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Conformal prediction enables disease
course prediction and allows
individualized diagnostic uncertainty
in multiple sclerosis
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Joachim Burman1, Ola Spjuth 3 & Kim Kultima1

Accurate assessment of progression and disease course in multiple sclerosis (MS) is vital for timely
and appropriate clinical intervention. The gradual transition from relapsing-remitting MS (RRMS) to
secondary progressive MS (SPMS) is often diagnosed retrospectively with a typical delay of three
years. To address this diagnostic delay, we developed a predictive model that uses electronic health
records to distinguish between RRMS and SPMS at each individual visit. To enable reliable
predictions, conformal prediction was implemented at the individual patient level with a confidence of
93%. Our model accurately predicted the change in diagnosis from RRMS to SPMS for patients who
transitioned during the study period. Additionally, we identified new patients who, with high
probability, are in the transition phase but have not yet received a clinical diagnosis. Ourmethodology
aids in monitoring MS progression and proactively identifying transitioning patients. An anonymized
model is available at https://msp-tracker.serve.scilifelab.se/.

Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease
affecting the central nervous system. It is a leading cause of neurological
disability in young adults globally. The course of MS is heterogeneous but
typically involves an early, predominantly inflammatory disease phase
termed relapsing-remitting MS (RRMS) and a later, principally degen-
erative stage known as secondary progressive MS (SPMS). SPMS is diag-
nosed retrospectively, where the average delay is 3 years1. While current
disease-modifying therapies are effective in RRMS, the majority have very
limited benefit in SPMS, if at all. Proactive recognition of patients with
progressive disease could limit exposure to ineffectivemedications and their
side effects. Early identification of patients eventually fulfilling the criteria of
SPMS would, therefore, be a valuable addition to the armamentarium of
clinical practitioners, enabling meaningful intervention.

Previous studies have explored invasive and non-invasive biomarkers,
including biochemical and imaging-based measures, for predicting disease
progression2,3, and the transition to SPMS4–11. However, the predictive value
of thesemarkers is limited4,12, they lack an uncertaintymeasure, and they are
not routinely used in clinical practice. One potential approach to timely
disease progression identification is using artificial intelligence (AI) and

machine learning (ML). Progress in these fields has opened up the possi-
bility of assimilating and interpreting complex data in healthcare and is
expected to be transformational13. Machine learning and deep learning
(DL)-based methods have been developed to predict the transition from
RRMS to SPMS14.

In a study byManouchehrinia et al., the authors achieved an accuracy
of 77–87% when predicting the risk of conversion to SPMS in 10, 15, and
20yearsusinganomogram-basedmethod15. The studyused electronichealth
record data (EHR) from 8825 RR onset MS patients in Sweden and was
validated using 6498 patients. However, themodel was developed only using
data from the first hospital visit from a certain patient, and there were no risk
scores associatedwith each hospital visit. A similar study to predict transition
to SPMSwithin 180, 360, or 720 dayswas carried out by Seccia et al., utilizing
1624 patients with 18,574 clinical records14. The tool was designed to make
predictions using both historical clinical records and individual follow-ups.
While this study demonstrated higher specificity and recall, the precision of
the predictions was lower, resulting in an increased number of false positives
being included. Both studies focused solely on RRMS patients, potentially
missing those who had transitioned. Additionally, the studies did not
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incorporate any uncertaintymeasure for their predictions,making themodel
susceptible to errors when applied to external data.

As the transition from RRMS to SPMS is gradual, with overlapping
disease processes during this transitional period, developing a binary clas-
sifier is challenging16. More generally, the adoption of predictive AI tools in
healthcare thus far has been limited by more than solely their measured
performance. Significant shortcomings in the clinical setting include an
inability to convey uncertainty in a given prediction17 and a lack of
explainability or interpretability for a given prediction18. The explainable AI
(XAI)models can help healthcare practitioners understand andmore easily
verify the results provided by these models.

Conformal prediction (CP) is a framework for complementing single-
valued predictions from standardML/AI classifiers with a valid measure of
the prediction’s uncertainty19. At a specified confidence level, the conformal
predictor will provide a region around the point prediction containing the
true label. For instance, when predicting a patient’s RRMS or SPMS disease
state,CPproduces four outputs: {RRMS}, {SPMS}, {RRMS, SPMS}, and {}. If
the CP output contains multiple labels, the prediction incorporates more
than one true label, thus predicting a patient to be both RRMS and SPMS.
Conversely, if a CP generates empty predictions, it signifies that a valid
prediction cannot be made. We have recently demonstrated that CP can
substantially reduce thenumber of errorsmadeby anAIclassifier in grading
prostate biopsies20 and that ML in combination with CP can aid in pre-
dicting the transition of SPMS based on biomarkers measured in cere-
brospinal fluid (CSF) analysis21. However, this approach has not been
assessedwith EHRdata alone, which could circumvent the need for invasive
or costly biomarkers.

In this study, we develop conformal predictors for ML-assisted diag-
nostics in MS using clinical information from the EHR collected from
22,748 MS patients with 197,227 hospital visits. We demonstrate that the
model is well-calibrated, meaning the conformal predictors are valid. This
allows us to produce reliable predictive uncertainties for each patient’s
hospital visit. We also show how these predictors can be used to monitor a
patient’s disease progression in the spectrum between RRMS and SPMS,
allowing earlier identification of patients fulfilling the criteria of SPMS. We
then incorporated SHapley Additive exPlanations (SHAP) to demonstrate
the contributions of clinical variables to the individual predictions and the
entire test dataset22.

We believe this approach can assist in monitoring the disease pro-
gression, earlier identification of transition to SPMS, andprovide a powerful
tool for tracking interventions’ effects that can also be used in clinical trials.
Finally, we have set up a publicly accessible web server deploying the ML
architecture for research use only.

Results
We trained an AImodel to identify patients with diagnoses of either RRMS
or SPMS using EHR data from the Swedish MS Registry (SMSReg)23. The
SMSReg is a nationwide registry containing data from 22,748 MS patients,
with 197,227 hospital visits, collected between 1972 and 2022. The registry
has high validity and broad coverage, estimated to include over 80% of all
people with MS in Sweden24. More than 850 neurologists have contributed
data to the registry.

The data from the registry was processed as illustrated in Fig. 1. Only
patients with an RRMS or SPMS diagnosis at the first presentation were
included. Duplicate entries were removed, and individual patient records
were divided into hospital visits. Fifty-six clinical parameters from the EHR
were used to generate 61 derived features (Supplementary Table 1). The
dataset was split into four non-overlapping subsets of patients for the
training (individual patients, np = 9348), validation (np = 719), calibration
(np = 720), and testing (np = 3595) of the models. The baseline character-
istics of the patients in these four subsetswere similar, as outlined in Table 1.

To account for uncertainty on an individual patient level, we used CP
and assessed the model efficiency as the fraction of all the predictions,
resulting in a single-label prediction.We also evaluated themodel’s validity,
i.e., the error rate did not exceed the pre-specified significance level of the
conformal predictor, added XAI using SHAP to elucidate the features
influencing thepredictions, anddeveloped apublicly availablemodel for use
in research.

Machine learningmodels onEHRdata produce accuratemodels
to predict RRMS and SPMS
First, we assessed the performance of different ML models in predicting
whether a patient had a diagnosis of RRMSor SPMS at a given hospital visit.
Four MLmodels were trained: logistic regression, support vector machines
(SVM), gradient-boosting (GB), random forest (RF), and aDLmodel (‘long
short-term memory’, LSTM). The latter was selected for its ability to use

Fig. 1 | Overview of model training, validation,
calibration, and testing. a 65% of the data was used
for training, with b 5% used as a validation set for the
validation. c 5% of the data was kept aside as the
calibration set d 25% was set aside as the test set to
evaluate the model efficiency. Created with BioR-
ender.com. Kultima, K. (2024) https://BioRender.
com/t48p033.
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historical information from prior hospital visits to guide predictions for the
same patient in subsequent visits.

We evaluated the ML and DL models using 10-fold cross-validation
on the combined training and validation datasets (individual patients,
np = 10,067; hospital visits, nv = 79,690). Based on the macro average F1
score, the combined measure of precision and recall, the performance in
discriminating between RRMS and SPMS at hospital visits was high. RF,
SVM, andGB all had an F1 score of 0.90. These three models significantly
outperformed logistic regression and LSTM (p < 0.05, Supplementary
Figs. 1 and 2). Since the three traditional ML models performed similarly
to one another, we selected RF (0.903 ± 0.008) for subsequent analysis.

In many cases, the information the different clinical variables hold is
redundant.We investigatedwhetherwe could identify aminimal number of
clinical features used in the model without negatively impacting the overall
performance. On average, the RF model performed best when we excluded
the information from the patient-reported multiple sclerosis impact scale
(MSIS-29), retaining 27 features (Supplementary Table 1, and Supple-
mentary Figs. 3 and 4).

Conformal prediction produces valid and efficient models for
predicting MS diagnosis at a hospital visit
We added a valid measure of the prediction uncertainty using CP to com-
plement the single-valued prediction from the best-performing RF model.
The output p-values from the model were calibrated using the calibration
dataset with data from 720 patients at 5771 hospital visits. While in tradi-
tional statistics, the p-value suggests evidence against a null hypothesis, the
p-values in this contextmeasure howwell the current observation conforms
to the previously observed data i.e., calibration dataset. The calibration plot
(Fig. 2a) demonstrates the very close correspondence between the specified
significance level and the resulting observed prediction error, indicating
excellent validity of the conformal predictor.

The performance of the conformal predictor can be illustrated at dif-
ferent pre-specified significance levels (Fig. 2b). The conformal predictor
had the highest proportion of correct single-label predictions at a sig-
nificance level of 0.07, i.e., a confidence level of 93%. Consequently, we
evaluated the efficiency of the conformal predictor at a 93% confidence level
for predicting RRMS or SPMS in the test dataset.

Prediction with confidence for all the hospital visits using con-
formal prediction
The test dataset contained 3595 patients and 28,323 hospital visits. Of these,
2451 patients (18,525 hospital visits) were diagnosed with RRMS
throughout, and 677 with SPMS (3977 hospital visits). The remaining 467
patients (5821 hospital visits) had a diagnosis of RRMS at the first visit and a
diagnosis of SPMSat the last hospital visit. Based on these data, we evaluated
the conformal predictor’s ability to determine the correct diagnosis (i) at
eachhospital visit, (ii) thefinal diagnosis for eachpatient, and (iii) inpatients
with an initial diagnosis of RRMS and a final diagnosis of SPMS (“transi-
tioning” patients). The final group was also evaluated based on the visit at
which the patient was first diagnosed with SPMS relative to the conformal
predictor's initial prediction of SPMS for each patient.

When analyzing each hospital visit, the proportion of correct single-
label predictions was high (92.1%). There were a total of 2073 (7.3% of test
set data) incorrect single-label predictions, with no instances of empty
predictions and 150 (0.5% of test set data) instances of multiple-label pre-
dictions (RRMS | SPMS) (Fig. 2c, d). From the incorrect predictions, in
1672 cases (7.8% of all RRMS hospital visits), the patients were erroneously
predicted as having SPMS, and in 401 cases (5.8% of all SPMS hospital
visits), RRMS. Since the course of MS is heterogeneous with periods of
relapses, it is not unexpected that at some hospital visits, there will be
incorrect predictions. However, a closer inspection of these errors reveals
that 56.8% of the erroneous SPMS predictions originated from only 118
patients (3.3% of all MS patients in the test set). Similarly, 54.9% of the
incorrectRRMSpredictionsoriginated fromonly 40patients (1.1%of allMS
patients in the test set) (Supplementary Fig. 5).T
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We conducted a deeper analysis of these frequently misclassified
patients, examining their clinical characteristics in more detail. To better
understand these erroneous predictions, we manually classified them into
distinct categories based on how their CP p-values evolved over time. The
118 frequently misclassified RRMS patients (with erroneous SPMS pre-
dictions) were grouped into four categories—category 1, 2, 3, and 4—while
the 40 frequently misclassified SPMS patients (with erroneous RRMS

predictions) were grouped into three categories—category 1, 2, and mis-
cellaneous (Fig. 3).

The patterns we describe for categories 1 and 2 were present in both
the frequently misclassified RRMS patients and the frequently mis-
classified SPMS patients (Figs. 4a, b and 5a, b). Category 1 was char-
acterized by steadily increasing SPMS p-values from the first hospital visit
onwards, with lowRRMS p-values throughout (Figs. 4a and 5a). Category 2

Fig. 2 | Calibration and efficiency plots on the test set data. a The calibration plot
shows the observed prediction error on the y-axis and the prespecified significance
level on the x-axis, i.e., the tolerated error rate. The observed error rate is close to the
diagonal line, indicating a valid conformal predictor. bThe efficiency plot shows the
label distribution of correct single-label, incorrect single-label, multiple-label, and
empty predictions for the test set at different significant levels. The plot demonstrates
the expected confidence-efficiency trade-off, whereby lower significance levels
(higher confidence levels) result in the conformal predictor returning an increasing
proportion of multiple-label prediction and vice versa, returning an increased

proportion of empty prediction at lower confidence. The confidence level corre-
sponds to a 1-significance level. The peak single-label prediction (i.e., the highest
proportion of single-label predictions) is at 93% confidence, corresponding to a
significance of 0.07. c Normalized predictions in the test set data at 93% confidence
(highest efficiency) with the predictions RRMS and SPMS indicate single-label
prediction, whereas empty represents no prediction, and multiple-label represents
both RRMS and SPMS prediction. d Bubble plot showing prediction of the test set at
93% confidence.

Fig. 3 | Deeper analysis of frequently misclassified
patients’predictions.The patients were categorized
as follows: a 118 frequently misclassified RRMS
patients grouped into four categories, and b 40 fre-
quently misclassified SPMS patients grouped into
three categories.
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Fig. 4 | Four distinct categories for the 118 frequently misclassified RRMS
patients.The p-values for the RRMS and the SPMS from the CPwere plotted (on the
left side), and the corresponding schema of how the patientswere categorized (on the
right side). a Categorized based on the presence of increasing SPMS p-values from
the beginning of their earliest recorded clinical visits. b An inflection point marked

by a rapid increase in SPMS p-values was identified and established as the baseline
time point. This category resembles Category 1 but with additional prior clinical
data. c Category where high EDSS score led to incorrect SPMS predictions, despite
stable clinical course. d The model’s predictions switch between disease states along
the duration of the disease course, highlighting inaccurate predictions.
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was characterized by a low SPMS p-value for a variable length of time,
followed by a steady increase in the SPMS p-value (Figs. 4b and 5b).We
found several commonalities between clinical features when we cate-
gorized patients into these categories based on their SPMS and RRMS
p-values over time. Both categories 1 and 2 appeared to represent
similar trends, with the difference that patients in category 2 had more
visit information early on in the disease process (as suggested by the period
of low SPMS p-values). This could be seen when the trends were plotted
with the 'inflection point' in p-values—the point at which the SPMS

p-values started to increase, or RRMS p-values decrease were aligned in
time (Figs. 4b and 5b).

When only considering the frequently misclassified RRMS patients, it
can benoted thatwithin categories 1 and 2, themodel consistently predicted
these patients to have SPMS earlier than the diagnosis recorded by the
registry data (Fig. 4a, b) and may potentially represent a diagnostic delay.

Conversely, for the frequently misclassified SPMS patients in
categories 1 and 2, the model identified transitions to SPMS at a later
time point than that recorded in the registry. In category 2, we observed

Fig. 5 | Three distinct categories for the 40 frequently misclassified SPMS
patients.The p-values for the RRMS and the SPMS from the CPwere plotted (on the
left side), and the corresponding schema of how the patientswere categorized (on the
right side). a Categorized based on the presence of increasing SPMS p-values from

the beginning of their earliest recorded clinical visits. b An inflection point marked
by a rapid decrease in RRMS p-values was identified and established as the baseline
time point. This category resembles Category 1 but with additional prior clinical
data. c Category in which no clear pattern emerged from our analysis.
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a rapid decrease in RRMS probability at the time point where the
transition from RRMS to SPMS was identified in the registry. The
patients in these categories were generally younger adults (<40 years
old) and/or those with lower EDSS scores (<4.5), which are less typical
for disease transition. The model failed to identify the correct disease
state at these transition points.

Category 3 contained only frequently misclassified RRMS patients,
withSPMSp-values that initially increasedbut soonplateaued (Fig. 4c).This
typically consisted of patients with a diagnosis of RRMS throughout all
visits, but who also had high EDSS scores, whichwe found to be due to poor
recovery of disability following relapses rather than progressive disease.
Category 4 alsoonly contained frequentlymisclassifiedRRMSpatients,with
the model’s classification fluctuating between RRMS and SPMS (Fig. 4d).
Thus, categories 3 and 4 clearly represented erroneous predictions, where
the model performs poorly in comparison to registry data.

Taken together, looking at the most frequently misclassified patients,
we noted that for misclassified RRMS patients within categories 1 and 2
(83.1% of misclassified RRMS), the model identified transition earlier than
recorded in the registry, whereas the misclassified SPMS patients in cate-
gories 1 and 2 (95% of misclassified SPMS), the model identified disease
transition later than the registry. This may be due to less typical clinical
features in these patients. In categories 3 and 4 (16.9% of misclassified
RRMS), themodel performedworse compared to the diagnoses recorded in
the registry, while some patients (‘miscellaneous’ category, 5% of mis-
classified SPMS, Figs. 3 and 5c) did not fit into any of these categories.

To identify the number of patients contributing to 50%of the erroneous
predictions in the entiredataset, a4-foldcross-validation (CV)wasperformed
by keeping 70% training, 5% calibration, and 25% testing data. The analysis
revealed that approximately 50% of the erroneous SPMS predictions origi-
nated fromasmall subsetof 405 (2.8%ofallMSpatients in the study)patients.
Similarly, 147 (1%ofallMSpatients in the study)patients accounted forabout
50%of all erroneousRRMSpredictions.These results indicate that the correct
single-label prediction efficiency of the conformal predictor is high, and the
erroneous predictions often originate from a smaller fraction of all patients.

Conformal prediction enables efficient prediction of MS diag-
nosis on a patient level with individual confidence measures
As SPMS is diagnosed retrospectively, we sought to evaluate the conformal
predictor's ability to predict clinical courses based on the latest available
diagnosis. The overall efficiency for predicting the latest diagnosis was high
(94.1%) (Table 2). There were no empty predictions, six RRMSpatients and
one SPMS patient receivedmultiple-label predictions (RRMS | SPMS). At a
confidence level of 93%, there were 206 erroneous predictions. 179 of these
(7.3% of all RRMS patients) were patients with the latest diagnosis of RRMS
who were instead predicted to have SPMS. The remaining 27 (2.4% of all
SPMSpatients) patients had afinal diagnosis of SPMSandwere predicted to
have RRMS.

Following the prediction efficiency being markedly asymmetrical
(97.6% for SPMS, 92.4% for RRMS), we investigated the conformal

predictor’s output p-values for the 179 patients incorrectly predicted to have
SPMS. These cases could be grouped into three categories: a majority (111
patients, 4.5% of all RRMS patients) had predictions of RRMS at the initial
visit, with predictions of SPMS at later visits, while the clinical diagnosis
remained RRMS (Supplementary Fig. 6).

A group of patients (52 patients, 2.1% of all RRMS patients) persis-
tently had predictions of SPMS at all visits despite diagnoses of RRMS,
suggesting they could have SPMS already since their first presentation
(Supplementary Fig. 7). And 16 patients had conflicting predictions with
p-values suggesting uncertain predictions (Supplementary Fig. 8).

Conformal prediction coupledwith XAI enables the prediction of
transition states from RRMS to SPMS diagnosis
Weapplied ourmodel to predict the clinical course of transitioning patients.
Given the retrospective nature of the SPMS diagnosis and previously
demonstrated diagnostic delays, we assessed the conformal predictor’s
performance in patients who “transitioned” from a clinical course of RRMS
to SPMS between the first and last visit (np = 467, nv = 5821).

Of 467 cases, the conformal predictor correctly predicted 320 (68.5%)
to have RRMS at onset and later transition to SPMS (Supplementary
Table 2, Fig. 6a for a patient example). In 125 cases (26.8%), the conformal
predictor predicted that the patient had SPMS from disease onset. In 96 of
these cases, they were predicted as having SPMS at all 812 subsequent
hospital visits. The remaining 29 cases had subsequent multiple-label or
incorrect RRMS predictions, followed by SPMS predictions. These results
display high agreement between the diagnosis and predictions; 95.3% are
correctly predicted to have SPMS, and when the two deviate, the conformal
predictor typically predicts the patient as having SPMS from the first
presentation.

To aid in understanding and verifying the predictions made at each
hospital visit, theweightage given to features by themodel can be interpreted
using SHAP (Fig. 6b). For instance, EDSS scores strongly contribute to
predictions towards RRMS at year 0.7 (EDSS 2.5) and SPMS at year 6.5
(EDSS 6.0). Factors such as first-line DMT and age at visits are strong
indicators forRRMS,whereas factors suchas lackof steroid treatments, ageat
relapse, etc., increase the likelihood of SPMS.However, at year 3.8, where the
model predicts SPMS, theEDSSof 4.0 suggestsRRMS,whichwould typically
not be sufficient for an SPMS diagnosis. Instead, other factors like age at
relapse, lack of steroid treatment, etc., collectively contribute to the SPMS
prediction. With this in mind, SHAP analysis can be particularly useful in
cases where the predictions from the model are discordant with the clinical
diagnosis, or where a double-label prediction is made. For such cases, if the
factors and the SHAP weights were available to clinicians, they could high-
lightpatientswhomaybeathigher riskofdisease transition, aswell as explain
why such a prediction was made. Ultimately, this provides additional, con-
textualized information that could inform clinical decision-making.

Upon analysis of collective feature contribution using the entire test set
data, themodel demonstrates that EDSS and the age at the hospital visit had
notable contributions compared to other features (Supplementary Fig. 12).
The features SDMT score, age at debut relapse, age at MRI, first-line DMT,
debut age, treatment, and age at SDMT had moderate contributions com-
pared to the rest of the 18 features. This demonstrates the ability of CP and
XAI to aid in early diagnosis, which also may assist in enabling meaningful
intervention at an earlier stage.

Predicting the timing of a change in diagnosis from RRMS
to SPMS
Next, we examined the concurrence between the time (hospital visit) when
the patientwas diagnosedwith SPMSand the predictionmade by themodel
at 93% confidence. In 320 cases that transitioned from RRMS to SPMS
(SupplementaryTable 2), therewas aprecise timepointwhen the conformal
predictor predicted a change in disease state. In 137 cases (42.8%), the time
for a change in disease statewas predicted the same as the clinician has set in
retrospect (Fig. 7). In 56 cases (17.5%), it was just one hospital visit in
difference. In the remaining 127 cases (39.7%), the conformal predictor

Table 2 | Prediction at final hospital visits on the test dataset
with a confidence of 93% compared to the clinical diagnosis

Conformal prediction with a
confidence of 93%. Overall efficiency
was 94.1%.

Clinical diagnosis

RRMS
(np = 2451)

SPMS
(np = 1144)

Prediction RRMS 2266 (92.5%) 27 (2.4%)

SPMS 179 (7.3%) 1116 (97.6%)

Empty-{} 0 (0%) 0 (0%)

Multiple-label
(RRMS | SPMS)

6 (0.2%) 1 (0.1%)

The predictions RRMS and SPMS indicate single-label prediction, whereas empty represents no
prediction, and multiple-label represents both RRMS and SPMS prediction for the hospital visit.
np = number of individual patients. *Percentages would not add up due to rounding off.
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Fig. 6 | Predicted disease course at 93% confidence for an example patient with 13
hospital visits complemented with XAI. aDisease course of a transitioning patient
with RRMS at the initial hospital visit and SPMS at the final hospital visit. In disease
course plot 1 (top figure), the model predicts that the transition occurred in year 3.8.
However, the clinic’s SPMS assessment could not bemade until between year 3.8 and
year 7.1. Thus, as indicated by the gray zone, a delay of three years is observed. Thus,
the model identifies SPMS early, approximately three years in advance. Disease-
modifying treatment names taken during the disease course are listed atop the figure.
The disease course plot 2 (bottom figure) manifests the progression of the disease
towards SPMS, indicating the disease worsening over time. A clear drop in RRMS
p-value occurs between years 0.7 and 3.8, and at the same time, an increasing p-value
score for SPMS is observed (between years 0.7 and 7.1). As the disability

accumulates, the plot illustrates a decreasingRRMS p-valuewith an increasing SPMS
p-value. b Feature contribution explanation using force plots for the predictions on
the hospital visit at years 0.7, 3.8, and 6.5 of the patient. During the hospital visit year
0.7, themodel predicted RRMS, driven by lower EDSS score, first-line DMT, and age
at the visit. Meanwhile, the features contributing to SPMS are minimal. Conversely,
in year 3.8, the model predicted SPMS, influenced by factors such as age at relapse,
number of steroid treatments, age at SDMT, and lack of steroid treatment. Features
such as age at visit, first-line DMT, EDSS score, and age at MRI contributed towards
RRMS. By year 6.5, a high EDSS score considerably influenced the prediction of
SPMS, while first-line DMT and age at visit contributed to RRMS. (The results of all
visits are found in Supplementary Figs. 9–11).
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predicted SPMS at an earlier hospital visit (85 cases, 26.6%) or a later
hospital visit (42 cases, 13.1%). These results display a high degree of
agreementwith the time for a change in diagnosis fromRRMS to SPMS and
the prediction made by the model. In 86.9% of the cases, the predictions
agreedwith the time for a change in diagnosis within a deviation of one visit
or predicted the time for change at an earlier time.

Effects of increasing the confidence level in the conformal pre-
diction for predicting diagnosis
In 23 out of the 320 cases where the patient changed their diagnosis from
RRMS at debut to SPMS at the latest diagnosis, the predictions made by the
conformal predictor were associated with a higher degree of uncertainty.
Thismeans that for at least twoconsecutivehospital visitswith aperiodof>3
months between the visits, the patient was predicted SPMS but then
changed back to RRMS, which is generally not considered possible.

Since the evaluations made of the conformal predictor were made at a
confidence of 93%, where the model’s single-label predictions were highest,
an alternating prediction can thus indicate that the conformal predictor
cannot assign correct single-label predictions for these cases (Fig. 8). To
investigate this further, we analyzed these cases with 95% and 99% con-
fidence, respectively. Increasing the confidence level led to an increase in the
number of hospital visits where the patient was predicted to have multiple-
label (RRMS | SPMS) (Fig. 9 and Supplementary Fig. 13). By predicting
multiple-label means, the model makes no errors compared to clinical
diagnosis. Similar observations were found for the remaining 22 cases
(examples: Supplementary Figs. 14–28).

The results of the conformal predictor for predicting diagnosis at the
hospital visits when in general, increasing the confidence from 93% to 95%
and 99% are found in Table 3. There are only 382 single-label mis-
classifications at 99% confidence (error of 1.3%), compared to 2,073 at 93%
(error of 7.3%), but multiple-label predictions (RRMS | SPMS) increased
from 150 to 5001.

Sincemultiple-label predictions arewhen themodel cannotdistinguish
betweenRRMS and SPMS to assign a single-label, these predictions indicate
the patient is closer to or can be in transition toSPMS.Wealso found that 50
transitioning patients display non-typical disease progression, with a period
of four to eight andevenup to17yearswithmultiplepredictions, resembling
an extended transition period for these cases. At a confidence level of 93%,
50 (1.4%) of all MS patients display this “atypical” disease progression,
where changing the confidence level can be used to give feedback to a
physician as a tool to aid in clinical decision-making.

Publicly available web service
The model we have developed is based on retrospective data collected in
Sweden.Toaid in enablingourmodel tobe available toother researchers,we
have built a publicly available model with an interface named ‘MSP-tracker
(multiple sclerosis progression-tracker)’. First, there was no statistically
significant difference between the performance of the model without MSIS
model and a model that only included basic (Supplementary Table 1, Basic
info) and relapse-related information (Supplementary Table 1, relapse
data), ‘Basic Info+Relapse’ (Supplementary Figs. 3 and 4). Secondly, we
removed all possibly identifiable information from the data; the year of birth

Fig. 7 |Difference of the time (hospital visits and years) for change fromRRMS to
SPMS diagnosis (320 patients) as found in EHR compared to the predictions at
93% confidence. An earlier prediction of SPMS is illustrated by negative values and

vice-versa for a later SPMS prediction. a The difference in hospital visits. b The
difference in years. Example: In a, the model predicted SPMS in 26 patients one visit
earlier than the clinician did, and in 30 patients one visit later.

https://doi.org/10.1038/s41746-025-01616-z Article

npj Digital Medicine |           (2025) 8:224 9

www.nature.com/npjdigitalmed


was used instead of the exact date, and all other information with dates was
reduced to year and month, making an anonymized model. We found no
significant loss in performance difference between the anonymized MSP-
tracker and its counterpart ‘Basic Info + Relapse’ (p-value = 0.89), indi-
cating no decay in performance by anonymizing the data.

The anonymized version of themodel is available online (https://msp-
tracker.serve.scilifelab.se/) and configured to accept up to 25 hospital visits.
The web server can receive either direct input or from uploaded CSV files.
The model can also be used at user-defined confidence levels, with output
results displayed asdisease course plots. Themodel explanationusingSHAP
is available post-prediction, yielding both global interpretations of the input
data and individual interpretations at each hospital visit.

Discussion
Having a clear understanding of the disease course and its current state is
essential inMS, as available treatments and treatment goals vary depending
on the phase of the disease. Though there are many disease-modifying
treatments for RRMS, the treatments used for SPMS are few, with relatively
limited efficacy25,26. The identification of the transition fromRRMS to SPMS
ismade retrospectively, oftenwith a delay of several years, and still remains a
challenge1. Therefore, early recognition of patients with a risk of progressive
disease could enable timely, meaningful interventions and also restrict
unnecessary exposure to medications with associated side effects in the
longer term.

We present here a first-of-its-kind predictive model that is able to
distinguish between RRMS and SPMS at high accuracy, trained on data
from EHR collected at routine hospital visits. To enable future usefulness in
clinical settings and research, we applied CP to deliver valid measures of

uncertainty in predictions on individual patient levels. We successfully
produced a theoretical and empirically valid model with the highest effi-
ciency at a 93% confidence level and demonstrated on an external test set
that it enables effective prediction of a patient’s clinical course with indivi-
dual confidence measures (Fig. 10).

Clinical AI tools must convey predictive uncertainty for each indivi-
dual patient17. We have recently demonstrated that CP-enabled AI can
support predictions with user-defined confidence20. A well-performing CP
should ideally generate fewer unreliable predictions. In this study, themodel
delivers 81% single-label predictions and 18% unreliable predictions at 99%
confidence, marking the error rate around 1%.When faced with unreliable
predictions, the explainable AI becomes essential to elucidate the reason
behind these predictions. Both CP and explainable AI equip tools for users
to scrutinize and analyze the occasionally unreliable predictions. Here,
unreliable predictions are identified, thus allowing deeper analysis by an
expert neurologist.

The clinical course for the transition from RRMS to SPMS has
been defined by Lublin et al.27 as the “progressive accumulation of
disability after [an] initial relapsing course” assessed, at a minimum,
annually28. As no “gold standard” criteria exist beyond this27,29, the
SPMS diagnosis ultimately rests on the individual clinician’s judgment,
primarily using the patient’s history and the clinical examination.
Lorscheider et al.30 have since further developed the definition of SPMS
by assessing the performance of standardized criteria against the
“ground truth” of a consensus diagnosis by independent, expert neu-
rologists. Multiple permutations of seven different EDSS-related cri-
teria were generated and tested against the independent, consensus
diagnosis with the best-performing permutation proposed as

Fig. 8 | Patient 1. The prediction results at a confidence of 93% for a patient with
19 hospital visits (19.7 years). At four consecutive hospital visits, the patient was
predicted SPMS with more than three months between the visits (years 10.0 and
14.5), followed by an RRMS prediction at year 15.6. This alternation is also

associated with low p-values for RRMS and SPMS for the visits (disease course plot
2). The clinical identification of the transition occurred between years 10.0 and 13.2
(gray zone), whereas the model predicts the transition to be at year 10.0, aligning
with clinical retrospective analysis.
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standardized criteria for SPMS, demonstrating performance compar-
able to the physician’s diagnosis.

While not widely used in clinical practice, their standardized criteria
did show a notably higher sensitivity than the physician diagnosis and
identified SPMS patients around three years earlier than the physician,
though the specificity was lower. Using these criteria, it has been demon-
strated that at the time of SPMS diagnosis, individuals will typically have
EDSS scores above 429,30 with disease durations greater than ten years30. The
importance of the EDSS score in determining the transition from RRMS to
SPMS is also reflected in our model, which had the largest contribution to
predictions. On the other hand, other factors, such as the age at visit or time
since diagnosis, also contributed substantially to the predictions in our
model, but were not considered as part of the criteria described by Lor-
scheider et al. More importantly, the now proposed approach enables
objective predictions, trained, validated, and calibrated onmore than 10,000

patients with over 85,000 hospital visits. Each prediction is complemented
with a measure of uncertainty, and the CP enables tracking the disease
progression over time.

Multiple approaches have been described to predict the conversion
from RRMS to SPMS10,14,15,31. In the study by Manouchehrinia et al., data
from multiple cohorts was utilized, and the prediction method was speci-
fically designed to predict the risk of conversion for patients with RRMS15.
This model showcased an accuracy of 77–87% to predict the risk of con-
version to SPMS in 10, 15, and 20 years. In a similar study by Seccia et al.,
which predicted the transition of RRMS patients within 180, 360, and
720 days, the model reached a maximum recall of 100% and a precision of
9%. However, the model may not be applicable to patients initially diag-
nosedwith SPMS, a limitation sharedwith studies byManouchehrinia et al.
and Skoog et al.10. As such, these studies differ from ours since they try to
predict the future risk of transition, rather than categorizing patients based

Fig. 9 | Patient 1. The prediction results at a confidence of 95% for a patient with
19 hospital visits (19.7 years). Increasing the confidence level from 93% to 95%
allows for more multiple-label predictions between years 10.0 and 15.6. From year

17.1 and onwards, the model predicts only single-label SPMS. Here, the model does
not make any errors but rather flags these visits 10.0, 12.0, and 15.6 for human
analysis.

Table 3 | Prediction on all the hospital visits on the test datasetwith a confidenceof 93%, 95%, and99%compared to the clinical
diagnosis

Predictions 93% confidence 95% confidence 99% confidence

RRMS (nv = 18,525) SPMS (nv = 9798) RRMS (nv = 18,525) SPMS (nv = 9798) RRMS (nv = 18,525) SPMS (nv = 9798)

RRMS 19,616 (91.7%) 401 (5.8%) 19,351 (90.5%) 269 (3.9%) 18,371 (85.9%) 67 (1%)

SPMS 1672 (7.8%) 6484 (93.5%) 1168 (5.5%) 6116 (88.2%) 315 (1.5%) 4569 (65.9%)

Empty-{} 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Multiple-label
(RRMS | SPMS)

100 (0.5%) 50 (0.7%) 869 (4.1%) 550 (7.9%) 2702 (12.6%) 2299 (33.2%)

The predictions of RRMSandSPMS indicate single-label prediction, empty represents no valid prediction, andmultiple-label represents bothRRMSandSPMSprediction for the hospital visit. nv= number
of hospital visits. *Percentages would not add up due to rounding off.
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on current data. However, the study by Ziemssen et al. addresses the above
limitation by categorizing patients as RRMS, SPMS, or transitioning using
EHR and questionnaire data31. Their study on 198 individuals achieved a
sensitivity of 82% and a specificity of 84% in identifying transitioning
patients. In comparison, our study utilized 14,382 individuals and exhibited
results with a substantially higher sensitivity and specificity of 93%. More-
over, we implemented an uncertainty measure for each hospital visit of a
patient. Importantly, our model does not rely on additional questionnaire
data and was able to demonstrate the progression of the disease for indi-
vidual patients, which sets it apart fromprevious approaches.Moreover, the
other models are susceptible to systematic differences between the training
and external data or data drift over time. Using CP provides a robust means
of handling uncertainties and addressing potential shifts in data over time20.
However, it is crucial to examine the model’s performance in detail to
identify any potential weaknesses and areas for improvement.

We conducted a deep analysis of the frequently misclassified patients,
which revealed key insights into the strengths and limitations of our model
in comparison with the registry data. In themajority of misclassified RRMS
patients, the model classified the patient as transitioning from RRMS to
SPMS earlier than according to the registry data. In these cases, these
‘misclassifications’may instead represent early prediction by themodel or a
diagnostic delay in the registry data. Conversely, it struggled with certain
patient profiles, particularly in patients with higher EDSS post-relapse.
Additionally, for most of the misclassified SPMS patients, the transition to
SPMS was found earlier in the registry data than predicted by the model.
This was particularly observed in young adults and/or those with lower
EDSS scores, which are relatively uncommon characteristics in SPMS. This
discrepancy highlights the importance of considering the clinical context
alongside the model’s predictions, particularly in less typical scenarios.

CP proves valuable in recognizing new data that deviates from the
characteristics of the training data. This is relevant when predicting an
external dataset or when encountering data that the model has not seen
before. This study has trained the model on registry data from over 850
clinicians andmore than 60 Swedish hospitals. Although themodel exhibits
notable performance, thismight not hold truewhenpredicting external data
or on unfamiliar cases within Sweden, signifying the use of CP to identify
these.More than 80% of all SwedishMS patients are present in the Swedish
MS registry, anddata fromother countries has not beenpart of this study, so
generalization at large poses a challenge that needs to be addressed. Data
drift over the years can also lead to an increase in unreliable predictions,

which warns the recalibration necessary for the underlying AI and CP
system.

The major strength of this study is using CP for predicting disease
transition and disease state at each visit, thereby outlining the disease course
of a patient. By basing predictions on clinical data already collected during
hospital visits, the need for additional data collection, such as biological
markers or questionnaires, is eliminated, thereby facilitating easier imple-
mentation and integration of themodel in healthcare and research settings.
Moreover, the model was also integrated with explainable AI, facilitating
easier interpretation and assignment of labels for predictions regarded as
unreliable.

The limitation of this study is the absence of analysis of the prospective
data collected from the clinics. By conducting prospective data analysis, the
practicality of themodel at the clinics canbe evaluated.Moreover, themodel
has not undergone evaluation using external data from other cohorts out-
side of Sweden. Validating CP on external data could show the potential of
the model. To aid in this process, an anonymized version of the model is
available online (https://msp-tracker.serve.scilifelab.se/).

Methods
Ethical approval
This studywas conducted in accordancewith the ethical principles outlined
in the Declaration of Helsinki (WMA, 2024). This study was approved by
the SwedishEthical ReviewAuthority (Dnr 2021-00702). The data usedwas
anonymized registry data and the informed consent was waived as parti-
cipants had already provided written consent for their data to be used for
research purposes.

Dataset and quality control
The data was obtained from SMSreg23, containing 22,748 patients with
197,227 hospital visits, with clinical measurements collected during each
hospital visit. The data was cleaned for duplicates and missing essential
data points for expanded disability status scale (EDSS) score, date of birth,
progress during each visit such as RRMS/SPMS/PPMS, and debut date.
The data comprises patients with transition (initial diagnosis as RRMS
andfinal diagnosis as SPMS), RRMS (initial andfinal diagnosis as RRMS),
and SPMS (initial and final diagnosis as SPMS). For the RRMS patients,
all the visits within two years of the last visit were removed as their clinical
endpoint had not yet been determined. This ensures the removal of all the
unidentified transitions from the data. After quality control and removal

Fig. 10 | Summary figure illustrating a compre-
hensive view of the entire study.Apredictivemodel
capable of distinguishing between RRMS and SPMS
was trained on EHR data collected during hospital
visits in Sweden. CP was incorporated to provide
valid measures of uncertainty for predictions at the
individual patient level. The model showed proof of
validity and exhibited high performance on the test
set data. Additionally, SHAP was utilized to under-
stand the contribution of features in each prediction.
Created with BioRender.com. Kultima, K. (2024)
https://BioRender.com/s87n810.
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of PPMS patients, 17,045 patients with 143,053 hospital visits were
retained.

A hospital visit consisted of age and EDSS measured at the visit. For
each visit, the last collected clinical measures such as treatment, clinical
assessment tests, relapse data, MRI data, and MSIS data (Supplementary
Table 1) were appended, along with the age at which these measures were
collected. For therapeutics, the drugs/treatments were categorized into first-
line, second-line DMT, relapse treatment drugs, stem cell treatment, and
any other drugs (Supplementary Table 1).

For data relating to relapses, the total number of occurrences of dif-
ferent categories of relapses (including unilateral optic neuritis, sensory/
afferentmonofocal relapse,multifocal relapse, and relapses requiring steroid
treatment) were summed up until the day of the hospital visit before
appending. Additional information regarding treatment received for the
relapse and remission of the last relapse was also included as binary vari-
ables. For theMRI data, the number of T2-weighted lesions and the number
and site of T1-weighted gadolinium-enhancing lesions (i.e., brain vs. spinal
cord) were considered. Each type of lesion was binned into three groups
based on the number of lesions present at the hospital visit: (1) ≤9, (2) >9,
and ≤20, (3) >20 lesions.

For a patient, during the initial hospital visit, EDSS, age at visit, age at
diagnosis, age at debut relapse, and sex were recorded. However, certain
parametersmaybemissing as theyhavenot yet beenmeasured.Themissing
values, including those for other parameters of the patient, were imputed
using the value −1.

Data splitting
There were three possible types of data for a patient: a patient having
hospital visits with only RRMS, only SPMS, or RRMS at debut, and SPMS
at the latest. To maintain an even distribution of these patients across the
data splits, a stratified split was applied, grouping all the visits associated
with a patient in the same split of the data. Thereby dividing the data into
four subsets: training (65%), validation (5%), calibration (5%), and test
(25%)datasets (Table 4). The validation set is created to optimize the deep
learning model, and therefore, for traditional machine learning models,
the validation dataset is merged with the training set for training. For
cross-validation used in this study, the training and validation sets are
merged for both deep learning andmachine learningmodels and used for
training.

Architectures
Fivemodel architectures were utilized for predictions: (1) logistic regression
(LR), (2) support vector machines (SVM), (3) gradient-boosting (GB), (4)
random forest (RF), and (5) a DL model using long short-term memory
(LSTM). For SVM, GB, and RF, grid-search CV was conducted to identify
the best-performing parameters for the models. For SVM, the radial basis
function (RBF) kernel was employed, with the parameter gamma set to
0.0001 and the regularization parameter C set to one. In the case of GB, the
number of estimators was 50, a minimum sample split of two with the
criterion set to “friedman_mse” with exponential loss. For the RF archi-
tecture, theminimumnumber of samples per leaf was five, the criterionwas
Gini with an ensemble of 150 estimators.

The deep learning model was a hybrid of an LSTM network and a
multi-layer perceptron. The LSTM consisted of a single layer with a

hidden cell size of 256, processing values related to specific hospital
visits. The multi-layer perceptron comprised two layers of eight neu-
rons, which were used to handle patient-related, visit-independent
values, such as sex label, diagnosis age, and age at first relapse. The
output from LSTM and multi-layer perceptron were concatenated and
further processed using a two-layered perceptron with 128 neurons and
an output size of 2. ReLU served as the activation function, and the
model utilized cross-entropy loss and Adam optimizer with a learning
rate of 0.0001.

Conformal prediction
Conformal prediction (CP) is a framework built on top of anyMLmodel to
retain the error rate of the prediction to a pre-specified level19. CP is model
agnostic (meaning, it can be implemented on all models) and is imple-
mentedon topof apredictionalgorithm.Unlike single-valuedoutput froma
prediction algorithm, CP produces a prediction region containing a set of
class labels for classification and a confidence interval for regression. Using
CP, a non-conformity measure αi is calculated for an object i using a non-
conformity function h(xi), where x represents the features andh represents a
scoring algorithm such as amachine learning algorithm.When applied to a
classification problem, at first, non-conformity αi is calculated for all the n
instances in the calibration set, yielding α1, …,α n. During the prediction
phase, the non-conformity αn+1 from a test instance is used to calculate a
set of p-values for each class label usingEq. 1,which ranks the αn+1 against
all the α1,…,α n. Using a statistical test and employing a confidence cutoff
(1-significance), such as 95%, implying a significance of 0.05, all the labels
with a p-value greater than or equal to 0.05 are included in the output
prediction, resulting in single-label, multiple-label, or empty predictions.

pnþ1 ¼
jj ¼ 1; :::; nþ 1 : αj ≥ αnþ1j

nþ 1
ð1Þ

A CP p-value differs from a traditional p-value. Typically, the tradi-
tional p-value assesses the evidence against a null hypothesis. In contrast, CP
p-values measure the non-conformity of a new observation to a given
calibration dataset. Specifically, the CP p-values indicate the proportion of
calibration examples that exhibit greater non-conformity than the new
observationwhen assigned a particular label. A lowCP p-value suggests that
the new observation is unusual compared to calibration data for that par-
ticular label. Essentially, CP p-values provide insights into how well a new
observation fits within the existing data, rather than directly addressing the
clinical or research question at hand.

For a binary classification, the possible output from CP are {0}, {1},
{0,1}, or {}. A smaller prediction regionwith only a single-label ({0} and {1})
is more desired and efficient, for explaining the output of the model. A
multiple-label prediction ({0,1}) is when multiple class labels have higher
confidence, and the model is unable to determine between the two class
labels. This occurs when uncertainty arises in assigning a single-label for the
prediction. Although these predictions can be harder to interpret, they are
not incorrect per se. These can be interpreted as unreliable/uncertain pre-
dictions and canbeflagged formanual or expert inspection to determine the
correct class label. The empty set ({}) predictions are obtained if the con-
fidence is low on both class labels, and it occurs when the input data differs
from the data the model is trained on. This can highlight systematic

Table 4 | Data splits created from SMSREG data

Dataset Number of patients Number of hospital
visits

Number of RRMS
patients

Number of SPMS
patients

Number of transitioning
patients

Training set (65%) 9348 74,064 6414 (69%) 1696 (18%) 1238 (13%)

Validation set (5%) 719 5626 491 (68%) 125 (17%) 103 (14%)

Calibration set (5%) 720 5771 467 (65%) 152 (21%) 101 (14%)

Test set (25%) 3595 28,323 2451 (68%) 677 (19%) 467 (13%)

The dataset is divided into train, valid, calibration, and test sets, each containing unique patients and their EHR.
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differences between training and external data or data drifts that happened
over time.

The desired CP confidence can be set by the user during the prediction
time. At higher confidence, the probability of having the correct label in the
output prediction set increases, yielding a wider prediction region (increase
in multiple-label predictions). Likewise, lower confidence produces a
smaller prediction region (increase in single-label predictions and empty
predictions).

There are two ways of calibrating a conformal predictor: (1) trans-
ductive framework and (2) inductive framework. In transductive CP, for
each new instance during the predictive phase, all the data is used to cal-
culate the conformity score, making it necessary to retrain the model for
every data point in the calibration and test set. Though this method is more
robust to outliers and anomalies in the dataset, the computational demand
makes it unusable for large datasets and deep learning algorithms. Inductive
CP (ICP), on the other hand, is built using training and calibration datasets
and is applied to the test dataset. The calibration dataset is identically
independently distributed (IID) data from the training dataset. The lower
computational demand and easiness of recalibrating the model make ICP
popular in many fields.

In this study, we use the ICP framework, by using 5% of the available
data as a calibration dataset. The basic implementation of CP considers the
error rate on a population level. Making the error rate on one label to be
lower than the other label. To overcome this, Mondrian CP was used to
achieve a predefined error rate within each class label. Instead of tuning on
the entire population, the CP was tuned on each class label. This enables
reliability in prediction on an individual level, making the model applicable
for clinical use, as we are more interested in individual predictions than
population-level prediction in a clinical setting.

SHapley Additive exPlanations
SHapley Additive exPlanations (SHAP) uses a game theoretic approach
to generate explainable and interpretable output from amachine learning
model22. Using this framework, SHAP values can be calculated for each
feature in a data point by contrasting predictions with and without the
presence of a specific feature. This process is iteratively applied for the
entire dataset, resulting in the generation of SHAP values for each feature
across the dataset. The difference in the impact of the feature for a pre-
diction reveals positive or negative contributions for both individual
predictions and the prediction on the entire dataset. Thus, SHAP allows
us to calculate both the global interpretation, giving insight into the
overall importance of features in the dataset, and also for the individual
predictions, interpreting the rationale behind the output using feature
contribution.

Providing explanations for individual predictions holds substantial
importance within clinical settings. This offers a better understanding and
increases the reliability of the predictions32. In this study, we explain each
prediction using force plots. In these plots, SHAP values for individual
features are plotted along the x-axis, where each feature is represented by a
bar, with the length of the bar corresponding to the magnitude of the
feature’s impact and the colors indicating positive values in red (SPMS) and
negative values in blue (RRMS).The visual nature of these plots helps to spot
themost influential features driving the predictions and also to get a sense of
how features interact to influence the outcome.

In contrast, the global understanding of the model is achieved using a
summary plot and a beeswarm plot. Both these plots provide a compre-
hensive overview of the importance of features in the entire dataset. The y-
axis displays features ranked according to their importance, with features
having a higher impact on the predictions at the top. The x-axis in the
summary plot represents mean absolute SHAP values, displaying the global
importance of the features. In the beeswarm plot, the x-axis represents the
SHAP values and their importance, color-coded according to feature value.
The SHAP value of a feature from each data point is plotted, with over-
lapping SHAP values jittered in the y-axis to accommodate and form a
distribution.

Data availability
The data used in the study cannot be shared to protect the privacy of the
individuals.All thedata canbeobtainedbyapplying through theSwedishMS
Registry (https://neuroreg.se/forskning/datauttag-for-forskningsandamal/).

Code availability
The code used for data pre-processing, the final model, and the web server
are available at https://github.com/caramba-uu/MSP-tracker.git.
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