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High-precision information retrieval for
rapid clinical guideline updates

Check for updates

Florian Borchert1 , Paul Wullenweber1, Annika Oeser2, Nina Kreuzberger2, Torsten Karge3,4,
Thomas Langer5, Nicole Skoetz2, Lothar H. Wieler1,6, Matthieu-P. Schapranow1 & Bert Arnrich1

Delays in translating new medical evidence into clinical practice hinder patient access to the best
available treatments. Our data reveals an average delay of nine years from the initiation of human
research to its adoption in clinical guidelines, with 1.7–3.0 years lost between trial publication and
guideline updates. A substantial part of these delays stems from slow, manual processes in updating
clinical guidelines, which rely on time-intensive evidence synthesis workflows. The Next Generation
Evidence (NGE) system addresses this challenge by harnessing state-of-the-art biomedical Natural
LanguageProcessing (NLP)methods. This novel system integrates diverse evidence sources, suchas
clinical trial reports and digital guidelines, enabling automated, data-driven analyses of the time it
takes for research findings to inform clinical practice. Moreover, the NGE system provides precision-
focused literature search filters tailored specifically for guideline maintenance. In benchmarking
against two German oncology guidelines, these filters demonstrate exceptional precision in
identifying pivotal publications for guideline updates.

The past years have witnessed remarkable advances in biomedical Natural
Language Processing (NLP), significantly enhancing the ability to extract
meaningful insights from unstructured sources of medical evidence,
including clinical trial reports and clinical guidelines1,2. While the NLP
community has extensively studied primary research publications in the
past, the potentials of applying NLP to international clinical guidelines
remain under-explored. Recent innovations in multilingual and domain-
specific medical language models have greatly improved the viability of
using data from world-wide clinical guidelines in software systems and
support the timely translation of clinical research into actionable recom-
mendations for healthcare decision-making3,4.

Today, the translation of new evidence into clinical practice is hindered
by multiple delays, as highlighted in various case studies across medical
fields that manually reviewed publications5–7. As a prominent example,
Hanney et al.8 performed an analysis of time lags across 11 calibrationpoints
in clinical research, finding widely varying time lags from discovery (basic
research) to implementation, ranging from 18 years (early interventions for
schizophrenia) to 54 years (smoking reduction).

A substantial factor contributing to these delays is the inherent com-
plexity of clinical trials, which require extensive time for ensuring safety,
efficacy, and robust data collection9. Yet, the volume of published research
results in the primary medical literature is still so large, that another

bottleneck becomes evidence synthesis, i.e., a summary of the body of evi-
dencewith a critical appraisal of its quality and impact for clinical practice10.
A search in PUBMED (using the query “Clinical Trial”[Publication Type])
reveals that approximately onemillion articles dealingwith clinical trials are
indexed in MEDLINE as of March 2025, more than 30 thousand of them have
been added in 2024 alone (about 82 per day). In effect, incorporating all
available evidence into evidence synthesis workflows for guideline devel-
opment becomes increasingly time-consuming.

In this work, we focus on the particular delay induced by current update
protocols for clinical guidelines, i.e., the time it takes to incorporate suc-
cessfully published research results into guideline recommendations. These
protocols vary across guideline groups, but they usually involve a formulation
of key questions using the Population–Intervention–Comparison–Outcome
(PICO) framework, a systematic literature search, data extraction, assessment
of the robustness of the underlying evidence, aswell as procedures to arrive at
recommendations through evidence-to-decision (EtD) frameworks like
GRADE and structured consensus-finding processes11–13. For literature
retrieval in these projects, most guideline developers follow similar approa-
ches, like Boolean searches in literature databases such as PUBMED

14. These
searches tend to aim for near-perfect recall, while suffering from notoriously
low levels of precision, i.e., most search results are irrelevant15. Common
search queries may return thousands of results, which need to be reviewed
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manually by human experts through screening of title, abstract, and full-
text16. Although there is an growing body of research attempting to automate
parts of the process17,18, many of these research prototypes are not yet widely
adopted in practice due to their lack of validation. Recently, living guidelines
havegained attention, aiming for continuousupdates at the level of individual
recommendations as new evidence emerges19. A natural implementation of
such a surveillance strategy would be the regular application of an existing
search query to the stream of newly published literature20. However, this
would not alter the overall screening burden incurred by low retrieval pre-
cision of existing search strategies.

Assuming that comprehensive (manual or semi-automated) literature
reviews within the scope of a guideline topic are performed at regular
intervals, all relevant publications should be covered by such a review at
some point in time. Thus, a complementary search strategy aiming for high
precision instead of perfect recall can focus on signal publications, i.e.,
publications indicating new evidence likely to significantly impact guideline
recommendations, thus warranting a timely investigation by guideline
developers. Shekelle et al.21 describe such an approach, based on “limited
literature searches and expert opinion” in the context of systematic reviews.
The American Society of Clinical Oncology (ASCO), has adopted a similar
strategy for updating oncology guidelines, relying on “targeted literature
searching and the expertise of ASCO guideline panel members”22. For
example,ASCOhas recently issued a rapidupdateof thenon-small-cell lung
cancer guideline based on the results of a single phase III randomized
controlled trial (RCT) trial23,24.

This work presents a data-driven approach to address the chal-
lenges of intermittent clinical guideline updates, supported by an
automated, NLP-enabled integration of diverse sources of primary and
synthesized evidence.We propose theNext Generation Evidence (NGE)
system, that relies on various innovative NLP components for struc-
tured information extraction from clinical trial reports, and clinical
guidelines, developed in the context of the GGPONC and XMEN

projects25–27. Our harmonized database ensures semantic interoper-
ability by mapping all relevant information from primary and syn-
thesized evidence in different languages to Concept Unique Identifiers
(CUIs) from the Unified Medical Language System (UMLS)28.

Moreover, we provide a user-friendly web application to interact with
the database, shown in Figs. 1 and 2, which is also available online: https://
we.analyzegenomes.com/nge/. We believe that our system can be useful for
numerous stakeholders. Amongst others, guideline developers can use it (a)
to implement targeted signal search strategies for clinical trial publications,
e.g., for entirely new treatment options, (b) to quality-check the results of
traditional searches, but also (c) to support existing (consensus-based)
recommendations with more solid evidence. Furthermore, our tool can be
used by guideline users to identify newly published evidence that might
affect the interpretation of current recommendations prior to a guideline
update29. While many existing systems, including the TRIP database30 and
various research prototypes31–33, offer advanced search options, the NGE
system is, to the best of our knowledge, the first to enable contextualized
searches with respect to current clinical practice by prioritizing interven-
tions not yet included in guidelines.

We evaluate our systemexperimentally as follows. First, we performan
analysis across the integrated data sources with the goal to automatically
estimate the time it takes to translate research on new treatments for cancer
patients from the first clinical trials with human subjects to recommenda-
tions inoncologyguidelines. Second,we showhow the systemcanbeused to
identify signal publications, which might be relevant for prospective
guideline updates. To avoid an unreasonable increase in the screening
workload induced by existing search strategies (which our system com-
plements rather than replaces), our approach aims for maximal precision,
i.e., any retrieved publication should be relevant for guideline developers
and users with high probability. Two recent updates to German oncology
guidelines are used for evaluating retrieval performance in a real-world
setting: (1) oesophageal cancer and (2)Hodgkin lymphoma. The data from
these updates enables an assessment of precision and recall in comparison
with established guideline update protocols.

Results
In this section, we give an overview of the data integrated within the NGE
database. Furthermore, we show how this data is used to a) estimate time
lags in research translation and to b) retrieve signal publications for
guideline updates.

Fig. 1 | Timeline view of theNGE browser.The timeline view groups registered clinical trials from CLINICALTRIALS.GOV in terms of their start date, result publication data, and
potential PUBMED articles referencing this data on a horizontal timeline. Update intervals for the corresponding guideline are included as vertical lines.
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The NGE database
Table 1 shows the total number of documents for each data source in the
NGE database, as well as the total and unique numbers of population
and intervention concepts. The seed UMLS CUIs for the 34 guideline
topics are expanded to more than 17K population CUIs (please refer to
the Methods section for details on the concept mapping). Although
most concepts are unique, there is a certain degree of overlap in the
subtrees descending from the root population concepts (the UMLS
hierarchy allows a concept to have multiple direct ancestors). As an
example, cancers of the oesophagogastric junction are partially covered
by both the guideline for gastric cancer and the guideline for oesopha-
geal cancer. The statistics also indicate that RCT reports and registered
trials cover a much higher number of populations and interventions
than guidelines and CIVIC because the integrated clinical trial data is not
limited to cancer patients. The relative number of unique CUIs in
PUBMED is much lower: the most frequently occurring CUIs belong to
very general concepts, e.g., “patient”, “women”, “adult”, “neoplasm”
(populations), or “treatment”, “placebo”, “administration”, “anti-
neoplastic agent” (interventions). The numbers of unique concepts in
CLINICALTRIALS.GOV and CIVIC are particularly low; presumably, because
codes have been assigned by human curators based on controlled
vocabularies rather than being automatically extracted from natural
language text.

Time lags in research translation
To evaluate time lags in translation from primary research to clinical
guideline recommendations, we consider as input data all updates to the
German Guideline Program in Oncology (GGPO) guidelines for the years
2022–2024. 12 guidelines (out of 34 maintained by the GGPO) received an
update during the considered time frame, and a few have been updated
multiple times (15 updates in total, including minor updates).

In total, 22 new interventions across oncology guideline updates could
be identified. All of these were manually validated as referring to new
interventions in the focus of the respective guidelineupdate.Adetailed list of
interventions and corresponding guideline updates is provided in Supple-
mentaryTable 1. Figure 3 shows aboxplot of thedistributionof time lags for
all these interventions. The average time from the start of the first human
trial to inclusion in a guideline recommendation is approximately nine
years, which aligns with an estimate of eight to ten years by Subbiah9. As
some guideline updates are based on results of phase I/II clinical trials,
interventionswith andwithout phase III trials are shown separately.Whena
guideline recommendation is based on the results of a phase I or II clinical
trial, it takes an average of three years from publication to guideline
recommendation. In contrast, this time span is reduced to 1.7 years for
recommendations based on results of phase III clinical trials; presumably,
because results from a large phase III trial might be a strong motivation for
updating a guideline in the first place.

Fig. 2 | User interface for searching the NGE database for trials by population in
combination with various filtering criteria. For all results, the system lists the
identifier (PUBMED or CLINICALTRIALS.GOV ID), publication date, phase (I–IV), and title.
For PUBMED results, bibliographic information (authors and journals) is included.
Extracted interventions are color-coded, and distinguishablewith icons and tooltips,

based on their occurrence in the guideline corresponding to the selected publication:
black ones (outlined checkbox icon) are already mentioned (anywhere) in the
guideline, green ones (filled checkbox) are mentioned within recommendations, red
ones (exclamation mark) are mentioned nowhere. The results can also be down-
loaded as an Excel file for further analysis.

https://doi.org/10.1038/s41746-025-01648-5 Article

npj Digital Medicine |           (2025) 8:227 3

www.nature.com/npjdigitalmed


The standard deviation on all reported values is relatively large. The
most visible outlier refers to one case, when a clinical guideline included
results of a trial almost12 years after its publication.This contrastswith a few
cases where a recommendation has been made even before the results of an
ongoing clinical trial were published (negative values on the y-axis).
Moreover, the visualized time frames refer to publication of results. Hence,
phase III trials are frequently started before phase I/II results are available in
the literature, potentially owing to the (well-known) delays in academic
publishing. A qualitative description of example data points from Fig. 3 is
provided in Supplementary Figs. 1–4.

Retrieval of signal publications
To reduce thedelay betweenpublicationof clinical trial results and inclusion
in guidelines, theNGE systemcanbeused to implement a targeted literature
search approach. Adding increasingly strict filter combinations allows users
to balance between desired levels of precision and recall (please refer to the
Methods section for details on the available filters). The utility of the NGE
system for targeted literature searches is evaluated using two datasets of
published evidence, screened by human experts for recent guideline
updates: (a) the recently completed update of the German oesophageal
cancerguideline (fromversion3.1 toversion4.0) and (b) the ongoingupdate
of theHodgkin lymphoma guideline (from version 3.2 to version 4.0). These
datasets cover the inclusion and exclusion decisions during literature
screening andwere generously providedby the respective guidelineworking
groups as an export from their currently used literature management tools.
Details on these datasets are shown in Table 2, with an in-depth description
provided in theMethods section. All results presented in the following refer
to the retrieval of individual PUBMED articles, as our evaluation datasets
contain only article-level screening decisions.

There are instances of results retrieved by theNGE system,whichwere
not included in the initial screening at all. Such references were sent to the
two groups that conducted the literature screening, asking them for addi-
tional feedback on the relevance of these results. However, only RCTs after
phase II were subject to manual review to limit the workload because these
were supposedly more likely to be relevant. For these references, human
subject-matter experts deemed nine out of 15 results (60.0%) potentially
relevant for oesophageal cancer and six out of 17 results (35.3%) for
Hodgkin lymphoma.The assigned inclusion and exclusion reasons for these
references are shown in Table 3.

Fig. 3 | Box plot showing the distribution of time lags between different points in
the evidence translation process across all newly recommended interventions
(n= 22). The horizontal line within each box represents the median, the upper
triangle the mean. TheOverall time span distribution (leftmost plot) covers the time
from the start date of thefirst trial in humans until recommendation in the respective
guideline, with a mean value of 9.05 years, and a maximum of 20.8 years. The
remaining boxplots show subsets of this timeline.

Table 2 | Constructing two evaluation datasets for guideline
updates through different steps of the literature screening
process (starting after title–abstract screening for Hodgkin
lymphoma)

(a) Oesophageal
Cancer

(b) Hodgkin
Lymphoma

MinimumPublicationDate 09/01/2019 01/01/2016

Search Date 03/04/2022 06/01/2023

Screened 3147 –

− Duplicates 139 –

= Unique references 3008 –

− title–abstract excluded 2741 –

= title–abstract included 267 168

− Full-text excluded 195 105

+ Excluded, but already in
guideline

9 2

= Included (Evaluation) 81 65

⌞ RCTs included 26 25

+ Manual review 9 6

+ Retrieved, already in
guideline

– 9

= RCTs included (final) 35 40

⌞ Other included 55 40

⌞ Excluded (Evaluation) 2927 103

⌞ RCTs excluded 290 24

+ Manual review 6 11

= RCTs excluded (final) 296 35

⌞ Other excluded 2637 79

The lines marked in bold are used as the ground-truth for evaluating RCT retrieval for guideline
updates. For instance, the recall of a searchquery ismaximizedwhen it can retrieve all of the 35RCT
publications that are considered for the oesophagael cancer guideline update.

Table 1 | Overview of harmonized information for all integrated data sources in the NGE database

Data Source Guidelines (GGPO CMS) PUBMED (RCT Reports) CLINICALTRIALS.GOV (Registered Trials) CIVIC (POKB)

Date yyyy-mm-dd 2024-06-18 2024-07-17 2024-06-30 2024-07-17

Documents 34 828,356 499,882 10,745

Populations Topics Population Condition Pheno./ Dis.

Total 17,530 7,326,622 3,404,118 15,919

Unique CUIs 12,005 52,568 4466 545

Interventions Drugs/ Proc. Interventions Interventions Therapies

Total 129,119 5,631,219 1,543,754 6273

Unique CUIs 15,852 68,738 3994 418

Currently, the database includes (1) digital clinical guidelines extracted from the content management system (CMS) of the German Guideline Program in Oncology (GGPO), (2) abstracts andmetadata of
randomized controlled trials (RCTs) from PUBMED, (3) registered clinical trials fromCLINICALTRIALS.GOV, aswell as (4) curated assertions fromCIVIC, as a precision oncology knowledge base (POKB) for the clinical
classification of cancer variants. As the data in guidelines and RCT reports is reported as natural language text, we apply various NLP components for extracting structured information (described in the
Methods section). All results refer to data imported on July 17th, 2024, which was used for our evaluation. Data in the production system differs as it is regularly updated.
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For Hodgkin lymphoma, four out of six relevant references (66.7%)
were actually part of the (temporally overlapping) literature search for the
previous guideline version, but ultimately not considered by the guideline
expert panel. Two references were erroneously excluded during
title–abstract screening, the data of which is missing from the evaluation
dataset for Hodgkin lymphoma. Regarding the oesophageal cancer guide-
line, where complete data is available, six references were not found ori-
ginally, as the investigated drug was not explicitly part of the PICO
(Boolean) search string. Regarding irrelevant results, the most common
reason was a mismatch between the population and the scope of the
guideline or the particular questions for the update. For instance, three
results for Hodgkin lymphoma concerned children, which are out of scope
of the guideline. Moreover, some results were indexed as RCTs in PUBMED,
but were, in fact, other publication types, e.g., secondary analysis of RCT
data. The references that underwent amanual reviewwere added to thefinal
evaluation dataset as shown in Table 2.

Using thisfinal evaluation dataset with comprehensive information on
the relevance of retrieved trials, the impact of adding increasingly strict
filters supported by the NGE data can be assessed. The results are shown in
Table 4. First, all retrieved results afterfiltering for clinical phases after phase
II can be classified as either true positives (TP) or false positives (FP), i.e.,
there are no “?” entries after the second row for each data subset. Second,
high levels of precision canbe achieved by adding increasingly strictfiltering

criteria. Most gains in precision over the baseline (just filtering by popula-
tions) can already be achieved by selecting RCTs with phase III or later,
resulting in +18pp. for oesophageal cancer and +13pp. for Hodgkin lym-
phoma. Excluding children does not affect the result set for oesophageal
cancer, but improves precision by another 6pp. for Hodgkin lymphoma.

Adding a filter to retain only significant results achieves perfect pre-
cision on theHodgkin lymphoma dataset: all results retrieved by the system
are relevant for the guideline update, although with an overall recall of only
25.0%. For oesophageal cancer, additional gains can be obtained by filtering
for trials with at least one known intervention, i.e., one that is mentioned in
the guideline, or at least one unknown intervention. Interestingly, the best
precision for oesophageal cancer is achieved when considering only clinical
trials, which have at least one known intervention.

Discussion
A key strength of the system is its demonstration of the utility of machine-
readable and semantically interoperable guidelines, showcased through two
use cases: time lag analysis and evidence retrieval for guideline updates.

The analysis of time lags has shownhow important the right time point
for updating a guideline can be. If not considered carefully, key results may
be missed out in an update cycle. Building on that finding, we investigated
how the NGE system can be used to retrieve potentially practice-changing
signal publications at any given point during a guideline’s lifetime.

Our evaluation suggests that targeted literature searches can be
implemented through increasingly precision-oriented filtering criteria.
Combining structured metadata, extracted population concepts, and
information about the trial phase already provides comparatively high levels
of precision. In both evaluation scenarios, precision could be further
increased by classifying publications according to the statistical significance
of their results. Including guideline context, i.e., which interventions are
already recommended, can increase precision even further.

The relatively high number of results that were neither marked as
included nor excluded in the provided screening dataset is rather surprising.
Thisfinding suggests the utility of ourNGE system for quality-control in the
systematic review processes, which has the goal of maximizing recall while
ensuring reproducibility. This investigation should be repeated pro-
spectively with a larger set of guidelines. For instance, if the system finds

Table 3 | Inclusion and exclusion reasons for manually
reviewed references

Manual
Review

(a) Oesophageal
Cancer

(15) (b) Hodgkin
Lymphoma

(17)

Included Potentially relevant (3) Potentially relevant (6)

Drug not in PICO search (6)

Excluded Wrong population (1) Wrong population (5)

Wrong publication type (1) Wrong
publication type

(6)

Not in scope of update (4)

These correspond to the “Manual review” lines in Table 2.

Table 4 | Combination of different filters and impact on precision for the Hodgkin lymphoma and oesophageal cancer guideline
update

Search Queries Retr. ¬ Retr. Metrics

(a) Oesophageal Cancer Total TP ? FP TN FN Pr. Re. F1

All RCTs 209 31 32 146 150 4 0.18 0.89 0.29

⌞ Phase ≥ II 94 27 0 67 229 8 0.29 0.77 0.42

⌞ Phase ≥ III 55 20 0 35 261 15 0.36 0.57 0.44

⌞ Excl. children 55 20 0 35 261 15 0.36 0.57 0.44

⌞ Significant result 37 15 0 22 274 20 0.41 0.43 0.42

⌞ ∃ Known interv. 31 14 0 17 279 21 0.45 0.40 0.42

⌞ ∃ Unknown interv. 28 12 0 16 280 23 0.43 0.34 0.38

(b) Hodgkin Lymphoma

All RCTs 80 40 25 15 20 0 0.73 1.00 0.84

⌞ Phase ≥ II 45 32 0 13 22 8 0.71 0.80 0.75

⌞ Phase ≥ III 28 24 0 4 31 16 0.86 0.60 0.71

⌞ Excl. children 25 23 0 2 33 17 0.92 0.57 0.71

⌞ Significant result 10 10 0 0 35 30 1.00 0.25 0.40

⌞ ∃ Known interv. 10 10 0 0 35 30 1.00 0.25 0.40

⌞ ∃ Unknown interv. 10 10 0 0 35 30 1.00 0.25 0.40

There are no remaining results with unknown relevance (column “?”) for clinical trials after phase II.
Best values per column are highlighted in bold.
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results not included in the original screening set due to the nature of the
employed Boolean search string, this string can be adapted, e.g., to include
currently not covered interventions. However, it is also important to con-
sider the right comparison arm, which is often equivalent to recommended
clinical practice, as shown by the strong performance of the “known
intervention” filter in the evaluation for the oesophageal cancer.

Our database of semantically interoperable guidelines, adhering to
international terminology standards and classification systems, can support
a variety of use cases: besides retrieval of evidence for potentially new
recommendations, it can be used to retrieve evidence for existing, but
consensus-based recommendations, thereby improving a guideline’s
trustworthiness. Semantically interoperable metadata extracted from
guidelines can also become the basis of computer-interpretable guidelines34,
e.g., by semi-automatically populating standardized guideline representa-
tions, such as CPG-ON-FHIR35 or other formalisms, like data-driven decision
trees36,37. Such representations openup further applications in thedomainof
clinical decision support systems.Moreover, interoperable guidelines can be
integratedwith structured information fromcancer registries38 or other real-
world data; such integrations could not only improve guideline adoption in
clinical practice, but also inform the development of future guidelines.

The dataset used for retrieval evaluation represents a rather broad
notion of relevance: not all publications that are reviewed need to be con-
sidered as update signals, and not all users of the NGE system will be
interested in update signals alone.However, the results suggest that different
combinations of filters provided by the system can increase precision for
different user groups and their specific use-cases. Due to the nature of our
screening datasets, we performed a quantitative evaluation on the level of
individual articles. A more relaxed evaluation scenario might incorporate
articles that can be indirectly retrieved via references to registered clinical
trials, which our system also incorporates. The choice of guidelines used
during the evaluation of retrieval performance for update signals was
determined by limited data availability: only a few guidelines from our
partnerswere subject to anongoingupdatewhen the projectwas conducted,
and data on screened references were only available for a subset of those. To
assess the generalizability of our results, the targeted literature search should
be evaluated prospectively in future guideline updates.

Similarly, our assessment of time lags in was based on a comparatively
small sample of guideline updates (22new interventions), as only a relatively
brief time span for potential updates could be considered. As of now, no
historical guideline versions are available through the GGPO CMS, which
constrained the availability of data to those assembled after the first GGPONC
release in 202225. This small set of guidelines might not be fully repre-
sentativeof all update protocols encountered inpractice.Althoughwe found
an overall time span of eight to ten years, which is consistent with sugges-
tions from prior work, adding more data might provide a more reliable
estimate for individual time lags.

Our current web frontend serves as a research prototype for two
narrowlydefineduse cases, requiring further improvements and evaluations
of the user experience for clinical use, and a thorough investigation of its
usability using well-defined frameworks, such as the System Usability
Scale39. Beyond evidence synthesis, there are several procedural and orga-
nizational challenges in clinical guideline development13,40. Delays arise
from the iterative steps required to identify and prioritize key clinical
(PICO) questions, conducting literature reviews, assessing the robustness of
the underlying evidence, and arriving at recommendations in more or less
structured ways, e.g., through the GRADE EtD framework11. Further
complexities arise from logistical aspects, e.g., team coordination, funding
constraints, managing conflicts of interest, approval processes by guideline
organizations, and quality control according to international standards such
as the AGREE II tool41. A more holistic evaluation of the impact of our system
should account for these factors and prospectively measure the actual
improvement in guideline responsiveness to new evidence.

The NGE system relies on a few keymetadata items for the retrieval of
clinical trials, which imposes certain limitations. For instance, the recall with
respect to the oesophageal cancer guideline update was lower than 100%, as

key population itemswere neither explicitlymentioned in the abstract of the
publication nor in its assigned MESH terms. This information might be
recovered from the full-text of the publication, which also reflects how
human experts screen literature for relevance. However, it needs to be
carefully evaluatedwhether our employedNLP components generalize well
from relatively homogeneous abstracts to more diverse full-text article
formats42. In prospective use, PUBMED results are retrievable only after
metadata for publication types is assigned. Although this process was
recently automated by theNational Library ofMedicine (NLM) through the
introduction of deep-learning based automated indexing using the MTIX
system, a subset of publications is still subject to (slower) manual curation
and quality-control43,44. In practice, guideline expert panels may also rely on
criteria for assessing relevancy that are different from the ones currently
incorporated in the system. These could include bibliographic metrics and
heuristics, like journal impact factors and authorship (e.g., well-known first
or last authors).

Currently, ourNGE system focuses on retrieving RCTs as the gold-
standard for interventional study design because we expect that results
of an individual RCT might have sufficient power to change the
recommended clinical practice. In practice, guideline updates are often
based on existing systematic reviews or meta-analyses of multiple
RCTs, which provide an even higher level of evidence. These are cur-
rently not retrieved by the system, as key NLP components, such as the
PICO tagger, were trained and evaluated on RCT abstracts only.
Moreover, our interpretation of significant results might have to be
broadened to incorporate non-inferiority trials. In contrast, lower-level
evidence (observational studies, case reports) might be more relevant
for fields where large RCTs are not the norm and may not even be
practical to conduct. Other types of “gray” literature, such as meeting
abstracts or government documents, could be included to obtain
insights in a more timely manner45. This might account for the present
risk of publication bias when considering published results only.

The system can be extended to import additional sources of pri-
mary and synthesized evidence to the database. A possible alternative to
the free resources by the NLM are, for instance, the commercial data-
base EMBASE, which provides access to the latest conference abstracts
and richer search functionalities compared to PUBMED

46. Furthermore,
the COCHRANE Central Register of Controlled Trials (CENTRAL) is an
alternative library of clinical trial reports, and includes data from
PUBMED/MEDLINE, and EMBASE, but also the proprietary CINAHL database47.
We can consider several additional registries for the primary registra-
tion of clinical trials, e.g., maintained by the European Union (Clinical
Trials Information System / CTIS) or the BfArM (German Clinical
Trials Register)48. The WHO operates the International Clinical Trials
Registry Platform (ICTRP), combining data from multiple trial regis-
tries to provide a comprehensive global view of clinical trials. Alter-
natives to CIVIC include ONCOKB

49, MY CANCER GENOME
50, and JAX-CKB51.

However, integration of these data sources requires clearly documented
access options, e.g., through APIs52.

Additional guidelines could be integrated by considering othermedical
specialties, e.g., by applying the described German-language NLP compo-
nents to all other AWMF guidelines fromGermany53, or using comparable,
language-specific or multilingual models for guidelines from other coun-
tries. However, most guidelines currently do not provide fine-grained,
recommendation-levelmetadata in a structured format, so theywould need
to be extracted from many heterogeneous documents, mostly in PDF for-
mat. Similarly, English-language guidelines, e.g., from the National Com-
prehensive Cancer Network (NCCN) or ASCO, could be easily integrated,
as high-quality biomedical Named Entity Recognition (NER) and Named
Entity Normalization (NEN) solutions for English texts are widely
available54. Some guidelinemanagement tools suchas theMAGIC appprovide
similar metadata, although it involves considerable manual curation
efforts55. As more guideline organizations adopt international interoper-
ability standards, likeCPG-on-FHIR, our systemcanbe enrichedwithmore
guideline sources35.
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Methods
This section describes our incorporated methodology for obtaining an
integrateddatabaseof clinical evidence, a software application for interacting
with these data, and the experimental setup for the evaluation of our system.

Data integration
The NGE database builds upon periodically replicated copies of the
underlying, heterogeneous data sources, i.e., clinical guidelines and various
sources of primary evidence, such as the description and results of clinical
trials. The data from each source is processed by individual
Extract–Transform–Load (ETL) processes56. The ETL results are stored as a
materialized version in a relational database. Figure 4 andTable 5provide an
overview of the involved ETL components for each of our currently inte-
grateddata sources; technical details are provided in SupplementaryTable 2.
Many data sources provide mostly unstructured data (clinical guidelines,
PUBMED abstracts). Therefore, we employ a variety of recently developed
Transformer-based NLP components for NER and NEN. Since

international guidelines are published in many national languages, these
data require language-specific NLP tools. Presently, we focus on German
oncology guidelines that we obtain from a Content Management System
(CMS) maintained by the GGPO57. Nonetheless, our system can be exten-
ded to incorporate also other sources, e.g., the MAGIC app55 or adapted to
incorporate international standards, e.g., CPG-on-FHIR35. For the
unstructured portions of the guidelines (recommendations andbackground
texts), we leverage NER models developed in the context of the GGPONC

project, as well as the XMEN toolkit for cross-lingual entity normalization to
map these entities to CUIs from a custom, task-specific UMLS subset25,27.
For RCT publications, we rely on curated metadata, like MESH terms or
publication types, as well as NLP-derived information from MEDLINE titles
and abstracts. To this end,we use task-specificPICOextractionmodels built
upon the EBM-NLP corpus of MEDLINE abstracts58, similar to the TRIAL-

STREAMER system59. AllNLP components are based uponfine-tuned state-of-
the-art domain- and language specific encoder or encoder–decodermodels,
as described in Supplementary Table 2.

Fig. 4 | Integration of different sources of medical evidence into the harmonized
NGE database. We incorporate the contents of clinical guidelines, clinical trial
reports in PUBMED, registered clinical trials through the Aggregate Content of CLIN-
ICALTRIALS.GOV (AACT) database, as well as assertions from CIVIC, a widely used
knowledge base (KB) for precision oncology. As both guidelines and trial reports
consist of mostly unstructured text content, we apply recently developed NLP
components to extract structured data from these sources: this involves Named

Entity Recognition (NER) and Normalization (NEN), and extraction of Popula-
tion--Intervention--Comparison--Outcome (PICO) spans. All items are mapped to
concept identifiers from the Unified Medical Language System (UMLS), to make
them interoperable with information in structured data sources, which are coded
using concepts from MESH (Medical Subject Headings), HPO (Human Phenotype
Ontology), DO (Disease Ontology), and the NCI (National Cancer Institute) the-
saurus. Details on each component are provided in Table 5.
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Mapping to UMLS CUIs ensures a high degree of semantic inter-
operability across overlapping items from integrated data sources. More-
over, evidence in all sources can be linked to one or more population and
intervention attributes, although with different naming conventions. This
mapping to populations and interventions is usually straightforward.
However, the following design decisionswere taken. First, clinical drugs and
therapeutic procedures are considered as interventions in guidelines, based
on the fine-grained named entity classes identified by the GGPONC NER
tagger25. Second, all phenotypes and diseases are considered as populations
for CIVIC.

The NGE browser
The key use case of the NGE database is to query its content based on a
clinical question, formulated with respect to population or intervention
concepts, and to filter the results according to various criteria, such as
publication timestamps. The database is accessible through both a REST
API and the NGE browser, a user-friendly web application, which allows
researchers, guideline developers, clinical practitioners, and other potential
users of the system to easily interact with the data.

Figure 1 depicts the timeline view in ourNGEbrowser, whichprovides
a temporal perspective of the current state of clinical researchon a particular
intervention in the context of current and previous guideline versions. The
example shows the timeline view for the drug Ipilimumab for the clinical
indication oesophageal cancer. Results of two phase III RCTs have been
published just before the literature search for the latest update (version 4.0)
has been performed.As a result, thesewere subject to the screening and data
extraction phase of the review process and included in the guideline (green
stars in the figure). However, shortly after finishing the search, two addi-
tional reports of phase III RCTs were published. Moreover, new data
(subgroup analyses) for the two RCTs that were includedwere published in
the meantime.

Figure 2 depicts the search view of our NGE browser, which allows
retrieving RCT publications and trial register entries based on a particular
population, and filtered according to different selection criteria such as
publication dates or clinical trial phases. The user has to select at least a
population, here given by a guideline topic.When using the systemwithout
the graphical user interface but through its exposed RESTAPI, it can also be
queried with custom sets of UMLS concepts, e.g., to find evidence for a
specific subpopulation. The result is a list of RCTs from different sources,
i.e., PUBMED articles retrieved through MEDLINE or CIVIC, or clinical trials

registered at CLINICALTRIALS.GOV. To guide the user to the relevant search
results, the tool highlights extracted interventions using color codes based
on their occurrence within the selected guideline that is related to the
selected publication. The search view offers various selection criteria to filter
the result set according to different requirements a user may have. The
default values are tailored to a prospective scenario, i.e., targeted for users,
who wish to identify new, potentially practice-changing evidence with
respect to an existing clinical guideline. A detailed description of the
available filters is provided in Supplementary Fig. 6 and Supplementary
Table 3. Note that all filter criteria are pre-computed as structuredmetadata
upon import into the database, so there is no computational overhead of
combining filters, but also no interaction between NLP models. In the
following, we focus on two main innovative features enabled by our
employed NLP components.

The first novel selection criteria stem from contextualizing the search
with the current state of recommended clinical practice represented by the
guidelines in the database. As highlighted in Fig. 2, interventionsmentioned
in a clinical trial canhavedifferent relationships to a guideline: theymight be
mentioned (a) anywhere in the guideline, (b) inside a recommendation, or
(c) not mentioned at all. We hypothesize that interventions that are not yet
recommended or mentioned otherwise provide particularly strong update
signals for an existing guideline.

We further suspect that the results from RCTs might be of particular
importance when they report a significant improvement of some outcome
of interest, especially for new interventions. Therefore, a flag is included to
filter trials based on the statistical significance of their findings. In CLIN-

ICALTRIALS.GOV, this information is often available as part of the structured
results: here,we consider anyRCTwith a change inoutcomeassociatedwith
a p value lower than 0.05 as significant. For RCT reports in PUBMED, the
required details are obtained from the free-text abstract using a binary text
classifier. Our employed classifierwas obtained by fine-tuning a PUBMEDBERT

model with annotations derived from the EVIDENCE INFERENCE 2.0 dataset60,61.
This feature is disabled by default because it is considered as highly
experimental. More details can be found provided in Supplementary
Table 3.

Evaluation dataset for time lag analysis
Our evaluation dataset for analyzing time lags is based upon GGPO
guidelines that have received an update in the timeframe 2022–2024, i.e.,
between the GGPONC releases 2.0 and 2.325. Using the UMLS-normalized

Table 5 | Data sources and software components for their integration

Source Comp. Description NLP Model

Clinical Guidelines Metadata Extraction of structuredmetadata fromadigital guideline repository –

Pre-processing Syntactic pre-processing (e.g., sentence-splitting); replacing
elliptical coordinated compound noun phrases ("chemo- and
radiotherapy”) with their expanded form ("chemotherapy and
radiotherapy”)

Encoder–decodermodel (mT5) trainedwith>3Kmanually
annotated sentences in GGPONC 2.026,62

NER Named entity recognition for findings, substances, and procedures
within clinical guidelines

Nested NERmodel initialized from MEDBERT.DE and trained
with >200K long, fine-grained entity annotations in
GGPONC 2.025,63

NEN Named entity normalization of mentions to UMLS concepts XMEN candidate generation with a knowledge base (KB)
initialized from a UMLS subset, followed by re-ranking27

PUBMED RCT Filtering Identification of RCTs in MEDLINE based on publication types and
MESH terms

–

PICO Tagging Identification of all PICO spans within MEDLINE abstracts BIOELECTRA model fine-tuned for PICO extraction on the
EBM-NLP dataset58,64

NER + NEN Identification of all named entities within PICO spans and
normalization to UMLS concepts

SCISPACY NER model trained on MEDMENTIONS, SCISPACY
entity linker adapted to a custom UMLS subset65,66

Clinical-Trials.gov
(via AACT)

UMLS Mapping Mapping of already normalized conditions and interventions (MeSH
terms) to UMLS concepts

–

CIViC UMLS Mapping Mapping of already normalized diseases (DO), phenotypes (HPO),
and therapies (NCI thesaurus) to UMLS concepts

–

For each component, we indicate whether the component uses NLP and, if so, which kind of model. Please refer to Fig. 4 for a description of used abbreviations.
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entity mentions and recommendation metadata, we identify new inter-
ventions, which have been recommended for the first time in any of the
updated guidelines within the given time frame. In addition, the following
filtering steps are applied, to ensure that the data is of sufficiently high
quality for further analysis:
1. NEN confidence after re-ranking of at least 0.1,
2. Exclusion of generic interventions such as “chemotherapy”,
3. CUI belongs to the UMLS semantic network hierarchy “Pharmaco-

logic Substance” (TUI: T121) or “Therapeutic or Preventive Proce-
dure” (T061), and

4. At least one clinical trial with this intervention can be found in our
NGE system.

Step 1 excludedmany non-pharmacological interventions, as these are
more challenging to normalize with high confidence. Step 4 excludes some
genuine interventions such as “meditation-based stress reduction” or
“Yoga” for endometrial cancer, where the current guideline recommenda-
tion is based on the cross-sectional guideline on complementary medicine,
rather than individual trials for the particular combination of intervention
and population.

Evaluation datasets for signal retrieval
The characteristics of two evaluation datasets for retrieval performance
are presented in Table 2. For the oesophageal cancer guideline update,
the complete full-text and abstract screening decisions were provided.
Out of 3147 total references in the time frame from January 2019 to April
2022, 139 were duplicates retrieved from different sources (e.g., PUBMED

or the COCHRANE database). Another 2741 references were excluded
during title–abstract screening, and 195 additional ones after full-text
screening. However, nine excluded references were already cited in a
previous guideline version, which is possible due to overlaps of the search
time frame with previous minor updates (version 3.1). If these references
were retrieved by the NGE system, they would (arguably) be regarded as
relevant; therefore, we consider them in the evaluation. A total of 81
references were included, but since the system is designed to retrieve only
RCTs, only the subset of 26 RCTs is considered for evaluation (line
“RCTs included” in Table 2). Out of the 2927 excluded references, 290
were RCTs ("RCTs excluded”). The search retrieved additional results
that were included in the datasets, as described in the Results section. 15
additional references were considered for oesophageal cancer following
another manual review (9 included, 6 excluded).

For Hodgkin lymphoma, the screening period overlapped with the
screening period of the former guideline update. Hence, the NGE system
retrieves additional results that were already incorporated in the previous
guideline version; they were manually marked as included. These results
constitute the final ground-truth for system evaluation (lines “RCTs
included / excluded (final)”). For the Hodgkin lymphoma dataset, refer-
ences excluded during title–abstract screening are not available. Therefore,
this dataset contains only 168 references, which were subject to full-text
screening. Out of these, 105 were excluded, and two were added as being
already cited in the current Hodgkin lymphoma guideline. From the
remaining 65 references, 25 were RCTs, which were complemented by
manually reviewed references. Since the results from title–abstract exclusion
are missing, only 35 excluded RCTs are available for the evaluation of the
system regarding the Hodgkin lymphoma update.

Data availability
Recent versions of German oncology guidelines from the GGPO are
available as GGPOnc releases on Zenodo: https://zenodo.org/records/
12520623/. Baseline and daily update dumps from PubMed can be down-
loaded directly from the NLM: https://pubmed.ncbi.nlm.nih.gov/
download/. Monthly dumps from ClinicalTrials.gov can be downloaded
through the AACTproject: https://aact.ctti-clinicaltrials.org/download/.
Nightly dumps from CIViC can be downloaded from the CIViC website:
https://civicdb.org/releases/main/. The literature screening datasets for the

oesophageal cancer andHodgkin lymphomaguideline updates canbemade
available upon request.

Code availability
The source code to create a local instance of the NGE system is available as
open-source software on GITHUB: https://github.com/hpi-dhc/nge_db/.
Experimental results can be reproduced using the notebooks and software
versions indicated in the repository. A prototype of our NGE web appli-
cation is online available at: https://we.analyzegenomes.com/nge/.
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