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Digital measures of activity and motivation
impact depression and anxiety in the
real world
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Mood and anxiety disorders are highly comorbid, with symptom severity varying over time. Individuals
with and without these disorders completed 30-days of ecological momentary assessment (EMAs) of
depression, anxiety and distress, developed based on the established Mood and Anxiety Symptom
Questionnaire (MASQ). These electronic MASQ (eMASQ) EMAs were collected alongside novel
intrinsic and extrinsic motivation EMAs, and physical/digital activity measures (steps/screentime)
across N = 70-101 participants. Each eMASQ-EMA significantly related to its corresponding MASQ
measure. Extrinsic and intrinsic motivation negatively related to each eMASQ-EMA and had the
greatest influence on patients’ overall symptom profile. Physical, but not digital activity, was negatively
associated with concurrent and 1-week lagged anxiety and depression, highlighting the temporally
delayed benefits of physical activity on depression and anxiety symptoms in psychiatric groups.
Collectively, this study suggests cognitive constructs related to drive and physical activity, may be
useful in predicting continuous and transient psychiatric symptoms in the real-world.

Mood and anxiety disorders are highly prevalent and comorbid in the
United States"”. Mood disorders such as Major Depressive Disorder (MDD)
and anxiety disorders such as Generalized Anxiety Disorder (GAD) are
characterized by a defined set of psychiatric symptoms. However both
categorical diagnoses share substantial overlap in their clinical presentation.
For example, both can be characterized by executive function deficits, sleep
disturbances, fatigue, maladaptive arousal, and psychomotor
abnormalities’. Yet, recent work demonstrates that even within shared
diagnoses and patients presenting with the same level of depression severity,
there are underlying differences in how symptoms interact with one another
to drive this severity4. This overlap, co-occurrence’, and mutual
exacerbation’ can complicate specificity of diagnoses and measurement of
treatment outcomes. Measurement of symptom severity and symptom
interactions rather than categorical diagnoses can thus be useful in clinical
characterization and the development of novel treatment targets.

Current tools for measuring and diagnosing mood and anxiety dis-
orders include clinical interview, often via the Diagnostic and Statistical

Manual of Mental Disorders (DSM), which facilitates categorical diagnosis
of disorders. The self-reported Mood and Anxiety Symptom Questionnaire
(MASQ)° can also measure symptom severity for separate domains of
anxious arousal, general distress, and anhedonic depression on a dimen-
sional continuum. While this assessment can discriminate anxiety and
depressive symptom severity within psychiatric patient populations’, much
like many other self-report questionnaires, the MASQ requires that a patient
recall a weeK’s worth of experiences and distill complex emotional and
mental states into a single number. This presents a recall bias that may lead
to an inaccurate representation of symptom severity that has been averaged
over a long period of time and potentially distorted by any underlying
cognitive dysfunction, which is highly prevalent in mood and anxiety
disorders”™"". Determining diagnosis and symptom severity in this way
overlooks the intricacies and nuances of symptom profiles that can fluctuate
on a day-to-day basis within patients'>".

Digital phenotyping - i.e., momentary assessment of symptom profiles
in the real-world through personal digital devices — can counteract some of
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these limitations in symptom profiling by assessing symptom severity across
multiple timepoints, with low patient burden'’. Approximately 90% of
Americans own a smartphone'” with a projected increase to over 5 billion
people owning smartphones globally by 2030'*"". This ubiquity of smart-
phones enables novel quantification of patients’ behaviors and symptoms in
real life and real-time through digital phenotyping. Since mood and anxiety
symptom severity can fluctuate over time, digital phenotyping tools may
detect vulnerability towards mood and anxiety disorders before they
become taxing on an individual’s life, and indicate behavioral markers that
are associated with symptom changes'®. Digital phenotyping tools may also
highlight how different symptoms interact with one another’, and how
underlying cognitive changes, such as changes in motivation, might impact
those relationships'’. Maladaptive changes in motivation are consistently
observed in individuals with mood and anxiety disorders™*, and recent
evidence suggests that both intrinsic motivation (actions driven by ‘internal
drivers’) and extrinsic motivation (actions driven by tangible external sti-
muli or outcomes) may be differentially impaired™. While motivational
deficits are commonly observed within psychiatric populations, under-
standing how different kinds of motivation may differentially impact
symptom severity in the real-world remains limited.

Over the past decade, research on digital phenotyping has
accelerated” by providing active data (captured via ecological
momentary assessment (EMAs))” and passive data from sensors
including accelerometer (for movement/physical activity), GPS, and
screentime (for sedentary behavior). These methods enhance ecolo-
gical validity and reduce patient recall bias. For instance, a recent study
employing actigraphic assessments of step counts found a negative
association between depression and physical activity’® such that even
low to moderate levels of physical activity were associated with reduced
depression scores. Meanwhile, studies assessing the relationship
between screentime and mental health have produced mixed
findings”~*’ and focused primarily on adolescents and young adults
given they have grown up entirely in the digital age and are more prone
to long-term negative effects” . Interestingly, there is an established
inverse relationship between physical activity and sedentary behaviors,
such as screentime, suggesting that increased screentime can impede
physical activity levels***. However, research on the combined effects
of phone usage and physical activity on health outcomes remains
limited and often relies on self-report data’****. Therefore, there is a
need to objectively quantify screentime in a broad age range to better
understand how these competing sedentary and active behaviors affect
mood and anxiety symptoms across the lifespan given evidence that
sedentary behaviors can influence risk of disease, independent of
physical activity levels.

The current study introduces a new set of single-item, self-reported,
EMAs examining anxiety, distress, and depression based on the gold-
standard MASQ”, similar to prior work’ ™. These electronic MASQ
(eMASQ) EMAs were captured via a research-based open-source smart-
phone application (mindLAMP)* in individuals with mood and anxiety
(MA) disorders and healthy controls (HC). Clinical assessments of mood
and anxiety symptom severity were also captured in the laboratory (in-lab
MASQ) in order to test whether anxiety, distress, and depression eMASQ-
EMAs related to their corresponding in-lab MASQ measures. Additional
EMAs of intrinsic and extrinsic motivation were also collected to assess their
relationship with each eMASQ-EMA. Passive activity data was collected in
tandem to obtain objective measures of physical activity (operationalized as
steps taken per day) and sedentary activity (operationalized as screentime, or
time spent on one’s mobile device) to enable detection of behaviors that may
inform risk prediction. Finally, to understand how each of these active and
passive activity measures might work together to drive mood/anxiety dis-
orders, a network model based on a graph theory method was constructed
using this data. We primarily hypothesized that each eMASQ-EMA of mood
and anxiety symptoms would be significantly associated with its corre-
sponding in-lab MASQ measure and would show high variability over time.

Results

Participants

A total of N=114 individuals participated in the study. Following data
cleaning and preprocessing (see Methods: Preprocessing, Fig. 1), a total of
N =101 participants remained, including N =49 HC and N = 52 in the MA
group. The MA group included N = 32 individuals with primary MDD and
N=20 with a primary anxiety or stress-related disorder, although most
participants showed high levels of comorbidity (63.5%) (see Table 1).

Adherence

Over the 30-day period, HCs completed an average of 21.3 + 6.23 total days
of EMAs while the MA group completed an average of 20.9 + 5.72 total days,
with no significant difference in days of surveys completed between groups
(Fig. 2a, N =101, p = 0.687). There was no significant difference in survey
completion by day between the two groups (Fig. 2b, N =101, p =0.386),
suggesting overall good adherence in line with prior EMA studies conducted
in participants with MDD showing completion rates ranging from 65
to 85%*".

Relationships between eMASQ-EMAs and in-lab measures of
symptom severity

In the full cohort (ie, MA + HC), there was a significant association
between the MASQ Anxious Arousal and anxiety eMASQ-EMA (Fig. 3a,
N =280, p <0.001). Similarly, a significant association was observed between
the MASQ General Distress and distress eMASQ-EMA (Fig. 3b, N = 80,
p<0.001). Finally, a significant association was observed between the
MASQ Anhedonic Depression and depression eMASQ-EMA (Fig. 3c,
N =280, p <0.001), together demonstrating the convergence between EMAs
and in-lab clinical ratings. The same associations were observed in the
stratified analyses for each group individually suggesting the utility of EMAs
for measuring mood and anxiety symptoms even within individuals with
low symptom variability (i.e., the HC group; see Fig. 3d, Supplementary Fig.
1 and 2, Supplementary Result 1 and 2, and Supplementary Table 1-4).

Effects of intrinsic motivation on anxiety, distress and depression
We next assessed the relationship between intrinsic (Fig. 4a—c) and extrinsic
(Fig. 4d-f) motivation EMAs, and anxiety, distress, and depression eMASQ-
EMAs on an exploratory basis.

For each individual set of models, there was a significant main effect of
intrinsic motivation on anxiety (Fig. 4a), distress (Fig. 4b) and depression
(Fig. 4c; N=101, p’s <0.001), whereby lower intrinsic motivation was
associated with higher incidence and severity of each symptom. There was
also a significant interaction between intrinsic motivation and group for
each symptom domain (count model: N =101, p’s <0.001), whereby as
intrinsic motivation increased, groups differed more in symptom severity.
This was driven by a stronger relationship between intrinsic motivation and
symptom severity in the MA group, suggesting that symptom severity was
more affected by changes in intrinsic motivation in the MA group compared
to controls. There was also a significant effect of weekend on distress but no
significant effects of group, day, age or sex on symptom severity (see Sup-
plementary Tables 5-7 for full results and model residuals).

Effects of extrinsic motivation on anxiety, distress and
depression

Again for each model, there was a significant main effect of extrinsic
motivation on anxiety (Fig. 4d), distress (Fig. 4e) and depression (Fig. 4f;
N=101, p’s <0.015), whereby lower extrinsic motivation was associated
with higher incidence and severity of each symptom. There was also a
significant interaction between extrinsic motivation and group for anxiety
(count model: N=101, p=0.025), whereby as extrinsic motivation
increased, groups differed more in anxiety severity. There were also main
effects of group and weekend on symptom severity, and a main effect of day
on depression, with no significant effects of age, or sex. See Supplementary
Tables 8-10 for full results and model residuals.
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Fig. 1 | Flowchart illustrating phases of data preprocessing and participants included in each set of analyses. Bold text indicates datasets in which analyses were
performed. HC Healthy Control group, MA Mood/Anxiety disorder group. Created in BioRender. Beltran, J. (2025) https://BioRender.com/p43h413.

Table 1| Demographics reported for healthy controls (HC) and participants with a mood or anxiety disorder (MA) (N = 32 MDD, 15
GAD, 5 PTSD)

Participant Demographics and Clinical features

HC (N = 49) mean/count (SD/%)

MA (N = 52) mean/count (SD/%)

Group Comparison W/ x2 (p value)

Age (years) 31(10.75) 31.82 (9.85) 0.383 (p =0.702)
Sex (female) 30 (61.0%) 33 (63.5%) 6.9x10™ (p=0.98)
Race

White or Caucasian 22 (44.9%) 19 (36.5%) 0.22 (p =0.64)

Black or African American 10 (20.4%) 10 (19.2%) O(p=1)

Asian 16 (32.7%) 11 (22.4%) 0.926 (p = 0.34)

More than one race 0 9(17.3%)

Unknown/Did not disclose 1(2.0%) 3 (6.77%)
Ethnicity (Hispanic or Latino) 9(18.4%) 16 (30.8%) 1.96 (p =0.162)
Income ($50,001-$100,000) 21 (42.9%) 19 (36.5%) 0.1 (p=0.752)
Education (Graduated 4-year college) 17 (34.7%) 12 (23.1%) 0.862 (p =0.353)

median (IQR) median (IQR)

MASQ Anxious Arousal 13 (6)* 26.0 (15)* W=318(p=7.7x10%)
MASQ General Distress 11 (4)* 19.0 (16)* W =264 (p=4.96 x107)
MASQ Anhedonic Depression 28.0 (14)* 40.0 (12)* W=331.5(p=1.44x109)

Two sample Wilcoxon tests were used to examine differences between continuous variables while Chi-squared tests examined differences between categorical variables. For income and education, we
report counts and percentages for the most common category. *Indicates different sample size (N = 47 MA, N = 33 HC) given not all participants completed the MASQ.
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corresponding eMASQ-EMAs in the full cohort (HC + MA). MASQ total scores
represent the sum of each MASQ subscale and were correlated against the sum of
each eMASQ-EMA. In the full cohort, significant associations were found between
each MASQ subscale and its corresponding eMASQ-EMA demonstrating the
reliability of these scales (N = 80, s > 0.0792, t's > 2.28, p’s < 0.05). HC Healthy
Control group, MA Mood/Anxiety disorder group, MASQ Mood and Anxiety
Symptom Questionnaire.

Effects of physical activity on anxiety, distress and depression
We next assessed the relationship between physical activity (Fig. 5) and
anxiety, distress, and depression eMASQ-EMAs.

There was a main effect of steps on anxiety (Fig. 5a), distress (Fig. 5b),
and depression (Fig. 5¢; count model: N =70, p’s <0.05), within each
individual model, whereby higher physical activity was associated with
lower symptom severity. There was also an interaction between group and
steps on depression (N =70, p=0.052), whereby as steps taken per day
increased, groups differed more in depression severity. Again, this was
driven by a stronger relationship between physical activity and depression
severity in the MA group, suggesting that symptom severity was more
affected by changes in physical activity in the MA group compared to

controls. There were main effects of group and sex on anxiety; group,
weekend and day on distress; and group and day on depression. See Sup-
plementary Tables 11-13 for full results and model residuals.

Results from the linear mixed effects model with a 1-period lag
demonstrated marginal effects of physical activity on depression at the
following timepoint (N=34 MA, p =0.062, prpr = 0.299). Meanwhile, a
7-period lag analysis demonstrated that on average, higher physical activity
(steps) was associated with lower depression and anxiety approximately one
week later (N=34 MA, Depression: p=0.004, prpr=0.043, Anxiety:
P =0.004, pppr = 0.043) (Supplementary Fig. 3b). When scaling step counts
data within-participants to explore how an individual’s step counts affect
their symptoms of depression and anxiety, there were similar effects of steps
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eMASQ-EMA. There were also significant interactions between group and intrinsic
motivation on anxiety/distress/depression (IRRs > 1.08, p’s < 0.001) and group and
extrinsic motivation on depression (N =101, IRR = 1.06, p = 0.018). Data points are
based on marginal effects from the fitted ZIP models using the GLMMadaptive
package’s ‘effectPlotData‘ function in R. HC Healthy Control group, MA Mood/
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Fig. 5 | Regression results illustrating marginal effects plots of the predicted
values of anxiety, distress and depression severity across steps taken per day upon
adjusting for covariates. Zero-inflated Poisson models demonstrated a main effect
of steps on anxiety (a), distress (b) and depression (c) (N =70, IRRs > 0.87, p’s <
0.05). Across all three measures, participants in the MA group experience greater
symptom severity (N = 70, IRRs > 2, p’s < 0.001) in comparison to HC. Meanwhile,

only in the anxiety model was there an effect of sex such that females demonstrate
higher anxiety scores than males, after accounting for step counts. Steps data were
scaled within-participants. Data points are based on marginal effects from the fitted
ZIP models using the GLMMadaptive package’s ‘effectPlotData‘ function in R. HC
Healthy Control group, MA Mood/Anxiety disorder group.
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on depression and anxiety symptoms approximately one week later
(N=34 MA, Depression: p=0.010, pgpr=0211, Anxiety: p=0.031,
pror = 0.329) (Supplementary Fig. 3a). There was no significant effect of
steps on a 1 or 7-period lag of distress symptoms. See Supplementary Fig. 3
and Supplementary Data 1 and 2 for additional time-lag results.

Effects of digital activity on anxiety, distress and depression
We next assessed the relationship between screentime (Supplementary Fig.
4) and anxiety, distress, and depression eMASQ-EMAs.

There was a main effect of screentime on incidence of distress (Sup-
plementary Fig. 4b, N = 80, p = 0.005), whereby the odds of observing zero
symptoms of distress increased with higher screentime (OR = 1.63, small
effect). There were no main effects of screentime on anxiety (Supplementary
Fig. 4a) or depression (Supplementary Fig. 4c) symptom severity or inci-
dence. There were main effects of group on anxiety, and weekend, day and
group on distress and depression. See Supplementary Tables 14-16 for full
results and model residuals.

Results from the linear mixed effects model with a 1 and 7-period lag
demonstrated no significant lagged effect of screentime on symptoms of
anxiety, distress, or depression. See Supplementary Fig. 5 and Supplemen-
tary Data 3 and 4 for full time-lag results.

Assessing interactions over time: The DgpNA Model

The Dependency Network Analysis (DgpNA) method (Fig. 6) provided
an estimation of the influence of each individual symptom measure on
the relationships between all other symptom and activity measures
over time (Fig. 7a—c). In terms of overall influence, intrinsic motivation
and extrinsic motivation had the highest influence (Influencing Degree)
on the rest of the symptom network in the MA group (Table 2). The
MA group exhibited significantly higher influence of extrinsic moti-
vation and intrinsic motivation, as compared to HC (N =48, p <0.02,
q FDR <0.05 and N =48 <0.01, q FDR < 0.05, respectively) (Table 2,
Fig. 7b). Depression and extrinsic motivation were more influenced by
other measures in the MA group compared to HC (N=48, p=0.01, q
FDR =0.07 and N =48, p=0.02,  FDR = 0.07, respectively (Table 2,
Fig. 7¢), although this did not survive FDR-correction. In terms of
specific, directed influence, intrinsic motivation significantly influ-
enced steps (N =48, p < 0.003, q FDR < 0.05), to a greater extent among
the MA group compared to HC (Fig. 7a). On the other hand, extrinsic
motivation influenced distress to a greater extent among the MA group

compared to HC (N =48, p < 0.004, g FDR < 0.05) (Fig. 7a). We did not
find any significant FDR corrected results among HC compared to MA.

Discussion

This study presents a new set of single-item self-reported anxiety, distress
and depression eMASQ-EMAs that were significantly related to established
in-lab measures of these symptom domains. Novel, exploratory intrinsic
and extrinsic motivation EMAs were also significantly related to mood and
anxiety symptoms in the real-world. Both types of motivation significantly
influenced all other symptom and activity measures to a greater extent in the
mood and anxiety group compared to the HC group. Finally, higher within-
subject physical activity (steps) was significantly associated with lower
severity of anxiety, distress and depression, with a variable temporal asso-
ciation with depression and anxiety symptoms in the MA group. Mean-
while, digital activity (screentime) was only associated with the absence of
distress.

Overall, the current results demonstrate the utility and feasibility of
digital phenotyping for accurately monitoring symptoms in participants
with psychiatric conditions that have been associated with high burden and
drop-out rates*>*. This utility is in line with prior work leveraging EMAs to
measure mood and anxiety symptoms™***** and in relation to gold-standard
assessments to determine their utility’>”. Further, in this work we found
similarly good adherence levels between groups, suggesting that the use of
few >=5 single-item daily surveys over 30-days, alongside weekly check-ins
provide good adherence within a feasible, low-burden framework. Indeed,
previous work demonstrates that providing some form of digital feedback
can enhance adherence*™*’. Maintaining good adherence over time is critical
given the significant variability in symptom severity in individuals with
mood and anxiety disorders demonstrated.

Previous work assessing the relationship between intrinsic and
extrinsic motivation and anxiety, distress, and depression EMAs has been
limited, in part due to a lack of consensus on the precise definition of
intrinsic motivation, and how it can be distinguished from extrinsic
motivation™*"’. Reduced extrinsic motivation and sensitivity to extrinsic
rewards has been consistently measured in mood disorders such as
MDD****, but the impact of intrinsic motivation is unclear. Here, both
extrinsic and intrinsic motivation showed significant negative relationships
with anxiety, distress, and depression EMAs such that higher intrinsic
motivation was associated with a 13-18% decrease in symptom severity
while higher extrinsic motivation was associated with a 7-12% decrease in
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symptom severity across both MA and HC groups. However, interactions
between group and intrinsic motivation revealed that groups were differ-
entially impacted by changes in intrinsic motivation. Specifically, in
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Fig. 7 | DgpNA results. a A network illustration and graph visualization of the
‘influencing degree’ of symptoms in the MA group against healthy controls. Each
region is color-coded according to the t statistic value from the t-test between the
‘Influencing Degree’ of the two groups. All pair-wise ROIs with connections, sig-
nificant at the p < 0.05 level, are plotted as edges. Each edge is color-coded according
to the t-test sign as light or dark gray with the arrows representing the direction of
influence. b The nodes’ averaged ‘Influencing Degree’” and (c) ‘Influenced Degree’.
The total influence of both extrinsic and intrinsic motivation was significantly higher
among the MA group compared to healthy controls. *p < 0.05, **p < 0.05 FDR
corrected. HC Healthy Control group, MA Mood/Anxiety disorder group.

individuals with mood and anxiety disorders the protective effects of
intrinsic motivation are 8-12% weaker across each symptom domain,
suggesting that the relationship between intrinsic motivation and symptom
severity is more nuanced and may be impacted by differences in cognitive
flexibility that engaging intrinsic motivational processes may require.
Indeed, prior works demonstrate evidence suggestive of a general difficulty
with engaging intrinsic motivational processes across depressive
phenotypes’ ™. Meanwhile in anxiety disorders the development of high
intrinsic motivation might derive from maladaptive uncertainty learning
that problematically drives elevated avoidance behaviors™*. Notably,
intrinsic motivation seemed to have a greater impact on reducing overall
depression severity in comparison to extrinsic motivation (18% decrease
versus 12% decrease, respectively). This finding is in line with prior work,
suggesting that when individuals can effectively engage intrinsic motiva-
tional processes such as working for personal growth or for personal
satisfaction, they may be more protected against depression™. Interestingly,
group-level effects were only observed in the extrinsic motivation models
whereby participants with a mood or anxiety disorder showed approxi-
mately 2 times the incidence of anxiety, distress, and depression in com-
parison to healthy controls, when extrinsic motivation was held constant.
Day of the week also had an effect on the relationship between extrinsic
motivation and each eMASQ-EMA, indicating that symptom severity was
6-10% lower on weekends versus weekdays. Similar effects were observed
between intrinsic motivation and distress only, suggesting that external
factors such as engaging in rest or non-work-related activities during
weekends may contribute to symptom reduction. Taken together these
findings suggest that the impact of intrinsic motivation is more variable
based on group membership but overall, may have more protective effects
on depression than extrinsic motivation regardless of weekday. While the
current study cannot explicitly demonstrate which kinds of intrinsic or
extrinsic motivators participants drew from when completing assessments,
the examples provided in the EMAs aligned with a mix of previous reports of
intrinsic and extrinsic rewards in order to capture the entire scope of the
phenotype®* . 1t is therefore not clear from this study whether intrinsic
versus extrinsic reward sensitivity versus motivational tone were important,
as both outcome sensitivity and internal drive or vigor could differentially
contribute to the self-assessment of intrinsic or extrinsic motivation. Future
work should more precisely characterize the array of intrinsic and extrinsic
factors that could contribute to motivation in the real-world. Nonetheless,

Table 2 | Influencing and influenced degree of symptoms and activity measures as estimated by the DgpNA

Measure HC mean = std MA mean =+ std t-value p value FDR adjusted p value Cohen’s d
Influencing Degree Screentime 0.21+0.23 0.34 +0.39 1.39 0.17 0.34 0.40
Checks total 0.27 +0.22 0.26 +0.22 -0.21 0.84 0.90 —0.06
Steps 0.24+0.38 0.25+0.22 0.13 0.90 0.90 0.04
Anxiety 0.32+0.32 0.40+0.31 0.88 0.38 0.51 0.26
Depression 0.25+0.23 0.38+0.25 1.83 0.07 0.20 0.53
Distress 0.31+0.32 0.42+0.28 1.26 0.21 0.34 0.37
Extrinsic motivation 0.22+0.22 0.42+0.30 2.62 0.01* 0.05* 0.76
Intrinsic motivation 0.22+0.21 0.47+£0.41 2.70 0.01* 0.05* 0.78
Influenced Degree Screentime 0.23+0.22 0.30+0.20 1.00 0.32 0.35 0.29
Checks total 0.27 +0.25 0.34+0.23 0.95 0.35 0.35 0.28
Steps 0.25+0.20 0.30+0.15 0.99 0.33 0.35 0.29
Anxiety 0.26 +0.24 0.38 +0.31 1.48 0.15 0.29 0.43
Depression 0.26 +0.26 0.45+0.24 2.59 0.01* 0.07 0.75
Distress 0.28 +0.21 0.40+0.24 1.87 0.07 0.18 0.54
Extrinsic motivation 0.23+0.23 0.43+0.31 2.46 0.02* 0.07 0.71
Intrinsic motivation 0.27 +0.26 0.35+0.21 1.22 0.23 0.35 0.36
*Indicate statistical significance.
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these findings implicate the importance of assessing for the kinds of moti-
vators individuals experience and how they may relate to affective processes.

In terms of digital activity (screentime), we did not observe an effect of
screentime on anxiety, distress, or depression in the count models. However,
there was a small effect of screentime on distress in the logit model sug-
gesting that increased screentime was associated with higher odds of not
experiencing distress. While concerns regarding the psychological and
cognitive impacts of screentime persist™”, this latter finding may be more
reflective of the positive impact of smartphone usage”*’. Recent work
emphasizes the importance of considering the type of motivation behind
smartphone usage when assessing its impact on health outcomes®. For
instance, smartphones might be increasingly used to monitor one’s fitness
levels and maintain social connections which can have positive outcomes®”,
or more negatively used to passively monitor others’ online lives. Although
this dichotomous view has been recently challenged”, motivations behind
use, and a range of other variables, can all influence the effect of screentime
between users and within users over time*****. Indeed, there was an effect of
weekend on the relationship between screentime and symptoms of distress/
depression but not anxiety. This suggests that distress and depression
symptom severity were 9-12% lower on the weekend when accounting for
screentime, and further supports the nuanced relationship between
screentime and mental health. The present study did not assess the type of
usage nor motivations for personal digital device usage, which could con-
tribute to the null findings in the count models. However, we did explore
whether steps taken per day was associated with anxiety, distress, and
depression given the established relationship between screentime, physical
activity, and cognition”**".

Overall we found that when individuals engage in greater levels of
physical activity than their typical baseline, there is a 7-12% decrease in
anxiety, distress and depression symptom severity, in line with previous
work on the mental health benefits of exercise™ . However our time-lagged
linear mixed effects model revealed that the benefits of physical activity on
depression and anxiety levels are temporally delayed in psychiatric groups
and manifest themselves most prominently about a week later. While a
marginal effect of physical activity on depression was observed at a 1-period
lag, whereby higher step counts were associated with lower depression at the
next time point, this result did not reach statistical significance. Taken
together these findings suggest that while there is an apparent reduction in
symptom severity associated with increased physical activity, the benefits of
physical activity on mental health may take longer to manifest (i.e., the effect
of steps on depression 1 day post-exercise is weaker in comparison to its
effects 7-days post-exercise). Importantly, we note that there was a lack of
regular interval reporting periods in our data and caution this interpretation.
Furthermore, there was a main effect of sex on the relationship between
anxiety and steps taken per day suggesting that females report approxi-
mately 2 times the incidence of anxiety symptoms compared to males when
accounting for physical activity. However, little emphasis has been placed on
the association between physical activity and anxiety’"”>. Importantly, a
significant association between steps and distress was not present in the
best-fitting model therefore results from this model should be interpreted
with caution. Future research should consider not only the quantity of
physical activity in relation to psychiatric symptoms but also the type and
intensity in relation to other behaviors such as screentime and socio-
economic factors which may require high occupational physical activity
with minimal time for leisure physical activity.

Having established that there is a relationship between physical
activity, changes in motivation and mood and anxiety symptoms, the pre-
sent study used the DgpNA model to evaluate which feature in this network
of symptoms and behaviors most impacts all other features in the network.
This is the first application of this type of directed graph network analysis to
digital phenotyping data in mood and anxiety disorders. The DgpNA model
uniquely captures the interactions between measurements of symptom
severity and behavior by leveraging partial correlation effects. Partial cor-
relations determine how a third variable affects the correlation between two
other variables. For example, this application would capture how depression

severity influences the correlation between intrinsic motivation and steps. In
this way, a correlational influence, but not a causal influence, can be
determined based on the network’s hierarchy of influence. The DgpNA
revealed that, rather than symptom severity per se, it was the putative
underlying measures of intrinsic and extrinsic motivation that had the
greatest influence over all symptoms and activity measures in the MA group.
This suggests that measures of cognitive constructs related to drive and
activity may be more useful in characterizing phenotypes in the real-world.
Further work should explore other cognitive measures that have been linked
to mood and anxiety disorders such as executive function or sleep dis-
turbance. In the MA group, depression was also the symptom domain that
was most influenced by the other measures, suggesting that this particular
symptom domain is most malleable or receptive to change. This coincides
with the high variability we observed of this measure over time (see Sup-
plementary Fig. 6). Interestingly, intrinsic motivation had amongst the
greatest impact (‘influence’) on all other measures over time and seemed to
influence physical activity more in the MA group. Previous work demon-
strates a link between higher physical activity and lower mood and anxiety
symptoms®***”*. Therefore this suggests that in this population, intrinsic
motivation might act through physical activity to modulate symptom
severity and may be what aggravates the disorder”. The current findings also
highlight the importance of assessing motivational changes in relation to
mood and anxiety disorders. Prior work demonstrates that motivational
deficits undermine functioning in patients with depression" and that sec-
ondary effects on specific symptoms can occur through changes in other
symptoms’*””. Therefore, the assessment of motivation levels could (1) serve
as an important risk factor for mood and anxiety disorders, (2) aid in
understanding symptoms that are prone to exacerbating into a depressive
episode, and (3) serve as a surrogate endpoint in clinical trials where the
primary endpoint is unmet. This latter point speaks to the need to inves-
tigate the effect of treatments on individual symptoms as opposed to a
summed score.

There are several limitations of this study that could be addressed in
future research. First, there was missing data across EMAs that could be
attributed to participant’s either skipping certain surveys or a technical issue
with the application failing to administer surveys on a given day. Despite this
missingness, we still observed a good level of adherence to the study and
were able to maintain at least 3 days of survey data per participant. In line
with this limitation, our exploratory analysis assessing whether changes in
physical/digital activity may precede decreases in mood and anxiety
symptoms was confounded by a lack of regular interval reporting periods to
which we primarily focus on results from a 1 and 7-period lag. To minimize
missingness, future work aimed at exploring these associations may benefit
from providing daily digital feedback or offering additional monetary
incentives to reward participants’ completion of EMAs in full accordance
with study protocols.

In conducting the DgpNA, we introduce a new analytical method that
overcomes limitations of other modeling approaches requiring high tem-
poral resolution or predefined assumptions of directionality. However, the
DgpNA does not take into account any information on temporal lags and
was conducted in a smaller sample size to ensure sufficient active, steps, and
screentime data points for a reliable correlation analysis between each fea-
ture. Nonetheless, the DgpNA and ZIP models remain useful analytical
methods that may help overcome certain limitations with the kinds of large-
scale, time-series, and highly interrelated data structures that come from
digital phenotyping'’. While ZIP models rely on the use of a Poisson process
that operates under the assumption that one is measuring ‘counts’ of the
outcome variable, our EMA’s operated on a 0-10 likert scale producing
“pseudo-count” distributed data which, in taking a data-driven approach,
demonstrated that ZIP models were the best fitting models based on AIC
criteria. Additionally, the zero-inflation observed in our data was inherently
due to the inclusion of a control group that reported majority zero symp-
toms (Supplementary Fig. 7). While the logit model accounts for excess
zeros and only provides a measure of the likelihood of an individual
reporting zero, we do find that this joint modeling approach allows for a
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Table 3 | EMAs administered to participants via the mindLAMP application

Symptom EMA
Anxiety “Today, | feel physically anxious.

Physically anxious is when you feel short of breath, dizzy, shaky, trembling or sweaty.”
Distress “Today, | feel distressed.

Distressed is when you feel tense, hopeless, keyed up, worthless, uneasy or discouraged.”
Depression “Today, | feel depressed.

Depressed is when you feel unhappy, uninterested, withdrawn from people, with nothing to look forward to, with no energy or unable to enjoy things.”

Intrinsic Motivation

“Today, | feel motivated to do things that are personally interesting or enjoyable to me.”

Extrinsic Motivation

“Today, | feel motivated to do things that might earn me money or please other people.”

Measures of anxiety, distress, and depression were developed based on the MASQ°. Measures of intrinsic and extrinsic motivation were developed by summarizing themes from the Intrinsic Motivation

Inventory and the Work Extrinsic and Intrinsic Motivation Scale’®*, respectively.

better quantification of differences in not only symptom severity but also
behaviors that may be associated with the absence of symptoms indepen-
dent of diagnosis. This is evident in our steps model specification whereby
group membership alone is enough to predict the absence of depression,
meanwhile additional information on steps taken per day and survey day are
necessary to predict the absence of distress. Further, upon repeating each set
of analyses within the MA group using a standard linear mixed-effects
models adjusted for age, sex, survey day, and weekend with a random effect
of participant, the general direction of the associations was consistent across
all models - with the exception of steps in which case, there is only a
significant association between steps and depression (see Supplementary
Tables 22-33 for full results). All in all, we call for future researchers to
visually inspect their data and assess for zero-inflation when there are
control groups that may inevitably report zero symptoms and violate model
performance. We also suggest the use of DppNA or network models to assess
how different variables interact with one another given the dynamics
of mood.

Second, models assessing the relationship between extrinsic and
intrinsic motivation on anxiety indicated residual dispersion, as did the
models for screentime and steps (see Supplementary Tables 5-16 for
results). Therefore, while we include these results, we adhere caution with
their interpretation. Third, the steps data downloaded from the mindLAMP
server came from three different sources: (1) a pedometer, (2) Apple health
and (3) Google Mobile Services. Within these data, there were instances in
which the source was not clearly specified, and null values were assumed to
come from the pedometer after consulting with the application’s platform
developers. It is unclear whether the pedometer or Digital Health Ecosys-
tems data had greater sensitivity, however, we did find a moderate corre-
lation between the two sources (see Supplementary Fig. 8). Therefore, we do
not expect that the choice of data source would alter the presented results.
Further, we recognize that smartphone-derived step counts may not capture
all physical activity data reliably and are limited to capturing instances in
which participants carry their phone on their person. Future researchers
may capture greater sensitivity of movement by integrating data from an
accelerometer or wearable device and pairing it with location data for further
contextualization. Finally, we acknowledge the lack of diversity of our study
sample, which may raise concerns about the lack of representation of ethnic
minorities in research studies. Although digital phenotyping aims to offer
insights into real-world patient populations, its effectiveness is compro-
mised when certain groups are excluded. This exclusion can stem from
factors such as lower smartphone ownership, digital literacy, or limited
access to healthcare, which in turn exacerbates these groups’ vulnerability to
mental health issues. To ensure greater access and a greater representation of
ethnic diversity, we encourage researchers to supply digital devices and
engage in efforts to actively recruit participants from underserved
communities.

In conclusion, this study presents EMAs of anxiety, distress and
depression symptom severity in individuals with mood and anxiety dis-
orders, that corresponded well to gold-standard in-lab measures. These

findings highlight the potential of digital phenotyping for accurately
assessing and monitoring psychiatric conditions with good adherence.
Furthermore, using a combination of ZIP models, network analysis, and
time-lagged linear mixed effects models the presented work highlights how
underlying cognitive measures such as intrinsic and extrinsic motivation
may be most influential in predicting symptom severity and physical/digital
activity.

Methods

Participants

Adult volunteer research participants (ages 18-75) were recruited from the
greater New York City area through the Depression and Anxiety Center at
the Icahn School of Medicine at Mount Sinai (ISMMS). This age range was
selected to capture a broad spectrum of individuals with behaviors relevant
to mental health and phone usage across the lifespan. Given the level of
comorbidity and overlapping symptom profiles of anxiety, depressive or
stress-related disorders in our study sample (63.5% comorbidity), partici-
pants were included in a single mood and anxiety (MA) disorders group if
they met DSM-V criteria for MDD, post-traumatic stress disorder (PTSD),
or an anxiety disorder (including GAD, Social Anxiety Disorder, and Panic
Disorder) as determined by the Structural Clinical Interview for DSM-V
Axis Disorders (SCID)"®. Grouping participants in this manner allowed for a
transdiagnostic approach and dimensional analyses of symptom severity,
rather than categorical diagnoses, which might overlap across individuals
and heterogenous presentations. Healthy control (HC) participants free
from any current or past psychiatric diagnoses as determined by the SCID or
the MINI were also enrolled. Participants were excluded if they did not
speak English or own a smartphone that could run the study applications.
After screening, the full MASQ was completed in-lab to assess Anxious
Arousal, General Distress, and Anhedonic Depression to capture shared
underlying dysfunctions that might contribute to both mood and anxiety
disorders®. All study procedures were conducted in accordance with the
guidelines and regulations set by the Program for Protection of Human
Subjects and Institutional Review Board at the ISMMS. Participants pro-
vided written informed consent and were compensated for their time.

Digital phenotyping

The smartphone application, mindLAMP, was utilized to capture active data
and passive data on both Apple and Android personal smartphone devices
over a 30-day study period. Active data included daily single-item measures
of Anxious Arousal (anxiety), General Distress (distress), and Anhedonic
Depression (depression) (see Table 3). These single-item scales were
developed by summarizing questions that constitute the MASQ™ tripartite
subscores for Anxious Arousal, General Distress, and Anhedonic Depres-
sion (see Table 3). Participants also completed two exploratory novel
measures of intrinsic and extrinsic motivation on the same daily basis (see
Table 3). The intrinsic motivation measure (see Table 3) was developed by
summarizing themes from the interest/enjoyment subscale of the Intrinsic
Motivation Inventory”” and the Work Extrinsic and Intrinsic Motivation
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Scale”. Meanwhile the extrinsic motivation measure (see Table 3) was
developed by summarizing themes surrounding work motivation from the
Work Extrinsic and Intrinsic Motivation Scale”. Participants provided
responses to each measure on a 0-10 point Likert scale, with 0 indicating
‘Strongly Disagree’ and 10 indicating ‘Strongly Agree.” Passive data were also
collected continuously in the background via smartphone sensors and
served to monitor screentime and steps taken per day through a pedometer,
Apple Health application, and Google Mobile Services. Participants were
guided through download of mindLAMP onto their own smartphone. Each
week, the research team assessed adherence and provided feedback to the

participant via a standardized email template to encourage adherence®.

Preprocessing

Active and passive data were preprocessed in Python. Survey days were
coded as chronological days since enrollment and stratified to begin at 6 am
to account for potential duplicates from the built-in sensors. Survey
responses that occurred on the weekend were determined based on the date
on which a survey was completed and coded as ‘1’ for weekend and ‘0’ for
weekday. A flow chart illustrating the breakdown of participants is shown in
Fig. 1. Briefly, while N = 114 participants were enrolled in the study, N=8
participant’s data were unable to be preprocessed due to technical issues
resulting in no data, or a complete lack of participant engagement. Therefore
N =106 participants data were successfully obtained and preprocessed. Of
these, N = 101 participants (49 HC, 52 MA) met criteria for inclusion based
on completing at least 3 days of active data (see Table 1 for participant
demographics). These participants were included in an adherence analysis
given the study requirements for completing 30 days of surveys. Of the
N =101 participants with active data, N = 80 had MASQ scores available
and were included in the analysis for assessing the reliability of the
eMASQ-EMA:s.

Passive data was obtained from a total of N'= 106 participants. How-
ever, only N="73 participants (38 HC, 35 MA) had steps sensor data
available from the mindLAMP app and N = 81 participants (43 HC, 38 MA)
had screentime sensor data available and met criteria for inclusion based on
having at least 3 days of data (See Fig. 1 for information on missingness and
exclusion criteria). Steps sensor data was collected from three distinct
sources via mindLAMP: (1) a pedometer within the mindLAMP platform
which was used to calculate daily steps by taking the maximum step count
on a given day, (2) Apple Health which was used to calculate steps taken
per day by taking the cumulative sum of step counts on a given day, and (3)
Google Mobile Services which was used to calculate steps taken per day
similarly to the Apple Health source. Apple Health and Google Mobile
Services data were considered Digital Health Ecosystems data and selected
as the primary source of steps data. To account for days with missing Digital
Health Ecosystems steps data, we interpolated values from the pedometer
source on days where this source had data available, given the moderate
correlation that exists across values between these two data sources (see
Supplementary Fig. 8). Finally, to account for a sensor-related error-margin,
values recorded within 30 s of each other and within 10% magnitude of each
other were considered duplicates and only the first entry was included (see
Supplementary Fig. 9).

Screentime sensor data were subset into epochs of morning
(6am-12 pm), afternoon (12 pm-6 pm), evening (6 pm-12am), and
overnight (12 am-6 am). The raw screentime data consisted of timestamps
corresponding to each instance of change in “device state,” including “screen
on,” “screen off,” “device locked,” and “device unlocked,” with each time-
stamp denoting the transition between these states. Preprocessing involved
segmenting the data by calculating the duration between each instance of
“screen on” and either “screen off” or “device locked,” accounting for
instances where the device transitioned directly to “device locked.” Subse-
quently, the total screentime for each quadrant of the day was computed and
days with missing screentime data were removed. Segments with durations
of less than 30 s were excluded to minimize the influence of brief screen
activations, often attributed to notifications rather than active use. Taking
the raw data, we separately subset participants with a minimum of 5 days of

» «

active, steps, and screentime data to retain sufficient timepoints for a reliable
correlation analysis between each feature. This resulted in a sample of
N =48 participants (27 HC, 21 MA). Using this dataset, we extracted the
time course of each of the measures to apply the Dependency Network
Analysis (DgpNA) method described in detail in the following section
(Integrating data over time: Dependency Network Analysis (DgpNA)).

Participant study adherence

To assess how well participants engaged with the application and determine
the feasibility of digital phenotyping studies within a psychiatric patient
population, we used simple, unpaired two-sample t-tests to determine if
there was a significant difference in the average number of days on which
participants from each group completed at least one EMA. Additionally,
given the requirement to complete surveys daily for 30 days, an unpaired
two-sample t-test was used to assess if there is a significant difference in
survey completion by day between our two groups.

Assessing reliability and consistency of eMASQ-EMAs

To determine the reliability of each eMASQ-EMA, we constructed models
with the eMASQ-EMA as the dependent variables, the corresponding
MASQ score and subgroup classification (MA vs. HC) as independent
variables, a covariate for survey day and a random effect for participant.
Additionally, we conducted a stratified analysis to examine associations
across each group. In this analysis, we refitted three similar regression
models without the group term as a predictor for different cohorts (i.e., MA,
HC, and combined MA + HC). We evaluated and visualized the differences
in regression coefficients for each model using lollipop plots. Finally, to
assess the internal consistency of the eMASQ-EMA over time, we extracted
intraclass correlation coefficients (ICC) from the models, which were also
visualized via lollipop plots. The ICC was interpreted using standard
nomenclature where values below 0.5 indicate poor reliability, between 0.5
and 0.75 moderate reliability, and any value above 0.75 indicates good-to-
excellent reliability" (see Supplementary Fig. 1 and Supplementary
Result 1). Additional linear mixed effects models adjusted for age, sex,
survey day and weekend, with a random effect for participant were also
tested to assess the reliability of each eMASQ-EMA within the MA group
(see Supplementary Result 2, Supplementary Tables 2-4, Supplementary
Fig. 2). To examine variability of these three measures in the real-world, the
standard deviation over time was computed for each participant in each
group and entered into independent-samples t-tests, or welch tests where
appropriate.

Exploring the effects of intrinsic and extrinsic motivation on
anxiety, distress and depression

To assess the relationship between intrinsic and extrinsic motivation and
eMASQ-EMA symptoms in the whole sample (HC and MA), a series of
mixed-effects models were fitted and compared based on the AIC metric (see
Supplementary Result 3 and Supplementary Tables 17-20 for results). Zero-
inflated Poisson (ZIP) mixed-effects models were determined to be the best
fitting models based on AIC (see Supplementary Tables 17-20) and in line
with our observation that healthy controls consistently reported on the lower
end of the eMASQ-EMA scales, i.e., they produced zero-inflated datasets (see
Supplementary Fig. 3). ZIP models are mixture models that consist of two
parts: (1) a Poisson count model which serves to estimate the incident risk
ratio (IRR) and (2) a logit model for estimating an odds ratio (OR) and
predicting excess zeros™". These models were fitted using the GLMMa-
daptive package’s ‘zi.poisson() family in R to assess the relationship between
variability in eMASQ-EMA symptoms and intrinsic/extrinsic motivation. All
models included group, survey day and a random effect for participant.
Additional models were estimated including interaction terms and covariates
of age, sex, and weekend. Models were compared using the AIC metric and
the most frequently best-fitting model was selected for main results reporting
(see Supplementary Table 21). Results tables reported in the supplement
include both standardized and unstandardized IRRs and ORs that were
generated using the sjPlot package’s ‘tab_model® function in R with the
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parameter show.std = “std2” given our models include continuous and
binary predictor variables. To aid in interpretation, unstandardized ORs are
reported as effect sizes whereby OR < 1.5 and OR > 5 are indicative of small
and large effect sizes, respectfully®. Anything in between these bounds was
considered a medium effect. Meanwhile unstandardized IRRs are reported in
the main text and interpreted as percent changes (Percent Change=
(IRR -1) x 100). To illustrate the results from these models we used the
‘effectPlotData‘ function in R to generate partial effects plots with robust
(sandwich) standard errors to visualize the fitted model’s effects, which
include adjusting for covariates. Visualizing the data in this way enables us to
display the predicted relationships between key predictors and the outcome
while adjusting for covariates. Importantly, the plots account for model
uncertainty, which is especially relevant given the use of a zero-inflated
Poisson model to account for the distribution of the outcome which con-
sisted of pseudo count data bounded between 0 and 10 with excess zeros.

Results from the model adjusting for age, sex, survey day and
weekend with a random effect for participant are reported in the main
text given this model was most frequently determined to be the best fit.
See Supplementary Materials (Supplementary Result 3 and Supple-
mentary Table 21) for full details including results from the model
comparison. The IRR and OR for each predictor variable was calcu-
lated by taking the exponential of each regression coefficient. Analyses
were conducted at the level of the individual as opposed to the obser-
vation given the longitudinal nature of the data. In interpreting the
results from this model, a significant effect of group, age, and sex would
indicate there were differences in symptom severity between HC and
MA, different age groups, or males versus females. A significant effect
of day would indicate there was a change in symptom severity over the
course of the study. Finally, a significant effect of weekend would
indicate there were differences in symptom severity on weekends in
comparison to weekdays.

Exploring the effects of physical activity and screentime on
symptoms

Similarly to the motivation analysis, separate ZIP models were tested and
compared to assess the relationship between variability in eMASQ-EMA
symptoms and physical activity (steps taken per day) and between
eMASQ-EMA symptoms and digital activity (screentime) within the
whole sample. Again, results from the model adjusting for age, sex,
survey day and weekend with a random effect for participant are
reported in the main text with results from competing models available
upon request.

Steps and screentime data were scaled within-participants to assess
how fluctuations in a participant’s own step count/screentime were asso-
ciated with their respective symptom severity over time. Therefore, model
coefficients reported from these data are standardized. Datapoints greater
than 3 standard deviations from the mean were considered outliers and
removed from the following analysis. The IRR and OR for each predictor
variable was calculated by taking the exponential of each regression coef-
ficient. Analyses were conducted at the level of the individual as opposed to
the observation given the longitudinal nature of the data. Separate analyses
assessing how differences in step counts and screentime across participants
relate to symptom severity were conducted by scaling between participants
and are available upon request.

To explore the timing of associations between physical activity/digital
activity and symptoms on subsequent time-points, a time-lagged linear
mixed effects model was performed and adjusted for survey day with a
random effect for participant, using the lead’ function from the dplyr
package in R. Each eMASQ-EMA served as the dependent variable and
steps/screentime served as the independent variable. A time lag varying
from 1 to 7 time-periods was placed on each eMASQ-EMA to determine
how physical activity/digital activity can affect mood and anxiety symptoms
within psychiatric groups at subsequent time-points. We primarily focus on
a 1 and 7-period lag given the lack of regular interval reporting periods in
our data.

Integrating data over time: Dependency Network Analy-

sis (DEPNA)

To assess how all measures interacted with one another over time and
evaluate which measure (symptom/activity) most impacts individuals with
a mood/anxiety disorder, we applied the DppNA model to the full
dataset™ . DgpNA is a graph theory network method for constructing a
directed graph. It takes as input the time course of each variable (i.e., node)
such that participant’s symptom scores as they occurred from Days 1-30 are
maintained. Given participants’ lack of regular interval reporting periods,
DgpNA proves to be an advantageous method for modeling digital phe-
notyping data as it does not require a high temporal resolution, unlike other
methods such as Granger causal modeling. Further, unlike structural
equation models, DgpNA does not require any specific a-priori direction of
influence. In this way, the application of the DgpNA model allows us to take
a data-driven examination of a large network, illustrate the connections
between different digital phenotyping variables (i.e., nodes) and use arrows
to show the direction in which each variable impacts other variables or is
impacted by other variables.

DgpNA was originally introduced for the study of financial data™" and
has since been extended and applied to other systems, such as the immune
system”, semantic networks” and functional brain networks”. Briefly,
DgpNA assesses a node’s centrality in a network based on its correlational
influence, which is measured by the partial correlation coefficient. This
coefficient quantifies the unique contribution of one node to the correlation
between two other nodes, after removing the effect of a third node. In
simpler terms, the partial correlation reflects the direct relationship between
two variables while controlling for the influence of a third. Correlational
influence, then, is the difference between the overall correlation of two nodes
and their partial correlation when accounting for a third node. When this
coefficient is large, it means a significant fraction of the correlation between a
pair of nodes can be explained by the effect of a third node. Given correlation
does not imply causation, we cannot infer causal influence from this method,
and only infer the networks’ hierarchy of influence based on correlational
influences”. In this way, DgpNA offers a new computational model for
quantifying and comparing directed graphs based on timeseries data.

In this approach, each of the active and passive data measures represent
a node in the graph. First, all the nodes (i.e., measures) time course were
normalized within participants using Z-Score. Then, the pairwise
node-node connectivity matrix was calculated using Pearson correlations
and normalized using a Fisher r-to-Z transformation. Next, we calculated
the partial correlation between two nodes, i and k, with respect to a third
node, j — PC(i.k | j). The influence of node j on the pair of nodes i and k was
then defined as the difference between the correlation, C(i,k), and the partial
correlation, PC(ik | j), given by the following equation and Fig. 6a (1):

90,93

d(i, klj) = C(i, k) — PC(i, k) ¢y

VI = C¥, I — C(k, j)]

This coefficient is large only when a significant fraction of the corre-
lation between nodes i and k can be explained in terms of node j. We then
repeated this process to calculate the partial correlation effect for each node
on all other pairwise correlations in the network. The total influence of node
j on node i, D(ij) is defined as the average influence of node j on the
correlations C(i,k), over all nodes k, given by Eq. (2) and Fig. 6b:

PC(i, k|j) =

N—-1
DGj) = g D dli Kl @
k#j

The node dependencies define a dependency matrix D, whose (i,j)
element is the influence of node j on node i. Particularly, the dependency
matrix is nonsymmetrical since the influence of node j on node i is not equal
to the influence of node i on node j.
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The ‘Influencing Degree’ of node j is defined as the sum of the influence
of node j on all other nodes i, given by Eq. (3) and Fig. 6¢:

N-1
Influencing Degree(j) = Z D(i, j) 3)

i#j

The ‘Influencing Degree’ measure indicates the hierarchy of efferent
(out-degree) influence of the node on the entire network. The higher this
measure, the greater its impact on all other connections in the network and
the more likely it is to generate the information flow in the network. The
influence of the network on node j is termed the ‘Influenced Degree’ and is
defined as the sum of the influences (or dependencies) of all other nodes i in
the network on node j, given by Eq. (4):

N-1
Influenced Degree(j) = Z D(j, i)

i#f

4)

The higher the ‘Influenced Degree’ measure, the more this node was
dependent or influenced by all the other nodes in the network.

Next, we conducted a between-group two-sample t-test for each node’s
degree of influence. All influencing or influenced t-test results were cor-
rected for multiple comparisons (N = 8, number of nodes in the network)
using false discovery rate (FDR) correction with p <0.05 threshold. To
create network graph visualization (Fig. 6d), we used the pair-wise depen-
dency connectivity matrix. A two-tailed t-statistic was computed to com-
pare the two groups. We then connected only pair-wise nodes with
dependencies that were significantly different between the two groups
(p <0.05, FDR corrected for number of nodes) creating a simple graph
visualization of the differences between the groups. Graph visualization was
conducted using the NetworkX library in Python™.

Data availability
The data that support the findings of the current study are available from the
corresponding author upon reasonable request.

Code availability
The underlying analysis code for this study is publicly available on GitHub:
https://github.com/laurelmorris/digital.
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