and sleep parameters. However, our
approach of conducting a descriptive pilot study provides valuable insights
for planning future analytical studies involving continuous environmental
and physiological monitoring. Data collection challenges, such as device
malfunctions due to power outages and compliance with continuous device
use, could arise in longer studies, althoughwedidnot encounter these issues,
likely due to the short study duration. Another key strength is the inclusion
ofwomen,whomakeup50%of the agriculturalworkforce inSSA; this study
addresses the significant gap in research on the impacts of heat stress on
women workers29.

In conclusion, this study demonstrated that research-grade wearables
are not only feasible but also highly acceptable in a rural Western Kenyan

Fig. 7 | 24-Hour Time Series of HR, CBT, and PSI by Sex. Panel (a) shows the
relative change in heart rate (HR) over the course of the day, calculated as the
percentage increase relative to the individual’s heart rate reserve (HRR). Panel (b)
shows the relative change in core body temperature (CBT), calculated as the

percentage increase relative to the individual’s CBT reserve capacity. Panel (c) dis-
plays the Physiological Strain Index (PSI), a compositemeasure of heat strain, which
reflects the combined impact on heart rate andCBT. In all panels, females (blue) and
males (red) are compared across different times of day.
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setting. However, given the study’s small sample size, appropriate for a pilot
study but not for generalizable conclusions, these findings should be
interpreted with caution. Further research is needed in larger and more
diverse populations to confirm their broader applicability. These findings
have significant implications for public health, particularly in the develop-
ment of adaptive strategies tomitigate the health impacts of climate change.
By providing real-time data on physiological and behavioral (physical
activity and sleep patterns) responses to heat stress, these devices could play
a crucial role in protecting vulnerable people from the adverse effects of
rising temperatures. Future research should focus on expanding the use of
wearable technology in other regions and populations within SSA, as well as
developing targeted interventions that leverage the data generated by these
devices to improve health outcomes.

Methods
Study setting and population
Within the KEMRI/CDC HDSS area, we conducted a pilot study from
August to November 2021 with an observational time-series design. The
KEMRI/CDC HDSS, located in Siaya County-western Kenya, is char-
acterizedby ahot andhumid climate that is influencedbyLakeVictoria.The
area is predominantly rural,with residents relyingonfishing and small-scale
rain-fed agriculture, and a majority live in poverty17. Siaya County

experiences two distinct rainy seasons, fromMarch to May and October to
December, significantly impacting agriculture and animal husbandry. We
focused on this farming community due to their heightened vulnerability to
hyperthermia and heat-related illnesses. This vulnerability stems from
increased metabolic heat generation during strenuous physical activity and
exposure to extreme heat, humidity, and solar radiation while working
outdoors3. The study area covered a 5 km radius centered around the
weather station in Wagai village, Siaya, which is part of the KEMRI/CDC
HDSS. In addition, clinic-based procedures were carried out at the Wagai
Health Center, a community health centre within the study area.

We constructed a sampling frame using the HDSS database, which
contains detailed information about individuals, such as age, sex, relation-
ships, income sources, and current place of residence. From this database,
we identified 156 couples whomet our inclusion criteria. We then followed
the study recruitmentprocess andmeasurementprocedures, as illustrated in
Fig. 9. Individuals were eligible for the study if they met the following
inclusion criteria: were (a) married or living together, (b) aged between 20
and 45 years, (c) relied on subsistence farming as their main source of
income, and (d) resided within a 5 km radius of the automated weather
station and the study clinic.

Focusing on farmers allowed us to monitor heat stress in open fields
while targeting a working-age population with relatively consistent

Fig. 8 | Daily trends in physical activity and sleep metrics over 14 days, stratified
by sex.Amultipanel plot showing daily trends in physical activity and sleep metrics
over 14 days stratified by sex. Panel (a) displays a bar plot of the mean daily steps for
males (red) and females (blue). Panel (b) shows a bar plot of the mean moderate-to-
vigorous physical activity (MVPA) hours for males and females. Panel (c) presents a

smoothed line plot of daily sleep efficiency (%) for males and females, with shaded
regions representing confidence intervals. Panel (d) features a smoothed line plot
comparing total sleep time (red) and total time in bed (teal). The 14-day periods did
not necessarily overlap for all individuals, as participants were recruited on
different days.
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thermoregulatory responses. Theminimumageof 20 excluded children and
adolescents, whomay not be able to provide independent consent and have
different thermoregulatory responses—while the maximum age of 45
minimized confounding effects related to aging. In addition, we determined
that the 5 km radius surrounding the weather station adequately covered
local weather conditions. Male–female pairs were selected to explore sex-
related differences in physiological responses to heat30. This selection also
facilitated the analysis of how men and women may utilize devices differ-
ently, given that their daily routines can vary. Lastly, recruiting couples from
the samehousehold reduced cultural barriers, aswomen’s participationmay
depend on their partner’s approval.

We aimed for a sample size of 24 men and 24 women. Given the pilot
nature of the study and the specificity of the inclusion criteria, the selected
sample size was deemed sufficient. This approach allowed for an evaluation
of the acceptability of the wearables and the data logger, their ease of
deployment in a rural setting, and their ability to generate reliable, high-
quality data under real-world conditions. Assessing data quality was
essential due to known challenges with wearables, including data loss,
adherence issues, and technical barriers31,32.

Recruitment
Community health workers invited 156 eligible pairs to the study clinic, 94
of whomultimately attended.We recruitedmale–female household pairs to
ensure female participation and capture sex-related differences. In settings
where cultural barriers limit women’s involvement, includingmen from the
same household fosters an environment that supports and endorses female
engagement, thereby enhancing our pilot study’s representativeness. After
rescreening based on the eligibility criteria, we further excluded individuals
with conditions impacting thermoregulation (e.g., pregnancy, cardiovas-
cular conditions, metabolic diseases, and chronic obstructive pulmonary
disease) or those affecting physical performance (e.g., body mass index
(BMI) > 25 kg/m2), as well as individuals reporting alcohol abuse or

imminent plans to out-migrate from the study area. Entire pairs were dis-
qualified if either member was ineligible or withheld consent. All partici-
pants were informed about the study details and signed informed consent
forms prior to participation (Ethical Approval Numbers: EA1/060/19
Charité - Universitätsmedizin and KEMRI/SERU/CGHR/327/3962-Kenya
Medical Research Institute). To ensure participant privacy and con-
fidentiality, all the collected data were pseudonymized, and stringent data
security measures, including password protection, were implemented.
Identifiable images were only included with written consent; in such cases,
an opaque rectangular shape was placed over the face to ensure participant
anonymity. After providing written consent, 24 male–female pairs (n = 48
participants) were enrolled and randomly divided into two groups, each
undergoing data collection in separate phases. Participants in Group 2
began wearing their devices a week after Group 1, creating a 7-day gap
between the groups. This approach was necessary for two reasons: (1) to
allow the team to identify and address unexpected issues, as thiswas the first
time research-grade wearables were used in this setting, and (2) the limited
availability of wearable devices in this feasibility studymade it impractical to
monitor all participants simultaneously.

Experimental protocol
At their first clinic visit, each pair underwent initial assessments, including
height, weight, blood pressure, and bioimpedance analysis, by trained staff.
Demographic and anthropometric data were recorded using a tablet-based
computer-assisted personal interview (CAPI) instrument. Additionally,
each participant received a wrist-worn actigraphy device to monitor phy-
sical activity (Table 4), and each pair received a portable datalogger to
monitor indoor environmental conditions at home. The datalogger con-
tinuouslymonitored the indoorWBGT.On the thirteenth day, participants
underwent 24-hour core body temperature monitoring via a head-worn
wearable device and continuous electrocardiography with a chest-worn
device to assess heart rate, and 22-hour individual location tracking was

Fig. 9 | Overview of recruitment and study protocol. The flowchart in the upper
panel (a) details the recruitment, screening, and group allocation activitieswithin the
study, including the number of participants at each step. The lower panel (b) pro-
vides a graphical description of the data collection procedures. BMI body mass

index, BP blood pressure, BIA body impedance analysis, WBGT wet-bulb globe
temperature index, ACT actigraphy, CBTcore body temperature, ECG electro-
cardiography, GPS location tracking with a Global Positioning System device.
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performed using a clothing-attached global positioning system device
(Table 4 and Fig. 10). Participants were specifically encouraged to maintain
their regular daily activities throughout the monitoring period. In addition,
all wearable devices were configured using themanufacturer’s software and
fully chargedat the study clinic prior to deployment. Furthermore, to ensure
accuracy, clocks across all devices were aligned with local time, allowing for

precise synchronization of data from multiple sources. During data col-
lection, the study team performed periodic checks to ensure device func-
tionality and data integrity. Upon completion of the monitoring period,
participants underwent a second round of the CAPI survey, which covered
device acceptability, daily routines, device status, and procedural adherence.
Participants were reimbursed for transportation costs, and all wearable and
environmentalmonitoring datawere securely downloadedonto a dedicated
laptop for subsequent analysis.

Anthropometry and demographic baseline data
Participants’ heights were measured to a precision of 0.1 cm using a wall-
mounted stadiometer andbodyweightswere assessedwith a calibrated scale
accurate to 0.2 kg. From these, BMI was calculated. Bioimpedance analysis
(BIA) for body composition was performed using a single-frequency BIA
101 analyzer (AKERN Srl, Florence, Italy) at 50 kHz. BIA was conducted
according to themanufacturer’s guidelines33. Subsequently, total bodywater
(TBW) and fat mass (FM) were computed employing an equation specifi-
cally developed and validated for adult populations of African descent 34,35.
Furthermore, blood pressure was measured using a digital sphygmoman-
ometer (Omron JPN 600) on the left arm of seated participants, who were
allowed to rest upon arrival at the clinic. The duration of this rest periodwas
determinedbasedonparticipants’ feedback, aswedidnot establish a specific
criterion for what constituted an ‘adequate rest’ period. All the baseline
anthropometric data were collected in the study-entry questionnaire,
described below.

Questionnaires - Computer-assisted personal interviews
We administered two questionnaires (see Supplementary Material, Sup-
plementary Study Questionnaires) deployed on the Survey Solutions
Computer-AssistedPersonal Interview(CAPI)platform36, i.e., a study-entry
questionnaire anda follow-upquestionnaire.The study-entryquestionnaire
captured the participants’ initial willingness to use the devices. In addition,

Table 4 | Device specifications

Device (a) Tcore Sensor
(b) Data logger and headband

Bittium Faros 180° GENEActiv Original Renkforce GP-102 G-
Porter GPS Logger

Company (a) Dräger, Lübeck, Germany
(b) KORA, Hamburg, Germany

Bittium, Finland Activinsights, UK Renkforce, Germany

Image

Measurement CBT (core body temperature) ECG (Electrocardiography) ACT (Actigraphy) GPS (Geospatial
Position)

Type of sensor Tcore sensor with heat-flux
technology

1-lead mini-ECG with 3 electrodes and
built-in tri-axial accelerometer

Tri-axial accelerometer, ambient
light skin temperature sensors

GPS utilizing the
MTK3339 chipset

Measurement
features

Temperature Range: −30 °C to 45 °C ECG Sampling Rate: up to 250 Hz;
Accelerometer

Range: +/- 8 g GPS Accuracy: Up to 2.5
meters

Sampling Rate: 0.0167 Hz Sampling Rate: 10 Hz Sampling Rate: 10–100 Hz Sampling Rate: 0.0033
- 1 Hz

Memory capacity 8 MB Up to 64 GB 0.5 Gb 4MB flash memory

Data transfer USB cable Micro-USB cable Cradle with USB cable USB cable

Data format LAB EDF (European Data Format) BIN (binary) GPX, KML, CSV

Characteristics, functions, and features of selected wearables for physiological monitoring.

Fig. 10 | Placement of wearable devices. Example of a fully instrumented partici-
pant. The wearables are identified by the parameters they recorded: CBT (core body
temperature), ECG (electrocardiography), ACT (actigraphy), and GPS (location
tracking with a Global Positioning System device). Note: This figure includes an
image of a participant taken with written consent; an opaque rectangular shape has
been placed over the face to protect the individual’s identity.
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to confirm adherence to the study protocols, we captured information on
device management (charge, configuration, cleaning, and placement). For
devices provided on day 13 of follow-up, device management data were
collected on the material day.

The follow-up questionnaire was administered at the time of the
study’s conclusion to gather participants’ perspectives on device accept-
ability. In this study, “acceptability”was defined as participants’willingness
to use thewearable devices, their perceived usefulness of the technology, and
any physical, psychological, or social discomfort experienced while wearing
the devices. This approach aligns with the Technology Acceptance Model
(TAM), which highlights the perceived usefulness and ease of use as key
factors influencing the adoption and continued use of new technology20.
Participants responded to Likert scale items (ranging from “strongly agree”
[1] to “strongly disagree” [5]) on topics such as device usefulness (“wearing
made no sense”), psychological response (“happy to wear the device”,
“strange to wear the device”), cognitive burden (“device requires too much
attention”), physical burden (“cumbersome to wear”, “device limited my
movements”), impact on daily routine (“wearing affected daily routine”,
“wearing affected sleep”), and aesthetic appeal (“found the device likable”).
Additional questions included binary (yes/no), multiple-choice, and open-
ended formats. The staff also reported on tasks such as charging, config-
uration, cleaning, placement, data download, synchronization, and any
instances of device loss or damage.

After completing the questionnaire, a trained operator verified the
accuracy of the data, identifying and rectifying any discrepancies, such as
duplicates or data entries. Subsequently, the verified questionnaire was
integrated into the final dataset. The dataset was thereafter downloaded
from the Survey Solutions server for further analysis. To assess the
respondents’ feelings toward the wearables, we computed both the absolute
and relative frequencies of the responses to each item in the questionnaire.
Additionally, we conducted a sex-based stratified analysis to investigate
potential differences. To visualize the Likert scale items, we utilized diver-
gent bar graphs.

Individual physiological monitoring
We measured 24-h CBT using the Tcore sensor (Dräger, Lübeck, Ger-
many) sensor attached to a miniaturized data logger (KORA Homburg
Germany)37. Both were embedded in a custom-made headband to
improve wearability during daily activities (including farming). The 24-h
HR was measured using a one-lead miniaturized electrocardiography
(ECG) system (Faros 180°, Bittium, Oulu, Finland) with three electrodes
attached to the thorax38. Furthermore, activity levels, including steps
(ACTs), were continuously monitored using the GENEActiv Original
watch (ActivInsights, UK) 39. The participants’ spatial movements were
tracked for a 22-h span using a wearable GPS logger (GPS) (Renkforce
GP-102, Conrad, Germany). Table 4 summarizes the key features of these
four research-gradewearables,while Fig. 10depicts their placement on the
body. The ACT watch was placed on the non-dominant wrist and worn
for 14 days. The GPS device was attached to a belt or cloth at the waistline
and worn for 22 h.

Tomanage the devices efficiently, we utilized dedicatedmanufacturer-
provided software on a laptop forwearable configuration,firmware updates,
and secure data transfer. After downloading the data, a thorough first check
forqualitywasperformedbefore securelyuploading the verifieddatasets to a
protected server. After data synchronization through their respective native
software packages on the study computer, the raw data from the wearable
devices were postprocessed to derive meaningful physiological and activity
metrics.

For ECG post-processing, we used Kubios Premium software (Kubios
Oy, Kuopio Finland) for R-peak detection and heart rate extraction. Acti-
graphy data were processed using the GENEActiv R Markdown Analysis
Tools, which are freely available online40; these tools segment raw accel-
eration, expressed in g units (gravitational acceleration)41; and ambient light
signals into epochs classified as sedentary, light, moderate, or vigorous
activity based on predefined acceleration thresholds from Esliger et al.42.

This process yielded summary metrics such as daily step count, sleep
duration, sleep efficiency, and time spent performing different activities.

WeprocessedGPSwaypoints to estimate the time spent in thefield and
working patterns by using farm-centroid coordinates to establish farm
boundaries via the Haversine formula43. The average farm size of 1.2 acres44

was increased to 3 acres to account for GPS inaccuracies. GPS home posi-
tions were overlaid with waypoints to identify activity locations (home vs.
farm vs. elsewhere), and we calculated the distance covered and the time
spent in these areas.

The feasibility of research-grade wearables was evaluated based on
the volumeof good-quality, usable data each device produced.Usable data
were obtained by excluding corrupted data and filtering out implausible
values. Corrupted data refers to information that was unprocessable due
to equipment malfunctions or transmission issues. Implausible data, such
as heart rate below 40 bpm or above the maximum predicted by the
Tanaka formula45 and CBT readings outside the range of 35 °C–42 °C,
were treated as outliers46,47. Data availability was defined as the proportion
of participants (n = 48) fromwhom at least one usable data recording was
retrieved. On the other hand, the completeness of the data was calculated
as the percentage of the total intended recording time, whichwas captured
as usable data for each device worn by each individual. For example, if a
device was set to measure heart rate continuously over a 24-h period, data
completeness for a specific individual would reflect the proportion of that
24-h period during which usable heart rate data were successfully
recorded.

Environmental monitoring
The automatic weather station installed in the study area collected out-
door environmental data, including air temperature, rainfall, wind speed
anddirection, and solar radiation.Using these data, theWBGT (measured
in °C) outdoors was estimated according to Carter et al.48. As described
previously, theWBGT integrates all the environmental factors that could
impact human health and physical/labor performance into a single
index48,49. For indoor WBGT monitoring, we used a PCE-WB 20 SD
device (PCE Deutschland GmbH, Germany). The data were logged every
10min and storedon an integrated SDcard.We securely placed thedevice
at a height of 2 meters from the ground in themain roomwhere the study
participants slept. The device was positioned to ensure unobstructed
sensor access and proper air circulation and to avoid direct sunlight or
windows. At the end of themonitoring period (14 days), each SD cardwas
read, and the raw data were synchronized on the study laptop for further
processing. The availability of data availability for the indoor WBGT was
defined as the proportion of households (n = 24) with at least one good-
quality data recording. As forwearables, we defined the data completeness
for each distinct WBGT device as the percentage of the total monitoring
period (14 days) for which usable data were recorded.

Statistics
The raw data were processed using R statistical software (version 4.3.1),
where they were cleaned, filtered for outliers, and analyzed for relevant
metrics. Anthropometric data were compared between men and women
using unpaired t-tests (Student’s t-tests), while laboratory and outdoor
WBGT data were compared using one-way ANOVA, with statistical
significance set at p < 0.05. Acceptability ratings were reported as per-
centages and categorized by device type and sex. The data availability and
completeness for each device are expressed as percentages. Furthermore,
to display completeness percentages at the individual level and by device
type, we used the median to represent central tendency and provided
detailed variability using the minimum, maximum, and interquartile
range (IQR).

The heat strain was calculated as follows: Cardiac strain was computed
at every observation as the increase in heart rate from the resting heart rate
relative to the heart rate reserve capacity (HRR). The resting heart rate
(RHR) was defined as the minimum observed HR, while the HRR was the
difference between the predicted peak HR (based on the Tanaka formula45)
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and the RHR. Thermal strain was calculated as the increase in core body
temperature from baseline (minimum CBT) relative to reserve CBT capa-
city. Reserve CBT capacity was defined as the difference between the critical
temperature of 39.5 °C and the baseline or nadir CBT. The physiological
strain index (PSI) combines both cardiac and thermal strain, with each
component weighted by 5 and added together to produce a score ranging
from0 to 10, where higher values indicate greater physiological strain7. Both
cardiac strain (relative heart rate increase) and thermal strain (relative CBT
increase) are expressed as percentages. Physical activity metrics included
daily step counts and time spent at different levels of activity, including
moderate-to-vigorous physical activity (MVPA). Sleep metrics included
total time in bed, total time asleep, and sleep efficiencywhichwas calculated
as the percentage of total time asleep relative to total time in bed. These
metrics are reported as the mean and (SD), if not otherwise stated. These
means of thesemetricswere then compared betweenmen andwomenusing
linear mixed-effects models adjusted for the WBGT. The equation for the
linear mixed-effects model was as follows:

Yij ¼ β0 þ β1 � Sexij þ bi þ εij

Here,Yij represents themetric (e.g., daily step counts) for individual i at time
point j, withβ0 as the intercept,β1 as the coefficient for the predictor variable
Sexij, bi as the random effect for individual i, and εij as the residual error.

We also fitted a linear mixed-effects model, analyzing the relationship
between the PSI and outdoor WBGT, adjusting for sex, total MVPA in
hours, previous night sleep in hours, BMI, and fat mass percentage, with
individual variables serving as a randomeffect to account for variability. The
data, restricted to observations from 6:30 AM to 6:30 PM, were modeled
using maximum likelihood estimation. The model equation was as follows:

PSI ¼ β0 þ β1 � Sexij þ β2 �WBGT þ β3 �WBGT � Sexij
þβ4 �MVPAij þ β5 � Previous Night Sleep Timeij
þβ6 � BMIij þ β7 � Percent Fat Massij þ bi þ εij

In the equation, “ij” refers to the individual (i) and observation (j) levels
within the model, bi is the random effect for individual i, and εij is the
residual error. The fixed effects estimates, 95% confidence intervals, and
random effects are provided in the SupplementaryMaterial, as this analysis
was beyond the scope of this paper but allowed for the exploration of
potential analyses for follow-up studies.

All data post-processing, analysis, and visualization were carried out
using the R statistical software, version 4.3.150. The linear mixed-effects
models were fitted using the lme4 R package in R.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request. Please reach out to
the corresponding author DK (daniel-phillip-oluoch.kwaro@charite.de).

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers upon reasonable request from the corre-
sponding author.
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