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Insights into endometriosis symptom
trajectories and assessment of surgical
intervention outcomes using longitudinal
actigraphy

Check for updates

Katherine Edgley1, Philippa T. K. Saunders1, Lucy H. R. Whitaker1, AndrewW. Horne1 &
Athanasios Tsanas2

Endometriosis is a common, chronic condition associated with debilitating pain, fatigue, and
heterogeneous symptom presentation. In this exploratory study, 68 participants with confirmed
endometriosis were monitored for up to three 4–6-week smartwatch cycles. We collected daily self-
reports of pain and fatigue as well as retrospective questionnaires assessing quality of life, and we
extracted daily measures of physical activity (PA), sleep, and diurnal rhythms from wrist-worn
actigraphy data. We found that daily PA was strongly negatively correlated with self-reported fatigue
(repeatedmeasures correlationsR<� 0:3) and that participantswithmore severe or variable symptom
trajectories displayed lower levels of PA, greater sleep disturbance, and more disrupted sleep and
activity rhythms (Spearman’s jRj>0:3). Lastly, we found evidence of sleep and PA changes following
surgery for endometriosis that reflected change in self-reported symptoms. Collectively, our findings
suggest that passive data collection using wrist-worn wearables in endometriosis could facilitate
individualized objective insights into symptom trajectories.

Endometriosis is a chronic condition associatedwith debilitating symptoms
including pain and fatigue.Despite its prevalence,with reported estimates of
affecting approximately 10% of women of reproductive age (190 million
women globally), treatment options for managing symptoms are often
unsatisfactory and diagnostic delays are common1. The condition is diag-
nosed when endometriosis lesions, or tissue like that found on the lining of
the uterus (endometrium), are found outside of the uterus2. Lesion char-
acteristics are generally categorized into three main subtypes: superficial
peritoneal (representing approximately 80% of cases), deep, and ovarian3,4.
Symptom presentation in endometriosis can vary widely between indivi-
duals, with somewomen being asymptomatic, and others experiencing life-
altering symptoms such as chronic pelvic pain (either withmenstruation or
non-cyclical) and fatigue, as well as gastrointestinal symptoms and psy-
chological symptoms (depression and anxiety)4. Typically, lesions are
visualized surgically using laparoscopy, though ovarian and deep disease
may be identified using imaging methods2.

Endometriosis lesions, when characterized through current staging
systems, do not clearly correspond to symptom presentation2,5. Thus,
endometriosis symptom severity is generally assessed using patient-

reported outcome measures (PROMs), and there exist limited objective
approaches to assess outcomes and changes in symptoms, such as through
changes in behaviors or physiological signals6. Standard treatments for
endometriosis include surgical (laparoscopic) removal of lesions and hor-
monal medications2. However, further methods for managing symptoms
and reducing impact on quality of life (QoL), including non-medical and
self-management methods, remain an important research priority7.
Questionnaire-based studies have additionally reported that endometriosis
symptoms likely have an impact on sleep8 and physical activity (PA)9, while
exercise and PA-related interventions have also been investigated as
potential therapeutic non-invasive approaches to mitigate symptoms10,11.

Digital approaches towards collecting symptom-tracking data have
proved promising in recent endometriosis studies, where app-based
PROMs and custom self-tracking of activities or interventions were used
to inform patient phenotypes and the relationship between self-reported
exercise and symptoms12,13. Although PROMs are useful to understand
participants’ own perception of symptoms, they can be burdensome,
especially when collected daily, resulting in missing data which can intro-
duce bias, and responses can be influenced by a range of factors including
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mood and recall14. Furthermore, given that endometriosis patients often
report “flares” or periods of elevated symptom severity, questionnaires
captured retrospectivelymay not reflect the symptoms’ temporal resolution
(how quickly symptoms change) or miss valuable information on the effect
of treatments. Wearable devices offer the opportunity to passively detect
objective behaviors or physiological signals, thus allowing for continuous
longitudinal assessment, and have been explored in diverse health mon-
itoring conditions6,15,16. However, few studies to date have utilized objective
approaches to capture behaviors that may relate to endometriosis
symptoms6.

Using actigraphy, the collection of three-dimensional acceleration data
typically using wrist-worn accelerometers, one can passively and long-
itudinally collect continuous data which enable extracting sleep, PA, and
diurnal rhythm patterns in a free-living environment17–19. In conjunction
with PROMs, actigraphy data can shed light on the relationship between
symptoms and objectively measured sleep and PA, as has been demon-
strated by studies in other conditions6,18,20.

In this study,weusedboth actigraphy-derivedand self-reporteddata to
characterize endometriosis symptom trajectories and examine how symp-
toms relate to PA, sleep, and diurnal rhythms. As the first large study in
endometriosis to capture both objective and subjective measures of symp-
toms longitudinally, we aim to present the motivation for and feasibility of
using wearable-derived data in endometriosis to provide new insights into
patient outcomes.

Results
Data collection
The baseline characteristics of the 68 study participants (all of whom
identified as female) are summarized in Table 1, and more details on hor-
monalmedication and comorbidities are displayed in Supplementary Fig. 1.
All participants had been previously diagnosed with endometriosis either
through laparoscopy or imaging (for deep or ovarian endometriosis only).
In this study, participants consented to wear smartwatches collecting acti-
graphy, submit daily PROMson symptoms for up to three 4–6week periods
(henceforth referred to as smartwatch cycles, with number of smartwatch
cycles denoted by N as opposed to n participants), and complete retro-
spective questionnaires at the end of each smartwatch cycle. Of the n = 68
participants consented, n = 66 had associated actigraphy data (5152 days of
actigraphy data with >75% wear) and n = 67 had associated daily PROMs
(5417 days). Further details on participation numbers for the data collected
throughout each smartwatch cycle are provided in Fig. 1 and can also be
found in Supplementary Note 1. Of the subset of participants (n = 20)
recruited to the surgical sub-study who underwent surgery to excise
endometriosis, with or without additional total hysterectomy±bilateral
salpingo-oophorectomy (BSO), n = 17 were confirmed to have deep or
ovarian disease after receiving surgery, n = 16 of whom participated in one
or more smartwatch cycles after surgery (and thus were included in further

Table 1 | Demographic characteristics and diagnoses of
participants as provided at baseline

Cohort demographics and characteristics
Variable n (%) or Mean ± SD

Age 33.7 ± 7.4

Smoker 11 (16.2%)

Night shift work 2 (2.9%)

Nulliparous 46 (67.6%)

Duration of pelvic pain in months (n = 67) 155.3 ± 96.7

Analgesia taken regularly 41 (60.3%)

Opiates 18 (26.5%)

Analgesia taken for pelvic pain flares 60 (88.2%)

Opiates 36 (52.9%)

BMI 27.9 ± 6.4

Underweight (BMI <18:5) 1 (1.5%)

Normal (18:5 �BMI <25) 29 (42.6%)

Overweight (25 �BMI <30) 13 (19.1%)

Obese (30 �BMI <40) 23 (33.8%)

Severely obese (BMI � 40) 2 (2.9%)

Ethnicity

White 64 (94.1%)

Asia/Asian British 1 (1.5%)

Black/African/Caribbean/Black British 0 (0%)

Multiple ethnic groups 1 (1.5%)

Other ethnic groups 2 (2.9%)

Education (highest achieved)

Primary 0 (0%)

Secondary 18 (26.5%)

Tertiary 50 (73.5%)

Endometriosis subtype

Superficial peritoneal 38 (55.9%)

Deep 38 (55.9%)

Ovarian 23 (33.8%)

Hormonal medication taken 42 (61.8%)

GnRH agonist taken – with HRT 12 (17.6%)

GnRH agonist taken – without HRT 3 (4.4%)

Combined oral contraceptive pill (COCP) 4 (5.9%)

Levonorgestrel intrauterine system (IUS) 18 (26.5%)

Progesterone only pill (POP) 6 (8.8%)

Nexplanon 3 (4.4%)

Depo-provera 1 (1.5%)

Comorbidities

Fibromyalgia 6 (8.8%)

Rheumatoid arthritis 1 (1.5%)

Irritable bowel syndrome (IBS) 10 (14.7%)

Autosomal dominant polycystic kidney
disease (ADPKD)

0 (0%)

Migraine 27 (39.7%)

Other arthritis 3 (4.4%)

Chronic fatigue syndrome (CFS) 4 (5.9%)

Pancreatitis 0 (0%)

Painful bladder syndrome/interstitial cystitis 5 (7.5%)

Other chronic pain 12 (17.6%)

Table 1 (continued) | Demographic characteristics and
diagnoses of participants as provided at baseline

Cohort demographics and characteristics
Variable n (%) or Mean ± SD

Gynecological history

Adenomyosis 9 (13.2%)

Heavy bleeding 29 (42.6%)

Fibroids 8 (11.8%)

Previous pelvic inflammatory disease (PID) 7 (10.3%)

Previous surgical treatment to endometriosis 45 (66.2%)

Previous hysterectomy 1 (1.5%)

Previous bilateral salpingo-oophorectomy 1 (1.5%)

Entries are summarized in the formmean ± standard deviation, otherwise indicating the percentage
within the cohort (when using parenthesis).

https://doi.org/10.1038/s41746-025-01629-8 Article

npj Digital Medicine |           (2025) 8:236 2

www.nature.com/npjdigitalmed


analysis of the sub-study). For these remaining participants, the third
smartwatch cycle was completed approximately 4–6 months post-surgery
(average of 151.5 days, ranging between 108 and 200 days post-surgery).

Adherence
Figure 2 displays the adherence levels for both PROMs and wearing
smartwatches by week and by participant, showing that smartwatch
adherence was generally higher than for completing PROMs, with a mean
participant smartwatch wear adherence of 87.3% within the first 28 days of
each smartwatch cycle compared to 80.5% for PROMs (further discussed in
SupplementaryNote 1). Smartwatch adherencealso exhibited less decline in
the fourth week of each smartwatch cycle compared to PROMs. Overall, 19
participants withdrew from the study: 16 withdrew prior to the third
smartwatch cycle (three participants who withdrew during the third
smartwatch cycle were thus included in Fig. 2). The reasons for withdrawal
(also summarized in Fig. 1) were the following: Lost to follow-up (n ¼ 7),
“anxious/overwhelmed” (n ¼ 3), both “anxious/overwhelmed” and “can-
not/will not comply with daily diaries” (n ¼ 1), fallen pregnant (n ¼ 3),
“didn’t want to wear the smartwatch” (n ¼ 2), other personal circum-
stances/unwell (n ¼ 2), and irritation from smartwatch/daily diaries
increased anxiety (n ¼ 1).

Exploring statistical associations within PROMs
The correlations between end-of-cycle Endometriosis Health Profile (EHP-
30) scores and daily PROMs are shown in Fig. 3 (subfigures a-b). As shown
in Fig. 3a, summary measures relating to the daily average, worst, and
current fatigue had lower correlations with EHP-30 scores (correlation
coefficientsR from j0:61� 0:63jwith global EHP-30) compared to thefinal
six questions on the Brief Fatigue Inventory (BFI) assessing the impact of
fatigue on various domains (R ranging from j0:64� 0:75jwith global EHP-
30). Additionally, fatigue-related measures were generally more strongly
associated with the emotion and social subdomains of the EHP-30
(R ¼ 0:59 betweenmean global BFI and EHP-30 emotion) compared with
pain-related measures (R ¼ 0:45 for mean global pain and EHP-30 emo-
tion). However, the BFI includes questions on enjoyment of life and mood,
and relationships, whichweremost strongly correlatedwith similar EHP-30
domains as expected, and therefore influence the global BFI score.

Of the computed summarymeasures of daily global pain shown in Fig.
3b, the mean of the upper 25% of pain scores was most strongly correlated
with the global EHP-30 score (R ¼ 0:75) as well as pain subdomain of the

EHP-30 (R ¼ 0:80). Figure 3c shows best-fit quadratic curves to illustrate
the relationship between summary measures of pain and recalled EHP-30
pain, where the mean of upper 25% of ‘worst’ pain days had the strongest
correlation and most linear relationship with EHP-30 pain. These correla-
tions suggest that the EHP-30 pain subscale may in fact reflect the most
severe symptoms recalled over the previous weeks better than the average
level of symptoms. Furthermore, Fig. 3b shows that variability measures of
global' pain were strongly correlated with the global EHP-30 score (R ran-
ging from j0:34� 0:48j) and EHP-30 pain subdomain (R from
j0:31� 0:45j), which may reflect the occurrence of high pain scores, since
smartwatch cycles with lower pain on average but some high pain scores
would have higher variability. As shown in Fig. 3d, pairwise repeated
measures correlations within the daily self-report questions revealed a very
strong correlation (R ¼ 0:67) between daily global pain and global BFI
scores, indicating that within individuals, days with severe pain symptoms
reported also tended to have severe fatigue symptoms.

Symptomtrajectoriesandassociationsbetweendailyactigraphy
measures and PROMs
Indicative examples of symptom trajectories across a single smartwatch cycle
are shown in Fig. 4. In participants with cyclical flares of pain and fatigue (P5
and P3), we found apparent changes in actigraphy-assessed sleep duration,
sleep regularity, and PA that appeared to coincide with changes in self-
reported pain and fatigue. In contrast, participant P12 (receiving GnRH
agonist) displayed consistent and severe symptoms across the smartwatch
cycle along with highly variable sleep duration and lower PA compared to
participant P3 (when pain/fatigue was lower), as highlighted by the activity
rhythms shown in Fig. 4b. A detailed exploration of how the severity and
variability of symptoms, as well as that of daily actigraphymeasures, differed
byhormonal and surgical status can be found in Supplementary Figs. 5 and 6.

An example of changes in symptoms after beginning treatment with
GnRH agonist is also shown in Supplementary Fig. 3, where an
improvement in actigraphy-assessed PA levels and more regular sleep
patterns coincided with a decrease in self-reported symptoms. However,
this same relief to symptomswas not demonstrated in several participants
such asP12 (Fig. 4)whowere also treatedwithGnRHagonist and typically
displayed more severe symptoms with lower variability (see Supplemen-
tary Fig. 5). Detected sleep trajectories also varied widely between parti-
cipants, with some participants exhibiting abnormally long sleep
(sustained inactivity) periods up to 20 hours using both sleep detection
algorithms, as demonstrated in Supplementary Fig. 2, with an indicative
example in Supplementary Fig. 9. A plausible explanation for this
observation likely reflects that participantswere lying on a bedor sofa for a
prolonged time, which we can reasonably attribute to excessive fatigue or
other pain.

Repeated measures correlations, which illustrate ‘within-person’ cor-
relations, between daily actigraphy measures and PROMs indicated that
certain actigraphy-assessed PA and diurnal rhythmmeasures were strongly
correlated (jRj>0:3) with self-reported fatigue (see Supplementary Data 1
for all correlations, which were computed using all available data from
n ¼ 66 participants, with a minimum of 3589 and maximum of 4521
degrees of freedom). Ratings of how fatigue interfered with ‘activity’ and
‘work’ (BFI Q4) were most strongly correlated with PA. Relative amplitude
of the most and least active hours (RA) was the actigraphy measure most
strongly correlated with fatigue, although other average PA measures such
as movement during the most active 10 hours (M10) were also strongly
correlated with the global BFI score. In general, repeated measures corre-
lations between actigraphymeasures and self-reported pain (R up to j0:23j)
were lower when compared to fatigue (R up to j0:35j), and importantly,
none of the daily actigraphy measures were strongly (jRj>0:3) correlated
with self-reported pain.

The extent to which correlations within each participant (intra-
person) between daily symptom and actigraphy measures varied is illu-
strated in Fig. 5. Actigraphy-assessed sleep duration the night following
the daily PROM was not strongly correlated with self-reported pain or

68 participants 
consented

67 participated
Smartwatch 

cycle 1:

57 participated

52 participated

5 withdrawals: Anxious  (n=1), 
lost (n=1), multiple/other (n=1), 

smartwatch (n=2) 

5 withdrawals: Lost (n=3), 
multiple/other (n=2)

2 withdrawals: Pregnant (n=1), 
multiple/other (n=1) 

3 withdrawals: Pregnant (n=1), 
anxious (n=1), lost (n=1)

3 withdrawals: Pregnant (n=1), 
lost (n=2) 

1 withdrawal: Anxious (n=1)

Smartwatch 
cycle 2:

Smartwatch 
cycle 3:

Fig. 1 | Flow chart of participation in the study for the three 4-6-week smartwatch
cycles. A participant was defined to have “participated” in a smartwatch cycle if
either more than one PROMwas submitted or smartwatch data was returned for the
smartwatch cycle. “Lost” indicates lost to follow-up.

https://doi.org/10.1038/s41746-025-01629-8 Article

npj Digital Medicine |           (2025) 8:236 3

www.nature.com/npjdigitalmed


fatigue when using repeated measures correlations (see Supplementary
Data 1), which is reflected by the wide range of intra-person correlation
coefficients shown in Fig. 5a, b. In Fig. 5c, d, partial correlations (con-
trolling for the remaining variables displayed in each plot) revealed a
weakly negative association between actigraphy-assessed sleep duration
(the night before the daily PROM) and self-reported fatigue, that was not
present with pain. Similarly, mostly negative correlations were seen
between actigraphy-assessed sleep regularity and self-reported fatigue. In
contrast, a weak positive association between sleep duration (the night
following the daily PROM) and self-reported fatigue was found in further
analysis through linear mixed-effects models (see Supplementary Table

1). In Fig. 5a, b, PA (as shown indicatively by M10) also had mostly
negative correlations with both pain and fatigue, but the association was
strongest with self-reported fatigue when examining partial correlations
(Fig. 5c, d) and in further analysis (see Supplementary Table 1), where the
association between M10 and pain became weakly positive after con-
trolling for fatigue and other actigraphy variables. Finally, a weak positive
association was found betweenWASO (the night before the daily PROM)
and self-reported pain, after controlling for other variables (see Fig. 5c and
Supplementary Table 1). The extent to which these intra-person corre-
lations varied based on hormonal and surgical status as well as sleep
regularity is further detailed in Supplementary Figs. 7, 8.

Fig. 2 | Bar plots and dot plots showing adherence patterns for thefirst fourweeks
of each smartwatch cycle and by participant.Weekly adherence patterns for the
daily self-reports for the first 28 days of each smartwatch cycle are shown in (a) for all
participants and in (b) for participants that participated in three smartwatch cycles.
Sample size is given by smartwatch cycle (N=number of included smartwatch cycles
with daily PROMs / N=number of included smartwatch cycles with returned

smartwatch data). In (c), adherence is shown by participant, including those who
withdrew as highlighted in the red box on the left. A smartwatch cycle was included if
more than one PROMwas submitted on day 1-28 or smartwatch data was returned.
Participants that withdrew were included up until the end of the smartwatch cycle
they withdrew.
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Participant-level associations between actigraphy and PROMs
Comparing participant smartwatch cycles, using associations computed
using summary measures over each smartwatch cycle or end-of-cycle
questionnaire data, revealed numerous statistically strong Spearman cor-
relations, and indicative examples of these correlations (i.e., strongest cor-
relations that appeared robust, without outliers, from different broad
algorithmic families) are shown in Fig. 6. Severe symptoms, as indicated by
the mean of the upper 25% of global pain scores reported in a smartwatch
cycle, were associated with lower mean moderate-to-vigorous physical
activity (MVPA), and a strong correlation was also seen with mean global
pain andmean upper 25% of global BFI scores (Fig. 6). Notably, actigraphy
measures of PA summarized over smartwatch cycles (MVPAandmoderate
or vigorous activity) weremore strongly correlatedwith summarymeasures
of self-reported pain than fatigue, suggesting a relationship differing to that
on a daily basis within participants. Sleep disturbance as indicated by the
upper quartile of light activity during sleepwas positively correlatedwith the
mean of the upper 25% of global BFI scores (Fig. 6b).

Additionally, the variation in certain sleep and diurnal variability
measures (Fig. 6c, d) were strongly correlatedwith variation in self-reported
fatigue (either global BFI or individual BFI items), indicating that in general,
smartwatch cycles with highly variable fatigue PROMs also displayed more
variable sleep and activity rhythms. Furthermore, the variability of sleep
duration across a smartwatch cycle was correlated with the EHP-30 pain
subscale with a Spearman correlation ofR ¼ 0:3, highlighting the statistical

relationship between the variability of sleep patterns and self-reported
symptom severity.

Assessing changes following surgical intervention
Wefound that self-reported symptoms and actigraphymeasures changed in
the 10-day time-period following endometriosis surgical intervention
(excision of endometriosis, with or without concurrent hysterectomy+/−
bilateral salpingo-oophorectomy), as shown in Fig. 7. The decrease in
actigraphy-assessed PA levels following surgery was consistent among the
N = 13 participants with available data, which was followed by a gradual
increase inPAlevels formostparticipants. PA trajectorieswere generally the
inverse of symptom trajectories, as pain and fatigue levels were elevated
immediately following surgery followed by a gradual decrease. Increased
sleep disturbance—as assessed using wake after sleep onset (WASO)—and
decreased sleep efficiency was also seen in the actigraphy data for most
participants in the 10-day post-operative window, and decreased sleep
regularity was seen in all participants. In contrast, changes in actigraphy-
assessed sleep duration in the post-operative period varied widely between
participants, with six participants showing decreased sleep duration and
seven with increased sleep duration.

Summary values of actigraphy and PROMs from baseline to the 4-6
month follow-up are shown in Fig. 8. Improvements in self-reported pain
and fatigue were the most consistent at follow-up (13 of 14 participants
reported lower mean global pain scores compared to baseline, and 11 of 14

Mean 
of BFI 
Q1-Q3

Mean of BFI Q4: Global pain Global BFI

BFI 
Q1-Q3

BFI Q4: 

BFI 
Q1-Q3

BFI Q4: 

fatigue 
interfered 

(b)(a)

(c) (d)

Fig. 3 | Heatmaps and scatterplots displaying correlations within PROMs. Sub-
figures (a) and (b) show statistically strong ( | R | > 0.3) Spearman correlations
between end-of-cycle EHP-30 scores and (a) mean values of daily self-report
questions and (b) summary measures of global pain and fatigue (BFI) scores.

Subfigure (c) shows the relationship between summarymeasures of daily pain scores
and the pain subscale of the EHP-30, depicted using Spearman correlations and
overlaid best-fit quadratic curves. Subfigure (d) depicts repeated measures correla-
tions within daily self-reports (using 5,349 days from n = 67 participants).
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participants reported lowermeanglobal BFI scores). Changes in actigraphy-
assessed measures were more variable at follow-up, with five of 12 partici-
pants showing an increase in mean M10, 9 of 12 participants showing an
increase in mean sleep regularity, and 5 of 12 participants showing a
decrease in WASO.

Discussion
We demonstrate the utility of wrist-worn actigraphy to offer new insights
into objectively monitoring longitudinal endometriosis symptom trajec-
tories and assessing endometriosis surgical intervention outcomes over and
above what is offered by PROMs. Strong negative repeated-measure cor-
relations (R<� 0:3) were found between actigraphy-assessed PAmeasures

and self-reported fatigue, suggesting that passively collected actigraphy
offers potential towards tracking fatigue symptoms longitudinally. When
comparing between smartwatch cycles from participants, strong correla-
tions were found between PA and pain severity (jRj>0:4), between sleep
disturbance and symptom severity (jRj>0:3), and between symptom
variability and sleep and diurnal rhythm variability (jRj>0:4). These com-
pelling findings provide the first objective evidence of associations between
sleep, PA, anddiurnal rhythmswith endometriosis symptomseveritywhich
havepreviously onlybeen exploredusingquestionnaires. Finally, actigraphy
assessment prior to and following endometriosis surgery (with optional
concurrent hysterectomy and/or bilateral oophorectomy) revealed clear
changes in PA, sleep disturbance, and sleep regularity immediately

Fig. 4 | Symptom and actigraphy trajectories from indicative selected partici-
pants. a Examples of the trajectories of indicative participants (P5 and P3) who were
not taking any hormones, compared to P12 who was taking GnRH agonist without
HRT. b Examples of colored actograms (with log-10 transformed activity levels) of a

single week from participants P3 (left, from July 15 to 22), with moderate symptoms
throughout the week displayed (mean global BFI score of 4.1 and global pain score of
4.2), and P12 (right, from July 23 to 30), with severe symptoms throughout the week
(mean global BFI score of 6.6 and global pain score of 7.1).
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Fig. 5 | Boxplots of intra-person correlations between actigraphy measures and
self-reported symptoms. Boxplots of intra-person Pearson pairwise (a, b) and
partial (c, d) correlations between a range of actigraphy measures (x-axis) and (a, c)
global pain scores, or (b,d) global BFI scores. In (c) and (d), the partial correlations
indicate that all the other variables presented are controlled for when computing
each individual correlation, as opposed to (a) and (b) where pairwise correlations do
not control for any variables. Each point represents the correlation within a specific
participant’s owndata, and red-dashed lines indicate where |R | =0.3.We refer to Fig.

9 and Supplementary Data 1 for definitions of variable names. Only participants
with at least 20 non-missing value pairs were included, and smartwatch cycles in
which participants received surgery for endometriosis (either as part of the surgical
sub-study or otherwise) were excluded, resulting in n = 54 participants included in
the figure, with a total number of days included ranging from 3,591-3,907 for sub-
figures (a) and (b) and 3,327 total days in subfigures (c) and (d). We refer readers to
SupplementaryTable 1wherewe explored linearmixed-effectmodels for fatigue and
pain (complementing findings presented in subplots (c) and (d)).
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following surgery, which largely reflected concurrent symptom severity as
assessed through PROMs.

Longitudinal actigraphy assessment of PA, sleep, and diurnal rhythms
over multiple months has not previously been undertaken in a cohort of
endometriosis patients, although one large-scale observational study has
demonstrated the potential utility of tracking daily lifestyle habits such as
exercise alongside symptoms in endometriosis13. We note that most
actigraphy-focused studies in the research literature do not have repeated
longitudinal data collection. By comparison, in this study we report on
actigraphy from participants on different occasions throughout one year,
providing up to 126days’worth of data per participant. In general, there has
been a call for greater integration of digital technologies21,22, including in
endometriosis research mirroring progress in other domains6,12. This study
provides valuable insights into the utility and outcomes of taking this
approach. In other chronic pain conditions, such as irritable bowel syn-
drome (IBS), migraine, and fibromyalgia, actigraphy has previously been
used to identify sleep disturbances or PA levels compared to control
populations, and in some cases to assess the temporal effects of sleep on
symptoms (e.g., as a trigger for migraine)6. However, few studies have uti-
lized longitudinal sensor-based assessment in endometriosis; one study
evaluated associationswith symptoms after laparoscopic surgery in a cohort
of three participants23, and another followed patients after endometriosis
surgery (among other participants) for one week to assess objective step
counts24. In the former study, which used a non-contact sensor to detect
sleep, strong positive correlations between the time from sleep onset to deep
sleep and pain the following day were found in all three participants23.
Another recent study used MVPA estimates and step counts from Fitbits
over several weeks, finding that increased MVPA was associated with
improved mental health, independent of pain, in a cohort of patients with

chronic pelvic pain,manywith endometriosis25.However, that studydidnot
include assessment of fatigue, or any further measures of PA, sleep, and
diurnal rhythms, as assessed in this study.

A key novel finding from our study is that actigraphy could provide
important insights into endometriosis post-surgical outcomes. Consistent
decreases in actigraphy-assessedPA (as indicated byM10)were seen among
all participants in the period immediately following surgical intervention
(with or without hysterectomy/oophorectomy). This corroborates findings
presented in an earlier study using accelerometers to monitor PA after
abdominal surgery, including laparoscopic hysterectomy (although parti-
cipants with deep endometriosis were excluded in that study)26. In that
study, following hysterectomy participants did not tend to reach their
baseline PA levels by five weeks post-surgery. Although it is expected that
PA typically decreases in the short-term following surgeries such as hys-
terectomy, the actigraphy data provide objective means and valuable
insights into the actual rehabilitation trajectory.

In our study, increases in actigraphy-assessed sleep disturbance and
decreases in sleep regularity were also present in almost all participants in
the 10-day period following surgery; similarfindings in a study of 16women
post-hysterectomy revealed a significant increase in WASO in the seven
days following surgery compared to the seven days immediately prior to
surgery27. That study, which included one participant with endometriosis
amongotherdiagnoses, also reported a significant increase in sleepduration
following surgery,whereas inour study changes in sleepdurationweremore
variable. A recent cross-sectional study using accelerometers and self-
reported pain post-operatively, which included 60 participants following
endometriosis surgery, did not find strong correlations between pain
intensity and step count at 6-7 days post-surgery24. However, that cross-
sectional approach is fundamentally different to our examination of
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Fig. 6 | Scatter plots visually illustrating the relationship between indicative
actigraphy measures (x-axis) and self-reports (y-axis) summarized across
smartwatch cycles.Abest-fit line is displayed in blue with a 95% confidence interval
(shaded gray) along with the Spearman partial correlation coefficient (R), control-
ling for the smartwatch location (dominant vs. non-dominant wrist), age, and BMI.

The displayed actigraphy measures were chosen to depict indicative strong corre-
lations ( | R | >0.3), which also appeared robust with minimal outliers, involving
different types of actigraphymeasures (sleep vs. PA)with different types of summary
measures (i.e., from different algorithmic families).
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associations between PA and symptoms within participants, which can
provide more detailed insights into symptom trajectories.

Adherence to wearing smartwatches throughout our study was high,
with a mean wear time of 87.3%, and was higher compared to PROMs
adherence for most participants (80.5% mean adherence) as shown in Fig.
2c.Notably, thedecrease in adherencewithin each smartwatchcyclewas less
abrupt for smartwatches compared to self-reports. However, acceptability
responses and feedback from participants revealed several cases of dis-
comfort from the smartwatches and suggestions to improve physical aspects
of thewatches (most commonly regarding discomfort from thewatch strap,
and in some cases the size of the device). Discomfort from the smartwatches
and/or not wanting towear the smartwatches were also provided as reasons
for withdrawal from some participants, indicating that the devices them-
selves likely had some impact on smartwatchadherence levels. This suggests
wear times could potentially be increased further by improving aspects of
the smartwatches.Additionally, a commonreason forwithdrawing fromthe
study was being “anxious/overwhelmed” (multiple choice) or similar (as
indicated by free text), likely due to the burden of completing not only daily
pain and fatigue ratings but also questionnaires at the end of each cycle.
Thus, there are clear benefits to utilizing smartwatches that can passively
collect information in long-term follow-up, thereby reducing the burden on
participants and potentially improving adherence, as indicated by the
increased adherence in the smartwatch data collection compared to daily
PROMs shown in this study.

Comparing end-of-cycle EHP-30 outcomes to daily pain and fatigue
scores suggested that retrospective reports of symptomsmay in fact tend to
reflect the worst symptoms experienced, which is a common occurrence
reportedwithin thewider literature onPROMs14. In particular, past research

on self-reporting of pain intensity has similarly found that retrospective
reports of total pain tend to be strongly associated with the maximum pain
intensity experienced28. As no other studies have evaluated adherence to
wearing smartwatches in endometriosis to our knowledge, no direct com-
parison for smartwatch adherence is available. For daily PROMs, previous
studies in a clinical trial setting have indicated high adherence, such as
validation of a daily endometriosis diary, which had 90% adherence over
one menstrual cycle29. However, adherence to completing PROMs is
dependent on the length and format of self-reports, cohorts, reminders
given, and duration of the reporting period14,30.

When examining correlations between daily actigraphy measures and
daily PROMs within each participant, strong negative correlations between
actigraphy-assessed PA (as measured by M10) and fatigue suggest the
potential utility of using smartwatches to remotely monitor fatigue state. In
contrast, weak and varying associationswere found between sleepmeasures
and symptom severity, potentially due to the nature of actigraphy-assessed
sleep, which relies on detecting periods of sustained inactivity and can differ
fromgold-standard sleep assessment.We remark that although no repeated
measures correlations stronger than jRj>0:4were identified, empiricalwork
suggests that in clinical applications correlations with jRj>0:3 are typically
considered statistically strong31, and may be important for clinical inter-
pretation or in the context of monitoring using multivariable models32,33.
This follows empirical statistical principles, where the presence of statisti-
cally strong relationships indicates that there is high probability of building
accurate statistical learning models using explanatory variables (e.g. the
actigraphy-based measures) towards estimating the outcome (e.g. self-
reported pain and fatigue)32. As illustrated in Supplementary Fig. 2, two
participants demonstrated frequent abnormally long detected sleep

Fig. 7 | Changes in symptoms and actigraphy
measures immediately following endometriosis
surgery (including hysterectomy +/− oophor-
ectomy) from participants in the surgical sub-
study. The boxplots above show differences in min-
max scaled actigraphy measures and self-report
symptoms from baseline to the 10-days immediately
post-surgery (top) for each of the labeled n = 13
participants (in random order). The line plot below
shows of all n = 13 participant PA (as shown by
M10) trajectories following surgery, with the mean
value highlighted in black, the 95% confidence
interval highlighted in gray, and the participant
mean M10 baseline value shown by the red dotted
line. For the mean and 95% CI, only days with data
points from at least 50% of the participants were
used. In the top figure, a minimum of three data
points for a participant was available for the 10-day
period, and min-max scaling across all daily data
from all participants was applied.
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duration (even up to 20 h), which very likely reflects prolonged sedentary
activity rather than actual sleep (see also Supplementary Fig. 9). Upon
visualization of the underlying raw actigraphy data, the long periods of
inactivity were not easily distinguishable from potential sleep periods, and
thus were retained as valid readings of ‘sleep’ although it is likely the par-
ticipants were not sleeping for the entire duration. Therefore, resulting
associations between ‘sleep duration’ and self-reported symptoms may in
fact reflect sustained inactivity in certain cases, complicating the varying
intra-person correlations illustrated in Fig. 5.

Despite this potential conflation between sleep and inactivity, the
partial correlations between actigraphy measures and fatigue, which con-
trolled for other actigraphy measures and pain (see Fig. 5c, d), revealed a
weak negative association between sleep duration the previous night and
fatigue the following day. However, this was not statistically significant in
the mixed effects models (see Supplementary Table 1), suggesting lack of
sleepmay increase fatigue but is likely not themain factor. Additionally, the
tendency to recuperate sleep after a night with reduced sleep duration can
also obscure the effect of symptoms on sleep and vice versa; the strong
correlations found between variability in sleep duration and variability in
symptom severity (Fig. 6) support this hypothesis.

Overall, the negative daily correlations between PA (M10) and fatigue
were strongest and consistent across participants (up to R ¼ �0:35), sug-
gesting that although sleep could have a potential influence on symptoms
the following day, low levels of PA aremuchmore indicative of high fatigue
levels than sleep. However, it is worth noting that several participants
demonstrated weak or positive intra-person correlations betweenM10 and
fatigue, and partial correlations indicated a slightly positive association
between M10 and pain after controlling for fatigue, suggesting it may be of
benefit to consider associations on an individual basis, as PA could also
potentially increase fatigue levels. Furthermore, associations between pain

and actigraphy-assessed PAmeasureswere notablyweakerwhen compared
to fatigue, and daily pain scores were not strongly correlated ( | R | > 0.3)
with any daily actigraphy measures (see Supplementary Data 1). After
controlling for fatigue and other actigraphy measures, further examination
through mixed-effects models revealed a positive association between sleep
disturbance (WASO) the previous night and pain (statistically significant as
shown in Supplementary Table 1).

Actigraphy-assessed sleep regularity was also negatively associated
with daily self-reported fatigue (Fig. 5), even after controlling for pain and
other actigraphy variables (see Fig. 5c and Supplementary Table 1), indi-
cating that with more severe symptoms, sleep patterns tended to be less
aligned. However, sleep regularity—as the computation is based on periods
of detected sustained inactivity (not only within the sleep period)—was also
weakly correlated with M10 (repeated measures correlation of 0.23)—and
thus associations may be influenced by long periods of sustained inactivity
during the day for certain participants. Furthermore, as explored in Sup-
plementary Figs. 7, 8, the hormonal and surgical status or sleep patterns
could potentially impact the strength of intra-person correlations, likely due
to the symptom severity and variability as well as the presence of cyclical vs.
non-cyclical symptoms.

When summarizing actigraphy measures and symptoms over smart-
watch cycles (see Fig. 6), surprisingly, mean self-reported fatigue was much
less strongly correlated with actigraphy-assessed PA levels than mean self-
reported pain, suggesting that pain symptomsmay be impacting overall PA
levels more than fatigue, while within-person changes in PA may be more
reflective of fatigue level. Actigraphy-assessed PA has similarly been found
to be inversely associated with symptom severity in a study of chronic pain
(women with fibromyalgia)34. Furthermore, smartwatch cycles with higher
extremes of sleep disturbance also tended to have higher extremes of
symptom severity (Fig. 6), which is in line with previous questionnaire-
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Fig. 8 | Line plots depicting changes in PROMs and actigraphy summary mea-
sures across smartwatch cycles for participants in the surgical sub-study. The line
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±bilateral oophorectomy), the line type indicates whether HRT was taken at follow-
up, while the cross (x) indicates where a participant reported working night shifts,
and the asterisk (*) indicates where a participant received GnRH agonist during the
smartwatch cycle. Indicative PA trajectories are shown using mean M10 values.
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based studies of endometriosis, where patients with more severe pain
symptoms reported greater fatigue and greater sleep disturbance compared
to those with minimal pain35.

We acknowledge there are some limitations in the study. The relatively
small number of participants suggests that findings should be interpreted
tentatively. Similarly, although a limited number of participants underwent
surgery, we demonstrated that several changes in actigraphymeasures were
consistent across all (or almost all) of the participants immediately after
surgery. Thus, we are reasonably confident the presented findings would
very likely generalize. Another limitation of this study is the representa-
tiveness of the cohort: data was collected from a single center with partici-
pants from a similar background and an over-representation of participants
with deepor ovarian endometriosis compared to their prevalencewithin the
general population. Furthermore, we acknowledge that the lack of a control
group in this study precludes any direct comparison of absolutemeasures of
PA or sleep to a healthy population. It is also possible that the changes in
actigraphy measures immediately following surgery could be similar in
other surgical cohorts. However, as this study aimed to assess associations
between actigraphy and PROMs in endometriosis, examining daily asso-
ciations would not be suitable in a population with limited or no symptom
severity. Finally, as previously discussed, the actigraphy-assessed sleep
duration was likely overestimated for certain participants in the cohort who
demonstratedhighly sedentarybehavior, oftenduringperiods of severe pain
and fatigue.

Future work could involve larger studies, potentially with more fre-
quent PROMs, to understand the complexities of the relationship between
pain and fatigue symptoms and lifestyle behaviors such as sleep andPA.The
impact of pain medication and other lifestyle factors could also be con-
sidered in future studies. Additionally, more participants with different
surgical interventions could provide a more robust analysis of objective
changes at a six-month follow-up. Qualitative and feasibility studies could
also provide more insight into how features of wearable devices, including
different types ofwearable devices, could improve adherence in longitudinal
studies. Finally, in further work we plan to assess the utility of the daily
actigraphy measures for remote monitoring of symptom severity using
individualized machine learning approaches. Individualized modeling
approaches, or more complex non-linearmodels that better account for the
time-series leading up to the symptom report, could potentially improve
prediction of pain, whereas in this exploratory study only weak associations
were found between daily actigraphy measures and pain.

Given that endometriosis is a chronic condition, it is imperative to
collect longitudinal data to understand symptom trajectories and assess
interventions. These interventions are typically assessed through sparse
PROMs, which are known to be subject to recall bias when not regularly
collected, and burdensome to participants to collect longitudinally. In this
study, we found clear utility in using passive data collection through
smartwatches, including high adherence, the potential for remote mon-
itoring of symptoms such as fatigue, and insights into heterogeneous
symptom severity trajectories, particularly post-operatively. In summary,
this is the first study in endometriosis to report how objective longitudinal
assessment of PA, sleep, and diurnal rhythms through wrist-worn wearable
devices can provide insights into daily symptoms over and above PROMs.
We envisage thisworkwill contribute towards establishing a clinically useful
pathway to facilitate individualized objective insights into endometriosis
symptom trajectories, which could be embedded in future interventional or
large-scale digital phenotyping studies.

Methods
Study design
Participants were recruited from gynecology out-patient departments and
endometriosis service, including those onwaiting lists for surgery. Inclusion
criteria were defined as follows: being aged 16 or over, a diagnosis of
endometriosis on imaging (for deep or ovarian endometriosis only) or at
previous laparoscopy (all subtypes), no malignancy, and not currently
pregnant. The study design is illustrated in Fig. 9. Participants took part in
the study for up to three 4-6-week periods, which herein are referred to as
smartwatch cycles (the term is used only to refer to cycles of wearing the
smartwatch, not menstrual cycles). Smartwatch cycles could be completed
whenever convenient, generally over a maximum period of 12 months.
Participants were contacted by telephone by research nurses to schedule
subsequent smartwatch cycles.A subset of patientswhohadpreviously been
diagnosed with deep endometriosis and who planned to receive surgery to
excise the endometriosis, with or without additional total hysterectomy
±BSO, were recruited to the surgical “sub-study”, where they were asked to
complete the first smartwatch cycle at any point prior to surgery, the second
immediately following surgery, and the third approximately 4-6 months
following surgery. Other participants could potentially have surgery during
the study, but only those recruited to this “sub-study” and with deep or
ovarian endometriosis found at surgery were required to complete the
smartwatch cycles on this schedule and thus could be compared in further

Fig. 9 | Diagram of study design and analysis
summary. Included in the analysis summary is a
glossary of indicative actigraphy measures and daily
PROMs used in the analysis. For definitions of all
daily actigraphy measures used in the analysis see
Supplementary Data 1 (under the tab “Variable
Definitions”).
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analysis. Consistent timing of smartwatch cycles was not required for all
other participants for several reasons: to encourage ongoing participation by
allowing hospital visits at intervals convenient for participants, and because
no time-wise comparisonsweremade aside from the surgical sub-study (i.e.,
first smartwatch cycleswere not compared directly to otherfirst smartwatch
cycles, etc.).

During each smartwatch cycle, participants were solicited to complete
daily self-reports (PROMs) of symptoms and were asked to wear the
GENEActiv smartwatch. In the final week of each smartwatch cycle, par-
ticipants were also asked to complete QoL questionnaires. At baseline and
following each smartwatch cycle, details of anymedication changes, surgery,
menstruation, holiday, and other relevant information was collected by
research nurses. At the end of the third smartwatch cycle or at withdrawal,
participants were also asked to complete an acceptability questionnaire. All
self-reported data, medical history, and surgical data was collected using
REDCap electronic data capture tools hosted at the University of
Edinburgh36,37.

Patient-reported outcome measures (PROMs)
Participants submitted daily pain and fatigue scores using (i) two questions
assessing “average pain today” and “worst pain today” on a linear 10-point
numeric scale from 1 (“no pain”) to 10 (“worst pain imaginable”), and (ii)
the BFI. The BFI consists of nine items rated on an 11-point numeric scale,
where the first three items ask to rate fatigue “right now”, “usual level of
fatigue during the past 24 hours”, and “worst level of fatigue during the past
24 hours”38. The following six items assessed how, over the past 24 h, fatigue
interfered with the following: (1) general activity, (2) mood, (3) walking
ability, (4) normal work, (5) relations with other people, and (6) enjoyment
of life. Daily PROMs could be completed through a daily SMS, or email link,
or on paper, for inclusivity and adapting to participants’ preferences.

Information on demographics (ethnicity, education), medication use,
andmedical history, was collected by research nurses at baseline. After each
smartwatch cycle, participants additionally reported any issues wearing the
smartwatch, holidays, dates of menstruation, shift work, pregnancy, hor-
monal and pain medication taken, and any surgery or hospital visits.

Participants completed the EHP-30 questionnaire at baseline and in
the final week of each smartwatch cycle. The EHP-30 is a clinically validated
questionnaire to assess the impact of endometriosis on health-related
quality of life (HRQoL), consisting of 30 questions each on a Likert scale
from 0 (Never) to 4 (Always). The 30 questions are categorized into five
subdomains related to “pain”, “control andpowerlessness”, “social support”,
“emotional wellbeing”, and “self-image”39. The questionnaire requires
participants report on their symptoms retrospectively, “during the last 4
weeks”39. Other questionnaires were also completed along with the EHP-30
but were not analyzed in this study.

Smartwatch data
Consented participants were asked to wear the GENEActiv Original
smartwatch (https://activinsights.com/) for thedurationof each smartwatch
cycle. The GENEActiv watches were configured to collect tri-axial accel-
eration data at 10 Hz (which allows for a data collection period of at least
30 days on a single charge), which we have shown in previous work is fully
sufficient for day-to-day PA and sleep assessments17. Collecting data long-
itudinally (in the actigraphy setting this is often taken to refer to >2-3weeks)
is particularly useful to quantify diurnal rhythms (see below for details):
many actigraphy studies are limited to only collecting data for a single week,
which severely limits the extent of the information that canbe extracted.The
watches captured a dynamic range of ±8 g, where g are the units of accel-
eration (equal to acceleration due to gravity) with a resolution of 12 bit
(3.9mg). In addition, thewatches incorporate a sensor for ambient light ona
range of 0–3000 lux with resolution of 5 lux, and a temperature sensor on a
range of 0-60 degrees Celsius with resolution of 0.25 degrees.

Adherence analysis. To compute the average adherence of participants
for both smartwatches and daily PROMs, smartwatch cycles with valid

smartwatch data or with more than one recorded daily PROM were
included. Thus, adherence for participants that dropped out after the first
smartwatch cycle, for instance, would only be computed for that first
smartwatch cycle. To account for the bias due to participants that did not
participate in all three smartwatch cycles, we also compared adherence
between the dropout and non-dropout groups (i.e., also computing
adherence per smartwatch cycle for those participants that completed all
three smartwatch cycles).

Processing of actigraphy data
To process the raw actigraphy data we used the R-package GGIR (version
3.0.6, see Supplementary Table 2 for the exact configuration parameters
used). GGIR provides open-access tools for device calibration, non-wear
and sleep detection, and extraction of a large range of sleep and PA
measures40. Additionally, we processed the raw data using a further open-
source approach with the MATLAB Actigraphy Toolbox developed in
house and then implemented in R, which we have reported on in previous
work41.

Raw actigraphy data must first be calibrated prior to any further
processing, as each individual tri-axial accelerometer has device-
specific offsets and therefore outputs must be aligned. For data pro-
cessed using GGIR, the autocalibration process built into the package
was used as detailed in van Hees et al.42, relying on periods of non-wear
to take local gravity into account. For data processed independently of
GGIR, outputs were calibrated using the offsets stored in the device by
the manufacturer using the device-specific GENEARead package
(version 2.0.10).

To detect periods where the device was not worn (non-wear), GGIR
utilizes rolling 15-min intervals centered (centered in a 60-min interval to
take into account the periods before and after) and identifies acceleration
below a specific threshold within that interval43. However, we found fre-
quent misdetection of non-wear using this method, and thus we also
adapted an established non-wear detection method that incorporates the
temperature sensor readings,which canprovide clear indicationofwhen the
device is worn44. For the endometriosis participants in this study, classifi-
cation of non-wear periods indicated that adapted temperature thresholds
were needed. To detect periods of non-wear periods in the actigraphy data,
we adapted a previous non-wear detection algorithm by Zhou et al. that
utilises the temperature sensor incorporated into theGENEActivwatches in
addition to acceleration data44. The Zhou et al. method uses a threshold
based on the standard deviation of acceleration values as well as a tem-
perature threshold within a rolling window.Here, we first computed rolling
averages of temperature across 5-minute windows (Tsmooth), and then
detected periods of at least 90minutes where Tsmooth was lower than a
chosen threshold T0 or the change in Tsmooth from the previous minute was
lower than -0.5 °C. Of those periods, those where the rate of change accel-
eration movement (ROCAM) (see below, paragraph on acceleration sum-
marymeasures) was below 0.025were set as non-wear, and if two non-wear
periods had less than 15min in between, this period was also designated as
non-wear. T0 was chosen as either 26 degrees Celsius or the 5

th percentile of
temperature readings, whichever was larger.

Detecting non-wear periods of at least 90minwas first performed for a
more accurate assessment of the average temperature when the smartwatch
wasworn. Subsequently, to detect non-wear periods between15and90min,
a new temperature threshold T1 was then chosen as one standard deviation
below the mean temperature (up to a maximum temperature of 24 degrees
Celsius) after excluding periods already designated as non-wear. If the 5th

percentile of all temperature readings was larger than T1, then this tem-
perature was used instead, and if the smartwatch was worn for fewer than 3
full days after the first iteration, T1 was set to 24 degrees Celsius. The same
thresholding approachwas used as described for long non-wear periods but
followedbyafilteringmethodwhere only short non-wearperiodswere kept,
where thefirst 5 minutes of the intervalwas at least 2 degrees higher than the
final 5minutes, as within shorter non-wear periods it is typical to see a
sudden drop in temperature. This non-wear detection algorithmwas found
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to be accurate for the cohort in our study, as each participant’s data was
visually assessed following non-wear classification.

The sleep detection method incorporated into GGIR was primarily
used in this study, as described in ref. 45, which detects periods of timewhen
changes in the arm angle are below a threshold of 5 degrees over at least
5minutes (“sustained inactivity”). As no self-reported sleep logs were col-
lected in this study, further processing was used to detect the most likely
sleep period time (SPT) window using a heuristic algorithm detailed in van
Hees et al.46. Subsequently, periods ofwake during the sleep period (WASO)
were computed as periods not detected as sustained inactivity within the
SPT-window. However, many sleep detection methods, including that by
van Hees et al.45,46, were designed to work well primarily in healthy indivi-
duals, and although some work has been undertaken to explore accuracy in
cohorts with sleep disorders47 (e.g., van Hees et al.45 validated their method
against polysomnography fromcohortswith sleepdisorders), it is unknown
how well these algorithms perform in free-living contexts for individuals
with various conditions that may affect sleep such as in endometriosis. To
provide a comparator to GGIR-based sleep detection, we also used the sleep
detection method presented in Tsanas et al.41 that was developed and vali-
dated both for healthy controls and people with post-traumatic stress dis-
order where the hallmark symptoms include frequent sleep disturbances.
The method by Tsanas et al. utilizes thresholds based around measures of
acceleration and ambient light collected by the devices, and crucially can
allow for the detection ofmultiple sleep periodswhich is relevant for cohorts
with severely disturbed sleep.We remark that although that sleep detection
algorithm was not validated against polysomnography data, it was
demonstrated to match well self-reported sleep onset and offset times in
participants’ sleep diaries.

After observation of sleep detection results in specific participants in
this study cohort, we also decided to detect periods of ‘low variation’ using a
similarmethod to sleep detection byTsanas et al., with low variationdefined
using the average of successive differences of each axis (the threshold was
chosen using visualization of nights of sleep). Measures relating to low-
variation periods, such as overall duration and percentage duration within
the SPT period, were subsequently extracted.

Similarly to sleep detection, to extract daily measures of PA and
diurnal rhythms, we utilized both GGIR and additional approaches as
presented in Tsanas et al. 41. A typical pre-processing step towards char-
acterizing actigraphy data is using an acceleration summary measure to
project the three-dimensional acceleration data onto a vector. Van Hees
et al. used the Euclidean Norm Minus One (ENMO) acceleration sum-
mary measure (with negative values rounded to zero, also referred to as
ENMONZ) for the actigraphymeasures computed usingGGIR48, whereas
all additionalmeasures utilized the recently proposedROCAM,which has
been shown to outperform alternative widely used acceleration summary
measures in terms of mapping onto PA levels and sleep17. Using the
resulting vectors from the application of the acceleration summary
measures,we subsequently computed actigraphymeasures to characterize
the magnitude and patterns of movement per day, for instance the most
active 10 h (M10) or least active five hours (L5) of the day, or the relative
amplitude of most and least active hours (RA). Additionally, using GGIR
we extracted PA measures such as inactivity and light, moderate, or vig-
orous PA, as well as moderate-to-vigorous PA (MVPA). PA intensity
measures were extracted using default cut-points for the GGIR algorithm.
Although these cut-points were similar to those established by previous
studies using GENEActiv devices on the non-dominant wrist49, partici-
pants in our study were allowed to choose the wrist placement of the
smartwatch. Although these differences could introduce bias to com-
parisons between participants, it would not generally influence the find-
ings within participants (only two participants recorded changing wrists
partway through the study). A full list of extracted actigraphy measures
using bothGGIR and other approaches is detailed in SupplementaryData
1 (we clarify that the source indicated therein refers to the implementation
we used in this study rather than reflectingwhere each actigraphymeasure
was first proposed).

Additionally, to quantify sleep and circadian rhythms, we utilized a
measure of sleep regularity, the sleep regularity index (SRI), proposed by
Philipps et al.50 andmodified to apply today-pairs as implemented inGGIR.
TheSRImeasure compares the sleep statewithin30-s time-points 24 hapart
(e.g., day k-1 and day k as applied for day-pairs as in GGIR). The resulting
value ranges from -100 to 100, with 100 representing perfectly aligned sleep
periods50,51. Lastly, the temperature sensors incorporated into the devices
used were also used to extract further daily measures relating to diurnal
rhythms, as proposed in our work previously19. Daily actigraphy measures
were ignored if the smartwatch was worn for less than 75% of the 24-h
period either starting at 12am (for measures assessing daytime sleep/PA or
across the full 24 h) or at 12 pm (for sleepmeasures). Sleep regularity values
were also only included if the GGIR-assessed validity (using non-wear
detection) was greater than 80%.

Processing of PROMs
For the daily PROMs reporting pain (average and worst) and fatigue (BFI),
both the individual question scores and global scoreswereused.To compute
the global scores, we used themean of the two pain scores (global pain), and
similarly for the BFI we took the mean of the scores on the nine questions
(global fatigue)38. For the EHP-30 questionnaire, which was evaluated near/
at the end of each smartwatch cycle, we examined the scores from the
subdomains (pain_ehp30, control_ehp30, emotion_ehp30, social_ehp30,
self_ehp30) in addition to the total of all 30 questions (ehp30_overall)52 after
normalizing to a scale of 0 to 100.

The PROMs in this study were collected using REDCap and the col-
lected data was processed in R after being exported. Ad-hoc corrections to
the raw data (e.g., where PROMdates were clearlymistakenly entered) were
made prior to any further processing. Daily self-reports completed between
5 pm on the associated date and 5 am the following morning were con-
sideredwithin the “correct” time-window for thepurposes of de-duplicating
entries, where if duplicate entries were present, only the entry within the
correct timeframe, or if unavailable then within a “feasible” timeframe
(anytime on the associated day or following day) was included.

Summarizing daily actigraphy measures and PROMs
To compare the daily PROMs and daily actigraphy measures with end-of-
cycle questionnaires andparticipant-level data (e.g., BMI, age, diagnosis),we
computed summarymeasures of the day-level data across each smartwatch
cycle and across individuals. To limit bias from participants or smartwatch
cycleswith large amounts ofmissingdata,when computingmeasures across
participants, we included only participants with at least 10 non-missing
values to compute the mean, and at least 20 values to compute all other
summary measures, where “missing” means either no PROM was sub-
mitted for that day or the 24-h wear-time was below 75%. Similarly, when
computing across smartwatch cycles, we included only smartwatch cycles
with fewer than 10 non-missing values to compute the mean, and 20 values
to compute all other summary measures.

We then extracted the mean value, standard deviation, skewness,
interquartile range (IQR), the upper quartile (75th percentile) and lower
quartile (25th percentile) using actigraphy data only, and the mean of upper
and lower quartile values (i.e., highest and lowest 25% of daily values,
respectively) using both self-report and actigraphy data. For PROMs, the
mean of the upper and lower quartile values was used to better summarize
the ordinal scales with bounded and discrete values (e.g., with only 10
values).

To compute further variability measures across smartwatch cycles, we
first imputed any remaining missing values using linear interpolation
(through the imputeTS package in R) with amaximumgap of threemissing
values, such that ifmore than 3 consecutive values weremissing, theywould
not be imputed. This imputation was performed before computing varia-
bility measures that utilize consecutive daily values, as missing data may
introduce unrealistic ‘jumps’ between values that are falsely treated as
consecutive days. On the imputed data (with remaining missing values
removed), we then computed the Teager-Kaiser energy operator (TKEO)
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and and root mean squared successive differences (RMSSD), as have been
used in other studies53, which are defined in Eq. (1) and Eq. (2), respectively:

TKEO ¼ 1
N

XN�1

i¼2

ðxi2 � xi�1xiþ1Þ ð1Þ

RMSSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1

i¼1

ðxiþ1 � xiÞ2
vuut ð2Þ

Statistical associations
Repeatedmeasures correlations were used to examine pairwise associations
between daily self-reports and the daily actigraphy measures, using
R-package rmcorr54 (the package also computes p-values using the F-ratio).
This approach allowed for capturingonly thewithin-subject variation rather
than between-subject variation. Statistical associations were interpreted as
“statistically significant” at a threshold of p < 0.05. Intra-person correlations
were defined by computing Pearson correlations using each individual
participant’s data separately. Partial correlations were also computed using
Pearson or Spearman correlations using the R-package ppcor55. Partial
correlations were used to control for the effect of other variables (e.g.,
possible confounding factors) when examining the association between two
variables.To fully investigate associationsbetweendaily actigraphyvariables
and daily PROMs, we used linear mixed-effects models to further account
for potential autocorrelationwithin a participant’s repeatedmeasures (given
thatmeasures on days close to each othermay bemore strongly correlated).
Specifically, wemodeled the daily PROMs (“fatigue” is the global BFI score,
and “pain” is the global pain score) according to Eq. (3) and Eq. (4):

Fatiguei;j ¼ β0 þ β1 � paini;j þ β2 �M10i;j þ β3 �M10i�1;j

þβ4 � SleepDuri;j þ β5 � SleepDuri�1;j þ β6 �WASOi;j

þβ7 �WASOi�1;j þ β8 � SleepRegi;j þ uj þ εi;j;

ð3Þ

Paini;j ¼ β0 þ β1 � fatiguei;j þ β2 �M10i;j þ β3 �M10i�1;j

þβ4 � SleepDuri;j þ β5 � SleepDuri�1;j þ β6 �WASOi;j

þβ7 �WASOi�1;j þ β8 � SleepRegi;j þ uj þ εi;j;

ð4Þ

where Fatiguei;j represents the global BFI score on day i from participant j,
the β coefficients represent the fixed effects, uj represents the random effect
of participant j, and εi;j represents the residual error. Similarly, Paini;j refers
to the global pain score onday i fromparticipant j. Additionally,we imposed
an autoregressive process (order 1) as the correlation structure between
residual errors for repeatedmeasures from an individual participant, where
distance between two errors was determined by the day of enrollment in the
study (such that adjacent repeated measures are considered more strongly
correlated). We refer to Gałecki et al.56 for further clarification of linear
mixed-effects models with specific correlation structures. The models were
implemented in R using package nlme (version 3.1-166). Only a small
indicative set of actigraphy variables was chosen to avoid collinearity and
illustrate associations between the main constructs: sleep, physical activity,
and diurnal rhythms. All variables were standardized prior tomodel fitting.

When computing associations, days where any of the variables of
interest (i.e., two variables in pairwise associations and all relevant variables
for partial correlations and linear mixed-effects models) were missing were
excluded. Spearman correlations were used to examine pairwise associa-
tions between measures summarized at a smartwatch cycle or participant
level, and thus all correlation coefficients presented throughout as ‘R’ refer to
the Spearman coefficient unless indicated otherwise. Correlations were
regarded as statistically strong when jRj>0:3, which is common in clinical
applications31. Comparisons between subgroups, such as by treatment
received, were visually examined using boxplots or distribution plots; due to

the limited sample size and exploratory nature of the study, these visuali-
zation approaches were used to provide an overview of potential group
differences (including outliers) which should be tentatively interpreted.

As an exploratory study assessing statistical associations with a large
number of actigraphy measures (many of which were highly correlated)
with no pre-specified analysis, no adjustment for multiple comparisons
was applied as this would likely result in overlooking many potential key
statistical associations. Thus, in this study we primarily focused on the
statistical strength of associations (rather than statistical significance) as
an indication of potential relationships that should be interpreted tenta-
tively. Assumptions relating to the independence of samples were
addressed by usingmethods that account for repeatedmeasures, andnon-
parametric alternatives (Spearman correlation coefficient) were used
where appropriate. Although Pearson correlations were used to compute
intra-person correlations, only point estimates were used and only com-
puted where enough valid entries ( > 20) were present; these correlations
were used to illustrate variation in the data that was further investigated in
mixed-effects models that accounted for autocorrelation in repeated
measures.

Ethical approval
The data in this study was collected as part of the EndoTECH study
‘Understanding the symptoms of endometriosis using Smartwatch tech-
nology’ performed inNHS Lothian, Scotland, UK, andwas approved by the
relevant research ethics committee (West of Scotland REC 5, ref. 21/WS/
0092). Informed consent to participate in the study were obtained from all
participants. The research has been performed in accordance with the
Declaration of Helsinki.

Data Availability
The patient data from this study are not available from public data repo-
sitories. Non-identified datamay be shared on reasonable request for use in
studies investigating women’s health conditions, subject to ethical approval.
Requests for data sharing should be made to Andrew.Horne@ed.ac.uk.

Code availability
All code was developed using R (version 4.4.0). We employed common R
libraries for processing, analysis, and visualisation (e.g., data.table, ggplot2,
plyr, dplyr) as well as packages specific for actigraphy processing and time-
series analysis as specified in the Methods section. Code for the pre-
processing of the raw actigraphy data, extraction of diurnal rhythm mea-
sures, pre-processing of PROMs, and the full analysis can be found at
https://github.com/katherineedgley/endometriosis-symptom-tracking.
The code for sleep detection as adapted from Tsanas et al.41 can be made
available to bona fide researchers upon reasonable request and subject to
license permitting free use for academic research.
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