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The DRAGON benchmark for clinical NLP
Check for updates
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Artificial Intelligence can mitigate the global shortage of medical diagnostic personnel but requires
large-scale annotated datasets to train clinical algorithms. Natural Language Processing (NLP),
including Large Language Models (LLMs), shows great potential for annotating clinical data to
facilitate algorithm development but remains underexplored due to a lack of public benchmarks. This
study introduces the DRAGON challenge, a benchmark for clinical NLP with 28 tasks and 28,824
annotated medical reports from five Dutch care centers. It facilitates automated, large-scale, cost-
effective data annotation. Foundational LLMswere pretrained using four million clinical reports from a
sixth Dutch care center. Evaluations showed the superiority of domain-specific pretraining (DRAGON
2025 test score of 0.770) and mixed-domain pretraining (0.756), compared to general-domain
pretraining (0.734, p < 0.005). While strong performance was achieved on 18/28 tasks, performance
was subpar on 10/28 tasks, uncovering where innovations are needed. Benchmark, code, and
foundational LLMs are publicly available.

Healthcare is under pressure due to a worldwide shortage of diagnostic
personnel, such as radiologists and pathologists1. The demand for medical
imaging is projected to increase substantially, worsening the diagnostic per-
sonnel shortage. For instance, worldwide cancer incidence is expected to
increase by 47% from 2020 to 2040, resulting in substantially more imaging
demand for the management of these patients1,2. This increasing imaging
demand is unsustainable without innovative solutions1. Artificial Intelligence
(AI) that enhances disease detection, guides treatment decisions, or optimizes
follow-up care can potentially reduce workload. AI can serve as an assistive
tool3 or function autonomously4,5, both requiring expert-level performance.

Large, high-quality, annotated datasets are essential to develop clinical
algorithms with expert-level performance6,7. Routine clinical practice gen-
erates substantial datasets, with diagnostic interpretations and lab mea-
surements described in clinical reports. However, the typically unstructured
nature of these reports presents a challenge for efficient information
extraction. Manual annotation of such data is time-consuming, costly, and
requires specialized domain knowledge.

Natural Language Processing (NLP) has the potential to perform time-
efficient, large-scale, and low-cost annotation of routine medical data,
specifically using clinical reports. Large Language Models (LLMs) have
showngroundbreaking text processing performance in the general language
domain, but their application for automated data curation is underexplored.
Most notably, (pre)training and evaluation of LLMs in the medical domain
is constrained due to the limited availability of public datasets and bench-
marks, which hinders systematic research on LLMs with clinical reports.
Publicly available datasets with clinical reports are limited to high-resource
languages (i.e., languageswithmanydata resources) and a few institutes8. To
the best of our knowledge, only the following datasets are publicly available:
three chest X-ray radiology report datasets9–11 in English or Spanish; one
chestCTradiology reportdataset inEnglish (translated fromTurkish)12; one
clinical notes dataset in English13; and one pathology reports dataset in
English14.

Moreover, general text-based similarity metrics such as ROUGE can
obfuscate clinical factuality,motivating theneed for evaluatingmodels using
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taskswith clinically-motivated evaluationmetrics. Furthermore, pretraining
of LLMs is key for good downstream performance, but optimal pretraining
methods for clinical LLMs are understudied. Recent efforts have shown that
general-purpose LLMs can be adapted to clinical tasks through fine-tuning,
instruction tuning, and prompt engineering15–19. LLMs specifically pre-
trained for themedical domain exist (e.g. refs. 20–23), but the availability of
medical domain-specific LLMs remains limited24, especially for non-high-
resource languages.

This study has three objectives. First, introduce a unique benchmark
with clinical reports from five Dutch care centers to provide a publicly
available objective evaluation method. This benchmark also increases the
number of languages with accessible clinical reports from two (English and
Spanish) to three (adding Dutch), which opens avenues for research
regarding languages that are less well-established within the field. Second,
publicly release foundational LLMs pretrained using millions of clinical
reports from a Sixth Dutch care center. Third, investigate three pretraining
strategies for clinical LLMs in a non-high-resource language. This involves
evaluating various architectures with these pretraining strategies using the
benchmark.

Here we introduce the DRAGON (Diagnostic Report Analysis: Gen-
eral Optimization of NLP) challenge, focused on addressing the shortage of
public resources for training and evaluating clinical NLP algorithms.
Researchers from all over the world can benchmark their NLP algorithm
using theDRAGONbenchmark through the cloud-basedGrand Challenge
platform25. The DRAGON challenge aims to achieve a leap forward for
clinical NLP algorithms, similar to how large-scale benchmarks have
achieved this for other use cases26–28. To the best of our knowledge, the
DRAGON challenge features the first large-scale benchmark for NLP
algorithms using clinical reports. The benchmark is accessible online, where
fully automatic performance assessment will be supported for at least 5
years. Furthermore,wepublicly release foundational LLMspretrainedusing
four million clinical reports. The DRAGON challenge aims to accelerate
research on NLP algorithms processing clinical reports, and in turn, facil-
itate automated dataset curation.

The benchmark comprises 28 clinically relevant tasks that are geared
towards automatic dataset curation through the annotation of clinical
reports (Fig. 1). The DRAGON benchmark focuses on classification,
regression, and named entity recognition for automated dataset curation,
rather than text-generation tasks. The tasks include selecting relevant stu-
dies, collecting key measurements, determining the clinical outcomes as
labels, and more (see Table 1 for a full overview). The tasks include reports
from multiple imaging modalities (MRI, CT, X-ray, histopathology) and
many conditions spanning the entire body (lungs, pancreas, prostate, skin,
etc.). The benchmark comprises 28,824 clinical reports from five Dutch
centers. 24,021 reports were manually annotated, and an additional 4990
reports were automatically annotated as development data for one task.
Most tasks use diagnostic reports (26/28), specifically radiology reports (19/
26), pathology reports (7/26), or both (1/26). One task uses non-diagnostic
clinical reports, and one task uses manually constructed clinical text. All
tasks are categorized under one of eight task types (see Methods section
Benchmark for details), allowing for the easy formulation of new tasks
within these existing categories.

All data, including clinical reports and associated labels, are securely
stored in a sequestered manner. This prevents users from directly
accessing or viewing the data, preserving patient privacy by design.While
participants cannot directly download or see the data, they do have full
functional access for model training and validation through the platform
interface. Keeping the test labels hidden helps tomitigate potential biases.
To aid the development of solutions we provide synthetic datasets for all
task types and provide an example case for each of the tasks in Supple-
mentary Note 7.

Execution of the benchmark is performed on the Grand Challenge
platform, with the workflow illustrated in Fig. 2. Clinical NLP methods are
defined as all resources for training and inference (e.g., pretrained model,
fine-tuning strategy), and referred to as the algorithm. For each task, a test

set (without labels), training set, and validation set are available to the
algorithm. The training set enables fine-tuning of amodel or the realization
of few-shot approaches. The validation set may be used to perform model
selection, but not as additional training data. Participants are encouraged to
define general rules to define the hyperparameters (e.g., using the numberof
training samples to define the number of training steps, using the dis-
tribution of labels to define the normalization approach, using the class
distribution to inform sampling strategy, etc.). To assess the model fine-
tuning robustness, the training and validation sets rotate using five-fold
cross-validation, without patient overlap between splits.

Predictions for each task are evaluated using a primary metric
depending on the task type (see Table 1 for a full list, and Supplementary
Note 1 for the motivation). To characterize the overall performance of a
clinicalNLPalgorithm,we introduce theDRAGON2025 test score, where a
value of 0 indicates no clinical utility and a value of 1 indicates a perfect
match with the manual annotations. The DRAGON 2025 test score is the
unweighted average of the primarymetric across all 28 tasks and each of the
five training runs per task.

Researchers worldwidemay request to conduct statistical comparisons
like those presented in this study for their own research purposes. These
requestsmust be accompanied by a well-defined statistical analysis plan. To
foster open science and ensure the verifiability of confirmatory analyses,
both the statistical plans and their corresponding outcomes will be made
publicly available.

Complete reproducibility of submissions is ensured by performing all
modelfine-tuning and inference activities on theGrandChallengeplatform.
This verifies that all required code and associated training resources are
provided. To promote cumulative research progress, we also require that all
user’s training resources and a description of the method be made publicly
available, possibly after a grace period designated for the publication of the
related research paper.

To quantify the reliability of annotations used in the DRAGON
benchmark, we conducted a reader study to assess inter-annotator agree-
ment, providing a conservative estimate of annotation quality.

Results
Pretraining is key for obtaining high performance with LLMs29. Founda-
tional LLMsmust adapt to diverse tasks, and variability in clinical reporting
stylesmakes this challenging.Reporting styles candifferbasedon the region,
hospital, diagnostic task, and even individual physician preference. Addi-
tionally, there is a difference in the type of cases seen across care centers.
Large academic centershavemore tertiary referralswith complexpathology,
whereas non-academic hospitals typically see a larger number of common,
less complex cases. Moreover, high-resource languages (English, Spanish,
and Chinese) dominate the available pretrained foundational LLMs, but
two-thirds of countries use non-high-resource languages30. In the context of
clinical NLP, pretraining can be done using general-domain data (incor-
porating sources likeWikipedia and books), domain-specific data (utilizing
clinical narratives such as radiology and pathology reports), or mixed-
domain data (a combination of general-domain and domain-specific pre-
training). Related literature compared the efficacy of pretraining strategies
for biomedical downstream tasks with PubMed abstracts and showed that
domain-specific pretraining outperformed both general-domain pretrain-
ing andmixed-domain pretraining31. For the clinical domain, contradicting
results have been reported. Yan et al.21 found that mixed-domain pre-
training outperformed general-domain pretraining, Rietberg et al.32 found
that general-domain pretraining outperformed domain-specific pretrain-
ing, and Verkijk et al.22 found that domain-specific pretraining out-
performed general-domain and mixed-domain pretraining. Each
comparison was based on only one to three tasks, limiting generalizability.
Which pretraining strategy is optimal for clinical NLP is therefore still
unknown, especially for non-high-resource languages.

To investigate the optimal pretraining strategy, we conducted a com-
parative analysis of general-domain, domain-specific, and mixed-domain
pretraining. Each strategy was applied to five LLM architectures that are

https://doi.org/10.1038/s41746-025-01626-x Article

npj Digital Medicine |           (2025) 8:289 2

www.nature.com/npjdigitalmed


commonly used and can be implemented on hospital infrastructure using a
single GPU (24 GBVRAM), allowing the preservation of patient privacy by
design. These LLMs are evaluated on the DRAGON benchmark, with the
experimental setup depicted in Fig. 3.

For general-domain pretraining, we utilized models from the Hug-
gingFaceModelHub. Language-specific versionswere selected according to
availability,whichmirrors the typical development scenario for clinicalNLP
in languageswith varying levels of resource availability. The selectedmodels

Fig. 1 | Overview of the tasks in the DRAGON benchmark. Tasks are grouped by their task type. For each task, key statistics are shown: (blue) the number of development
cases, (orange) themedian report length, and (green) themaximum report length. The report length is expressed in the number of tokenswith an xlm-roberta-base tokenizer.
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were Dutch BERT base29, multilingual RoBERTa base and large33, and
English Longformer base and large34.

For domain-specific and mixed-domain pretraining, we used four
million clinical reports from a single Dutch non-academic care center (dif-
ferent from the five centers used in the benchmark). This approach allows us

to rigorously investigate how themodel adapts to diverse reporting styles and
patient cohorts across multiple care settings, assessing its robustness and
generalizability in real-world scenarios. Pretraining was done using the
masked language modeling (MLM) objective, with hyperparameters for
domain-specific and mixed-domain pretraining based on Gu et al.31.

Table 1 | Overview of tasks in the DRAGON benchmark

ID Name Task type Metric Number of development cases Number of testing cases

T1 Adhesion presence SL Bin Clf AUROC 397 166

T2 Pulmonary nodule presence SL Bin Clf AUROC 1000 200

T3 Kidney abnormality identification SL Bin Clf AUROC 417 183

T4 Skin histopathology case selection SL Bin Clf AUROC 531 225

T5 RECIST timeline SL Bin Clf AUROC 278 119

T6 Histopathology cancer origin SL Bin Clf AUROC 715 304

T7 Pulmonary nodule size presence SL Bin Clf AUROC 348 66

T8 PDAC size presence SL Bin Clf AUROC 418 179

T9 PDAC diagnosis SL MC Clf Unweighted Kappa 1374 588

T10 Prostate radiology suspicious lesions SL MC Clf Linearly Weighted Kappa 5111 2229

T11 Prostate histopathology significant cancers SL MC Clf Linearly Weighted Kappa 2213 952

T12 Histopathology tissue type SL MC Clf Unweighted Kappa 707 304

T13 Histopathology tissue origin SL MC Clf Unweighted Kappa 718 297

T14 Entailment diagnostic sentences SL MC Clf Linearly Weighted Kappa 12,627 1422

T15 Colon histopathology diagnosis ML Bin Clf Macro AUROC 2748 1177

T16 RECIST lesion size presence ML Bin Clf AUROC 278 119

T17 PDAC attributes ML MC Clf Unweighted Kappa 418 179

T18 Hip Kellgren-Lawrence scoring ML MC Clf Unweighted Kappa 4803 172

T19 Prostate volume measurement SL Reg RSMAPES (ε = 4 cm3) 5138 2170

T20 Prostate specific antigen measurement SL Reg RSMAPES (ε = 0.4 ng/mL) 4759 2046

T21 Prostate specific antigen density
measurement

SL Reg RSMAPES (ε = 0.04 ng/mL2) 4700 2020

T22 PDAC size measurement SL Reg RSMAPES (ε = 4mm) 343 147

T23 Pulmonary nodule size measurement SL Reg RSMAPES (ε = 4mm) 186 32

T24 RECIST lesion size measurements ML Reg RSMAPES (ε = 4mm) 278 119

T25 Anonymization SL NER Macro F1 3078 1307

T26 Medical terminology recognition SL NER F1 175 75

T27 Prostate biopsy sampling ML NER Weighted F1 349 146

T28 Skin histopathology diagnosis ML NER Weighted F1 439 185

AUROC area under the receiver operating characteristic curve, SL single-label,ML multi-label, Bin binary,MCmulti-class, Clf classification, Reg regression, NER named entity recognition, RSMAPES
Robust Symmetric Mean Absolute Percentage Error Score, RECIST response evaluation criteria in solid tumors, PDAC pancreatic ductal adenocarcinoma.

Fig. 2 |Workflow for theDRAGONbenchmark.Challenge participants must provide all resources necessary to process the reports and generate predictions for the test set.
Processing of reports is performed on the Grand Challenge platform, without any interaction with the participant.
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Pretraining on millions of clinical reports resulted in significantly
better performance for LLMs compared to general-domain pretraining, as
evaluated on the DRAGON benchmark, with LLMs represented by the
BERT, RoBERTa (base and large), and Longformer (base and large)
architectures (Fig. 4).We report theDRAGON2025 test score (Eq. (2))with
a 95% confidence interval (CI). Domain-specific pretraining improved the
baseline score to 0.770 (95%CI 0.755–0.785, p = 0.004), andmixed-domain
pretraining improved the baseline score to 0.756 (95% CI 0.739–0.773,
p = 0.004), both compared to general-domain pretraining (0.734, 95% CI
0.717–0.752). No statistically significant performance difference was

observed between domain-specific pretraining and mixed-domain pre-
training (p > 0.05). The highest performance on the DRAGON benchmark
was observed for RoBERTa large with domain-specific pretraining,
obtaining a DRAGON 2025 test score (Eq. (1)) of 0.819 (95% CI
0.793–0.844). Performance for each model architecture and pretraining
strategy across each task is provided in Supplementary Note 2 and 3.

Model performance for the best model (RoBERTa large with domain-
specific pretraining) was excellent for 10/28 tasks (T1, T2, T4, T5, T10, T15,
T16, T19, T20, T21), good for 8/28 tasks (T3, T7, T11, T22, T23, T25, T26,
T27), moderate for 6/28 tasks (T9, T13, T17, T18, T24, T28) and poor for 4/

Fig. 3 | Experimental setup to compare pretraining strategies. Several LLM
architectures are pretrained using either general-domain, domain-specific, or
mixed-domain pretraining (general-domain followed by domain-specific pre-
training). Each of the resulting pretrained foundational models is evaluated on the

DRAGON benchmark by task-specific fine-tuning followed by performance eva-
luation on the test set. To assess fine-tuning stability, the training and validation
datasets rotate with five-fold cross-validation, resulting in five performance
assessments for each of the 28 tasks per pretrained model.

Fig. 4 | Benchmark results. Performance observed across each architecture, task,
and training run in theDRAGONbenchmark for the three pretraining strategies: (1)
general-domain pretraining, (2) mixed-domain pretraining, and (3) domain-
specific pretraining. Performance metrics from individual fine-tuning runs are
shown as black dots (from 5 architectures, 28 tasks, and 5 runs, resulting in

700 scores per pretraining method). The diamond and error bars show the DRA-
GON 2025 test score (average of the score from each run) and its 95% confidence
interval. The blue shading represents the density estimation of individual scores in a
violin plot.
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28 tasks (T6, T8, T12, T14), based on pre-defined performance thresholds
described in Supplementary Note 1. For all three lesion size extraction tasks
(T22, T23, T24), the best model extracted the reported lesion size within
1mm for only 7% to 18% of lesions. Similarly, the model extracted the
reported lesion sizewithin5mmforonly 33–61%of lesions.These tasks had
a primary metric of 0.782–0.854 for the best model, placing these tasks in
“moderate” or “good” as per the pre-defined performance thresholds,
motivating an update of the thresholds for interpretation of this metric in
future work.

The reader study demonstrated strong overall inter-annotator agree-
ment, achieving an average Krippendorff’s alpha of 0.859 across classifica-
tion and regression tasks (T1–T24) and an average F1 score of 0.860 for
named entity recognition tasks (T25–T28). Accuracy relative to the original
annotations was consistently high (≥90%) for most tasks. However, higher
variability was observed in histopathology cancer origin (T6, α = 0.333),
entailment of diagnostic sentences (T14, α = 0.550), andKellgren-Lawrence
scoring (T18, α = 0.557). Tasks T06, T14 and T18 are inherently more
complex, necessitating extensive diagnostic background knowledge and
specialized training, which were available during the original annotation
process but impractical within the reader study. The improved agreement
achieved by RoBERTa large with domain-specific pretraining on several
tasks (e.g., T18 with α = 0.70 ± 0.04), indicates that the lower agreement
observed in the reader study likely stems from limited reader training
compared to the original annotators. Thus, the results presented here pro-
vide a conservative estimate of annotation reliability within the DRAGON
benchmark. Detailed task-level results are provided in Supplementary
Note 5.

Discussion
This study had three objectives. First, the DRAGONbenchmark provides a
comprehensive performance assessment of clinical NLP algorithms for
researchers worldwide. The benchmark includes a wide variety of tasks
aimed at automated dataset curation. Large-scale manual annotations are
used to evaluate LLMs with diagnostically relevant metrics, rather than
general text-based similarity metrics that can obfuscate clinical correctness.
Second, pretrained foundational LLMs are released on HuggingFace, and
code for preprocessing, pretraining, fine-tuning, inference, evaluation, and
statistical evaluation is shared onGitHub. All resources are FAIR (Findable,
Accessible, Interoperable, Reusable) and publicly accessible at dragon.
grand-challenge.org. The end-to-end pipeline for task-specific fine-tuning
and prediction of unlabeled reports is also accessible on Grand Challenge,
allowing users to utilize, validate, and reproduce these algorithms without
any setup. Additionally, the full pipeline can be deployed offline, allowing
reports to remain on-premises. Third, results show superior performance
for models that are pretrained using domain data, compared to pretraining
exclusively on general-domain text.

Model performance for the best model (RoBERTa large with domain-
specific pretraining) was good to excellent for 18/28 tasks (based on pre-
defined performance thresholds described in Supplementary Note 1).
Model performance was poor for tasks T6, T8, T12, and T14. Tasks T6
(histopathology cancer origin), T8 (pancreatic ductal adenocarcinoma size
presence), and T12 (histopathology sample origin) have highly unbalanced
labels (themajority class occurs 4.6–9.2 times as often as theminority class),
which could explain the reduced performance. Task T14 (entailment
diagnostic sentences) uses constructed medical sentences translated from
English. For this downstream task, the domain gap is relatively large from
the domain data with full-text reports, which could explain the poor
performance.

For the regression tasks, the extraction of lesion size (tasks T22, T23,
and T24) performed poorly, while the extraction of other measurements
(tasks T19, T20, and T21) performed well. The tokenization process, where
words in a report are embedded as a sequence of vectors, complicates the
model’s ability to accurately interpret numeric information. This challenge
arises because the numeric context and precision are often lost during
tokenization, making it difficult for the model to correctly associate specific

tokenswith their corresponding numeric values. The performance disparity
between these two groups of tasks may be attributed to the substantial
difference in development dataset sizes, with the latter having approxi-
mately 18 times more cases. Novel NLP techniques that more effectively
handle this type of information extraction would significantly enhance
automatic dataset curation.

Researchers worldwide are encouraged to contribute and build upon
the baseline results. The requirement for open-source submissions (upon
paper acceptance) ensures that each contribution not only stands on its own
but also propels the entire field forward, allowing developers to iteratively
build on each other’s work. All algorithms, including those of participants,
will be made accessible through the Grand Challenge platform, such that
improved algorithms directly allow higher-quality dataset curation.

Previous studies that explored the application of NLP in healthcare
evaluated models either on a few clinical tasks or with only a few full-
length medical reports35,36. The DRAGON challenge substantially
increases the scope of clinical tasks and the number of accessible full-
length medical reports, thereby enhancing the evaluation capabilities
crucial for steering the development of clinical LLMs. Our findings
support the hypothesis that domain-specific pretraining enhances
model performance, a notion that has been suggested before, but not
validated on this scale in prior research. This positions our study as a
significant advancement in the field, providing strong empirical evi-
dence based on which the field can move forward.

The tasks in the benchmark are aimed at automated dataset curation,
such that advances result in large, high-quality, annotated datasets. These
datasets are crucial for developing medical image analysis algorithms to
improve patientmanagement. Leveraging AI is essential to improve patient
management and address the growing demand for medical imaging.
Additionally, automated report analysis allows the investigation of trends,
such as the number of incidentalfindings37. Results showed that present-day
algorithms can annotate clinical reportswith excellent or good performance
for 18/28 tasks. Researchers can now use algorithms in their data curation
workflows to enhance global research quality, with theDRAGONchallenge
providing the knowledge ofwhich tasks are feasible now and in the future as
new submissions come in.

Our study has limitations. Many of the tasks are sourced from a single
academic tertiary care center (14/28, 50%).Additionally, themedical reports
are accessible in sequestered form such that algorithms can interact with
thembut are not visible to algorithm developers. Although example reports
are made available, algorithm development could be more effective if all
development datawere directly available.On the other hand, this setup does
push developers to devise more general solutions. Furthermore, most
reports were annotated by trained investigators under the supervision of
clinical experts in regular research settings, which were non-controlled
environments.This likely resulted in some label noise,mirroring the realities
of data collection in the realworld and ensuring that training algorithms can
accommodate it. However, for the test sets, it would be ideal to have no label
noise. No inter-annotator agreement was assessed during the original data
collection, preventing us from quantifying label noise. We took extensive
measures to ensure consistency—such as annotation protocols, annotator
training, clinical expert supervision, anddataset-wise sanity and consistency
checks. The quality and consistency of the annotations was verified in a
retrospective reader study to quantify the inter-annotator agreement. This
reader study showed a generally high inter-annotator agreement. In future
work, we plan to systematically revisit a subset of reports, specifically where
top-performingmodels disagreewith themanual annotations. This targeted
effort will yield further insights into human and model performance and
guide improvements in annotation quality and benchmark utility. Addi-
tionally, while our benchmark focused on closed-ended questions, the
inclusion of generative tasks, such as free-text generation evaluated using
Unified Medical Language System (UMLS)-based metrics, could have
provided a broader assessment of model capabilities. We encourage data
contributions; such that future iterations of the DRAGON challenge can
address these limitations.
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Based on our findings and limitations, several avenues for future
research emerge. First, algorithmic improvements are necessary to tackle
datasets with highly unbalanced labels and perform regression tasks with
limited annotated data. Second, improving data efficiencywhen fine-tuning
the tasks would unlock automated report analysis for even more clinical
settings.Third, future studiescould focuson improvedpretraining strategies
that leverage the nature of electronic healthcare records, where additional
clinically relevantmetadata is typically available in a structuredway. Fourth,
federated strategies are necessary to further scale up pretraining, such that
data from multiple hospitals can be used while preserving patient privacy.
Lastly, investigating related research questions, such as the application of
thesemodels in real-time clinical decision support, could opennew frontiers
in the integration of AI in healthcare.

The DRAGON challenge presents a benchmark for NLP algorithms
using clinical reports. The benchmark contains a wide variety of clinically
relevant tasks and provides exceptional evaluation capabilities to advance
the field. Results showed the superiority of models pretrained on clinical
reports, compared to models pretrained exclusively on general language
texts. Benchmark, code, and pretrained foundational LLMs are publicly
available, to accelerate the development of accurate and robust clinical NLP
algorithms.

Methods
Data collection and preprocessing
For the DRAGON benchmark, 28,824 clinical reports (22,895 patients)
were included from five Dutch care centers (Radboud University Medical
Center, Jeroen Bosch Ziekenhuis, University Medical Center Groningen,
Rijnstate, and Antoni van Leeuwenhoek Ziekenhuis) of patients with a
diagnostic or interventional visit between 1 January 1995 and 12 February
2024. For 27/28 tasks, all reports were manually annotated. For task 18, the
4803 development cases were automatically annotated using GPT-4, and
the 172 testing cases were manually annotated. Characteristics of the
benchmark datasets are summarized in Fig. 1 and Table 1, and individual
dataset details are provided in Supplementary Note 7.

For pretraining, 4,333,201 clinical reports (466,351 consecutive
patients) were selected from Ziekenhuisgroep Twente from patients with a
diagnostic or interventional visit between 13 July 2000 and 25 April 2023.
180,439 duplicate clinical reports (179,808 patients) were excluded, result-
ing in 4,152,762 included reports (463,692patients). These reportswere split
into training (80%, 3,322,209 reports), validation (10%, 415,276 reports),
and testing (10%, 415,277 reports). The testing reports were set aside for
future analysis and are not used in this study.

This study was approved by the institutional or regional review board
of each participating center (Radboud University Medical Center: CMO
2016–3045; Jeroen Bosch Ziekenhuis: A21-0554-05; University Medical
Center Groningen: IRB 2018–597, Rijnstate: METC Oost-Nederland,
registration number 19082; Antoni van Leeuwenhoek Ziekenhuis: IRBd22-
159; Ziekenhuisgroep Twente: ZGT25-04). Informed consent was exemp-
ted given the retrospective scientific use of deidentified patient data.

Reports utilized in the benchmark are stored in sequestered form
(accessible only to algorithms). Protected health information (PHI) was
detected automatically using institutional PHI detection software (see
Supplementary Note 6 for details). For a subset of reports, the detected PHI
was manually refined. Reports were anonymized by replacing the PHI with
realistic surrogates38. Additionally, a subset of reports was manually anon-
ymized by removing PHI. Reports were converted to ASCII characters (e.g.,
replacing ë with e) during the anonymization procedure.

Benchmark
The DRAGON benchmark serves as an extensive resource for testing and
advancing clinical NLP algorithms, particularly in the realm of automated
data curation. In the context of medical imaging datasets, data curation
involves selecting relevant studies, collecting key measurements, and
determining the clinical outcomes as labels. Clinical reports are the primary
source for these curation tasks. The DRAGON benchmark aims to catalyze

the development of algorithms capable of addressing a broad spectrum of
data curation tasks and introduces28 clinically relevant tasks, anoverviewof
which is given in Table 1. To facilitate handling many tasks, eight distinct
task types were identified and defined. These task types were designed to be
universally applicable, and most data curation tasks should be able to be
formulated as one of these tasks:
1. single-label binary classification (e.g., classify reports as indicating

“cancer” or “no cancer”),
2. single-label multi-class classification (e.g., classify reports based on the

type of diagnosis, such as “cancer”, “other disease”, or “benign”),
3. multi-label binary classification (e.g., classify presence of multiple

conditions, such as “hyperplastic polyps”, “high-grade dysplasia”, and
“cancer”, where each condition is treated as a binary indicator),

4. multi-label multi-class classification (e.g., classify reports by multiple
factors, such as disease severity “mild”, “moderate”, or “severe” and
urgency of treatment “low”, “medium”, or “high”),

5. single-label regression (e.g., predict the prostate volume described in
the report),

6. multi-label regression (e.g., predict the lesion diameter of multiple
lesions),

7. single-label named entity recognition (e.g., identify and classify
protected health information in a report, such as names, dates, and
places), and

8. multi-label named entity recognition (e.g., identify multiple types of
entities in a medical report, where entities can be diseases, symptoms,
treatments, and test results, potentially with overlap and multiple
occurrences).

All reports included in this benchmark are written in Dutch. This
aspectnecessitates thedevelopmentofpretrainingandfine-tuning strategies
that are effective for a language with fewer resources. This enhances the
global applicability of these algorithms, particularly in non-English, non-
Spanish, and non-Chinese settings, while they still maintain their relevance
in high-resource language environments.

The medical reports encompass a wide variety of writing styles, which
are influenced by factors such as the specific hospital, regional practices, and
individual physician preferences. Furthermore, the nature and complexity
of cases vary across hospitals,with academic centers oftendealingwithmore
complex pathologies. To assess the generalizability of pretrained clinical
LLMs across different hospitals, we established the benchmark with reports
from various external academic and non-academic centers. However, the
pretraining dataset was compiled from a single non-academic hospital. This
aligns with the commonly feasible setup, where the large-scale sharing of
reports across centers is restricteddue to concerns regardingpatient privacy.

Submissions to theDRAGONchallenge should become available to all
researchers such that the whole research field moves forward. To achieve
this, all submissions must become open source and should be accompanied
by a document detailing themethodology used. Open source in this context
means that all resources are accessible to the public and that other scientists
can exactly replicate the method. To address potential conflicts with aca-
demic processes, such as the submission of papers to journals, submissions
are not required to be open source immediately. A grace period of up to six
months is permitted, with potential extensions available upon justified
request (for example, if the manuscript is still under review). These
requirements are designed to ensure that high-performing contributions are
shared with the broader research community in a timely manner.

Evidence synthesis
Each task was evaluated using a primary metric that was also used for
statistical testing. Additional metrics for some tasks are shared in Supple-
mentary Note 3, to facilitate comparison with previously published results.
The primary metric for each task was chosen to reflect clinically relevant
performance assessment. The chosenmetrics are listed in Table 1, and their
choice is motivated in Supplementary Note 1. The DRAGON 2025 test
score is used as the ranking score for the challenge leaderboard and is the
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average of the primary metric for each of the tasks, and each of the runs. A
score of 0 indicates no clinical utility and a score of 1 indicates a perfect
matchwith themanual annotations. The arithmeticmeanwas chosen for its
simplicity and ease of understanding, even though it does not account for
the differences in ranges for different metrics, nor differences in typical
ranges between tasks.With Sij themetric for task i run j, theDRAGON2025
test score is calculated for pretrained models as:

SDRAGON ¼ 1
140

X28

i

X5

j

Sij ð1Þ

For pretrainingmethods, where the performances of five architectures
arepooled, theDRAGON2025 test score is calculatedwithSijk themetric for
task i run j architecture k as:

SDRAGON ¼ 1
700

X28

i

X5

j

X5

k

Sijk ð2Þ

Within the manuscript, the DRAGON 2025 test score (Eqs. (1) or (2))
is reported with the 95%CI obtained from the scores of the individual runs.
For pretrainedmodels, the 140 scores obtained from the individual runs are
used, while for pretrainingmethods the 700 scores from individual runs are
used. These scores are directly used for n-out-of-n bootstrapping with
10,000 iterations to determine the 95% CI. In Supplementary Note 2 and 3,
where the performance is provided for each task across the pretraining
method and architecture, the average score and standard deviation across
the five runs are given.

Experiment
Our experiment compares the efficacy of three distinct pretraining strate-
gies: general-domain pretraining, domain-specific pretraining, and mixed-
domain pretraining (a hybrid approach involving initial general-domain
pretraining followed by domain-specific fine-tuning). The DRAGON
benchmarkwith theDRAGON2025 test score (Eq. (2)) served as ourmetric
for evaluating the performance of these strategies. To generalize the results
across architectures, we pretrainedfive popular architectures andpooled the
performance metrics.

Considering the importance of maintaining patient confidentiality
when processing clinical reports, our model architecture selection was
informedby the ability to train in single-GPUenvironments. This allows the
full end-to-endmodel training andapplicationpipeline to remainwithin the
hospital infrastructure, thereby safeguarding patient privacy by design. The
architectures incorporated into our study were selected from the Hug-
gingFace Model Hub and are BERT base (GroNLP/bert-base-dutch-
cased)39, RoBERTabase (xlm-roberta-base)33, RoBERTa large (xlm-roberta-
large)33, Longformer base (allenai/longformer-base-4096)34, and Long-
former large (allenai/longformer-large-4096)34. These models were pre-
trained using general-domain data (Dutch for BERT base, multilingual for
RoBERTa, and English for Longformer), as specified in the associated
publications. These architectures are widely used and able to operate within
the specified computational constraints.

Acknowledging the prevalent challenge of resource scarcity in non-
English language settings, our experiment utilized pretraining configura-
tions in Dutch, multilingual, and English. This selection mirrors the typical
scenario in low-resource contexts, where a pretrained model in the target
language may not be available, necessitating the utilization of either mul-
tilingual models or models pretrained in alternative languages.

Pretraining was performed using the masked language modeling
(MLM) objective29. The HuggingFace implementation for MLM was used,
where 15% of the tokens were masked. Pretraining was performed for 3
epochswhen following general-domainpretraining and for 10 epochswhen
pretraining from scratch. All parameters are detailed in their respective
model card40–49. Convergence of the pretraining runs was verified using the

validation set. If divergence occurred, the pretraining runwas rolled back to
the last checkpoint before divergence, and pretraining was continued. The
MLM pretraining technique was chosen following Liu et al.33, since it
represents the standard pretraining technique.

For the primary analysis, we pooled the results from each architecture
to compare the three pretraining methods. The overall efficacy of a pre-
training approach is calculated as the DRAGON 2025 test score, Eq. (2).
This comprehensive evaluation framework enables a nuanced under-
standingof the relative advantages of eachpretraining strategy in the context
of clinical report analysis.

Reader study
To assess annotation consistency within the DRAGON benchmark, we
conducted a reader study evaluating inter-annotator agreement. Tasks with
similar annotation requirements were grouped. For each of the 16 reader
study blocks, we randomly sampled 30–50 reports, resulting in 550 unique
reports. Each block was independently annotated by two readers. Reader
assignment ensured that neither reader had previously annotated that
specific task, thus allowing comparison among three independent annota-
tions per report: two from the reader study and the original benchmark
annotation. Due to practical constraints, the comprehensive training, clin-
ician consultation, and post-annotation consistency checks of the original
annotations were not replicated, making the inter-annotator agreement
presented a conservative estimate of the benchmark’s annotation reliability.

Agreementwas quantified usingKrippendorff’s alpha for classification
and regression tasks (T1–T24) and F1 score for named entity recognition
tasks (T25–T28). Additionally, we assessed annotation accuracy by com-
paring the readers’ annotations directly against the original benchmark
labels. Additional details are provided in Supplementary Note 5.

Statistical analysis
The performance of domain-specific pretraining, general-domain pre-
training, and mixed-domain pretraining were statistically compared. We
evaluated the performance of domain-specific pretraining in comparison to
general-domain pretraining, mixed-domain pretraining in comparison to
general-domain pretraining, domain-specific pretraining in comparison to
mixed-domain pretraining, and mixed-domain pretraining in comparison
to domain-specific pretraining. Statistical tests were reserved for these four
primary outcomes only. To maintain the type I error while investigating
multiple comparisons, all studyobjectiveswereprespecified in ahierarchical
family tree and tested accordingly50. Multiplicity was corrected for at each
stage using theHolm–Bonferronimethod, considering a base alpha value of
0.05. See the Statistical Analysis Plan in Supplementary Note 4 for more
details.

Data availability
All data used in the benchmark is publicly accessible through the Grand
Challenge cloud platform. Data is not directly accessible, but rather acces-
sible to the submitted algorithms. Data used to pretrain the foundational
models is not available. The pretrained foundationalmodels are all available
on HuggingFace, see https://dragon.grand-challenge.org/pretrained-
models.

Code availability
All code for this study is publicly available. The most up-to-date code is
available onGitHubathttps://github.com/DIAGNijmegen/dragon_baseline
for the baseline algorithm, https://github.com/DIAGNijmegen/dragon_eval
for the evaluation method, https://github.com/DIAGNijmegen/dragon_
prep for data preparation, and http://github.com/DIAGNijmegen/dragon_
submission for a template for new submissions. A snapshot of the code used
for this study is available on Zenodo at https://doi.org/10.5281/zenodo.
13695131.
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