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for bone stress prediction in runners
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Running biomechanics studies the mechanical forces experienced during running to improve
performance and prevent injuries. This study presents the development of a digital twin for predicting
bone stress in runners. The digital twin leverages a domain adaptation-based Long Short-TermMemory
(LSTM) algorithm, informed by wearable sensor data, to dynamically simulate the structural behavior of
foot bones under running conditions. Data from fifty participants, categorized as rearfoot and non-
rearfoot strikers, were used to create personalized 3D foot models and finite element simulations. Two
nine-axis inertial sensors captured three-axis accelerationdata during running. TheLSTMneural network
with domain adaptation proved optimal for predicting bone stress in key foot bones—specifically the
metatarsals, calcaneus, and talus—during themid-stanceandpush-off phases (RMSE < 8.35MPa). This
non-invasive, cost-effective approach represents a significant advancement for precision health,
contributing to the understanding and prevention of running-related fracture injuries.

Running frequently results in lower limb bone stress injuries due to its
repetitive, weight-bearing nature. Epidemiological evidence suggests that
annually, runners face injury incidence rates ranging between 24 and 77%1.
Notably, stress fractures in the metatarsal bones, while accounting for up to
4% of all sports-related injuries2, are among the most common types of
fractures observed in runners due to the repetitive impact on the forefoot
during running1.

During running, the mid- to forefoot experiences high stress, par-
ticularly from mid-stance to push-off phases. Morphologically, meta-
tarsal bones are characterized by their cylindrical shape and relatively
thinner structure compared to other bones. This anatomical design is
effective in facilitating the windlass mechanism, enhancing stability, and
attenuating shock impact during loading3. However, this structural
configuration also predisposes them to increased fracture risk.
Mechanical loading on bones results in the accumulation of micro-
damage. A stress fracture occurs when a bone, subjected to high-stress
magnitudes, cannot promptly repair this microstructural damage under
intense cyclic loads4,5.

While bone staple strain gauges can quantify the stress experienced by
bones, including the metatarsals6,7 and tibia8–10, their invasive nature makes

them impractical for assessing andmonitoring internal bone loading during
running. Instead, mathematical and biomechanical modeling provides a
feasible alternative for in silico load estimation. Beam theory-based recon-
structions of bone models have been employed to evaluate stress in the
second metatarsal11 and tibia12. However, these geometric models may
oversimplify the mechanical complexities present in real-world scenarios.
They often overlook shape deformations under stress and the interactions
between soft tissue and bone13,14.

Conversely, surrogate finite element (FE) simulation provides a
potentially more accurate biomechanical model for foot stress analysis in
running, albeit being computationally intensive and time-consuming,
particularly when developing models based on personalized geometries.
This highlights a critical challenge in achieving both accuracy and efficiency
in biomechanical modeling. Consequently, relevant research often faces a
dilemma: either simplifying geometries or conducting case studies. This
leads to a trade-off between developing a comprehensive FE model13,14 and
undertaking pilot studies with limited statistical significance15. To overcome
this limitation, the use of advanced techniques for high-fidelity and perso-
nalized reconstruction of lower limb musculoskeletal anatomy is
promising16. This can be achieved by leveraging low-fidelity real-world
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measurements, such as those from inertial sensors or smartphone cameras,
and integrating them with insights derived from neuromusculoskeletal
simulations17.

In recent decades, data-driven approaches have gained significant
popularity, largely due to advancements in computational capabilities and
the refinement of machine learning algorithms. Deep learning algorithms,
in particular, are increasingly favored in the field of running biomechanics,
reflecting a shift from traditional laboratory-based investigations to real-
world estimations17,18. The integration of variouswearable sensors facilitates
real-time evaluation, circumventing the need for conventional and cum-
bersome feature engineering processes. This approach has been applied in
running to classify gait characteristics such as performance level19, foot
posture20, and strike pattern21,22, and to predict sequential data, including
metabolic energy expenditure23, ground reaction force24,25, joint
kinematics26–28, and joint kinetics29–31.

In this context, one-dimensional convolutional neural network
(CNN1D) and long short-term memory (LSTM) architectures have
demonstrated strong capabilities in predicting time-series data for
human activity recognition32,33, gait analysis30,34, and running
biomechanics24,35. Temporal convolutional networks (TCN) are
designed to extract temporal features for sequential data prediction and
have proven highly effective in predict lower limb movements34.
Recently, transformers, known for their use in natural language pro-
cessing tasks such as machine translation and text generation, have been
adapted for biomechanical applications36. Central to these transformers
is the attention mechanism (AM), which has been integrated into
bidirectional-LSTM architectures to estimate lower extremity kine-
matics during running, yielding promising results28.

Despite the considerable potential of data-drivenmethods in this field,
most existing models focus on predicting external forces (e.g., ground
reaction forces) or joint kinetics, which, while useful, do not fully capture

internal mechanical stresses within bones. Overuse injuries, such as stress
fractures, are primarily driven by repetitive internal bone stresses, which
may not be directly inferred from joint kinetics or external forces alone.
Previous studies have shown that external load metrics often exhibit weak
correlations with internal tibial bone stress37,38, highlighting the need for
direct stress estimations at the bone level. Understanding bone stresses in
vivo is crucial for injury prevention, particularly in high-impact activities
such as running, where excessive localized stress accumulation can lead to
microdamage and stress fractures.

This study aims to bridge this gap by developing and validating a
novel digital twin framework for predicting metatarsal bone stresses. In
this study, a digital twin refers to a computational model that dynami-
cally mirrors the biomechanical behavior of an individual’s foot during
running, integrating real-time sensor data with subject-specific anato-
mical and mechanical properties to predict internal bone stresses39,40.
The framework integrates personalized FE models, informed by statis-
tical shape modeling (SSM) and free-form deformation (FFD) techni-
ques, with deep learning predictions. The model is trained using
wearable sensor accelerations as inputs and FE-predicted bone stresses
as outputs. To comprehensively validate the framework, we evaluate its
predictive performance across different foot strike patterns, specifically
comparing rearfoot and non-rearfoot strikers. This approach enables
precise estimation of stresses on key foot bones—specifically the meta-
tarsals, talus, and calcaneus—thereby advancing the field of running
biomechanics and contributing to more effective injury prevention
strategies through the use of digital twin technology.

Results
The statistical analysis showed no significant differences in vonMises stress
levels between rearfoot and non-rearfoot strikers during the mid-stance
(Fig. 1a) and push-off (Fig. 1b) phases. Comparisons of the performance

Fig. 1 | VonMises Stress Distribution in Rearfoot andNon-Rearfoot Strikers.Comparison of VonMises stress between rearfoot (blue) and non-rearfoot (red) strikers for
each foot bone during the midstance (a) and push-off (b) phases. Note: M1–M5 represent the first to fifth metatarsals.
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across the six selectedmodels are presented in Supplementary Table 1, with
LSTM+MLP exhibiting the highest accuracy. The model’s interpretability
with different IMU sensor inputs is presented in Supplementary Fig. 1. The
FE simulation results for the vertical compression-deformation relationship
fell within the standard deviation of the experimental measurements, con-
firming the model’s validity. Table 1 details the accuracies of the predicted
mean and peak von Mises stresses. During the mid-stance phase, the cal-
caneus (0.47 ± 0.29MPa) and talus (1.14 ± 0.66MPa) demonstrated lower
prediction accuracy for mean bone stress, as measured by root mean
squared error (RMSE), compared to M1-M5 (1.24 ± 0.77MPa,
1.88 ± 1.13MPa, 1.79 ± 1.07MPa, 1.85 ± 1.11MPa, and 2.16 ± 1.30MPa,
respectively). However, the mean MAPE was higher for the calcaneus and
talus at 22.12%, compared to 16.17% forM1-M5. Predictedpeak stresses for
the calcaneus and talus showed slightly better accuracy in terms of MAE,
RMSE, andMAPE (1.24MPa, 1.30MPa, and 8.77% respectively) compared
to M1-M5 (3.79MPa, 4.14MPa, and 11.45% respectively).

The analysis showed that the peak bone stress accuracy, in terms of
percentage error, generally surpassed that of mean bone pressure, with a
significance level of p < 0.05 (see Table 1 and Fig. 2). The mean MAE and
MAPEfor peak stresses inM1-M5during thepush-off phasewere 6.56MPa
and 11.45%, respectively. Figure 3 illustrates the Pearson correlation coef-
ficient (r) and Bland-Altman plots comparing predicted stresses with
reference von Mises stresses obtained from FE modeling.

Figure 4depicts the comparisonof prediction accuracy for rearfoot and
non-rearfoot strikers during the mid-stance and push-off phases, using
RMSE, r, and Bland-Altman plots. The results indicated consistency
between the two groups, except for the von Mises stress in M1 and M4
(p = 0.005 and 0.03, respectively) during the mid-stance phase and for
stresses in M2 andM3 (p = 0.026 and 0.049, respectively) during the push-
off phase, where the non-rearfoot group presented smaller errors.

Discussion
The study presents a novel approach for predicting foot bone stress during
running, utilizing wearable sensors combined with a domain adaptation-
based LSTM algorithm. The stress data were derived from FE simulations,
with models generated from foot scans coupled with FFD-based SSM. The
findings showed promising results in predicting stresses in M1-M5, calca-
neus, and talus during themid-stance phase, aswell as inM1-M5during the
push-off phase.Notably, the study achieved foot stress evaluationusing low-
cost and convenient sensors and scanners, underscoring its potential for
future implementation.

Previous studies often simplified computational models11–14 or limited
participant numbers15,41,42, potentially compromising statistical significance
due to computational cost considerations. This study overcomes these
limitations by reconstructing surrogate FE models for bone stress evalua-
tion, utilizing comprehensive volumetric models based on detailed, person-
specific geometries on foot and ankle joints without reducing the sample
size. This was achieved through SSM coupled with FFD, as proposed and
validated in a previous study43. Specifically, a 3D personalized foot-ankle
model was built via SSM generation of the foot surface, which informs bone
reconstruction based on FFD. The in-silico simulation results presented in
this study are consistent with previousfindings regarding secondmetatarsal
stress14.

Research in biomechanics and sports medicine has sought to identify
thresholds of bone stress that, when exceeded, increase the risk of injury,
particularly stress fractures. These thresholds are often linked to repetitive
loading cycles that exceed the bone’s capacity for repair, leading to micro-
damage accumulation4,44. In running biomechanics, metatarsal stress frac-
tures aremore likelywhen peak bone stress during repetitive impact loading
consistently surpassescritical values,which canvarybasedon factors suchas
bone density, strain rate, and physical condition5. However, the precise
identification of harmful bone stress thresholds remains an ongoing
challenge4,5. Our model contributes to this effort by enabling real-time
monitoring and prediction of bone stress levels, potentially establishing
more personalized and accurate thresholds for runners. By accuratelyT
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estimating bone stresses, these models can inform personalized training
programs, reduce the risk of stress fractures, and enhance rehabilitation
protocols through precise stress level control.

CNN, LSTM, and TCN have demonstrated strong capabilities in
predicting biomechanical variables from time-series data, such as accel-
eration or joint kinematics18,31,45. For instance, kinematic and kinetic para-
meters have been investigated to predict tibial stress fracture in running46,47.
LSTM, in particular, excels at capturing long-term dependencies in time-
series data, outperforming self-attention-based transformers. This study
demonstrated that integrating an LSTM-MLP model with domain
adaptation-based transfer learning can enhance prediction performance.
The proposed model accurately predicted peak stresses during the mid-
stance phase of running, with an RMSE of 3.33 ± 1.5 and an r of 0.83 ± 0.04,
and during the push-off phase, with an RMSE of 7.19 ± 1.17 and an r of
0.84 ± 0.02. Prior studies have focused on predicting joint contact forces to
better understand bone stress variations during running31,48,49. Building on
this foundation, the present study provides a significant and timely con-
tribution to the existing body of evidence16,17,50,51 by demonstrating the
potential of internal bone stress monitoring for predicting overuse running
injuries.

This study demonstrated that the deep learning model was more
accurate at predicting peak stresses than mean stresses, as evidenced by
lower RMSE andMAPE values. This indicates that the proposed pipeline is
particularly adept at detectingpeak loading conditions onbones, rather than
average loads. Zandbergen et al.37 reported no strong correlation between
acceleration and internal tibial bone loads, while ground reaction force
features also showed weak associations with tibial loads during running38.
Together, these prior findings and our model’s superior accuracy in pre-
dicting peak stresses underscore the importance of peak characteristics in
training data-driven algorithms to estimate internal bone loads. This aligns
with fatigue failure theory, which identifies repeated peak stresses—rather
than average loads—as primary contributors tomicrodamage accumulation

and injury (e.g., stress fractures) under cyclic loading52. The proposed
model’s ability to capture the relationship between acceleration and bone
stress, a taskwhere traditionalmethods often struggle, further highlights the
utility of peak-focused approaches for injury risk prediction.

Physics-based methods often require significant simplifications,
therefore reducing its reliability53. Our use of anMLmodel is justified by its
ability to process large datasets andprovide real-time predictions, crucial for
practical, scalable applications in running biomechanics. This study
underscores the strong generalizability of the proposed data-driven model
for both rearfoot and non-rearfoot strikers. Different strike patterns exhibit
varying biomechanical characteristics54, suggesting unique biodynamic
adaptations for each. This study found that no statistical difference in peak
stresses between rearfoot and non-rearfoot strike runners, which is con-
sistent with previous findings11,14. However, ground reaction forces may
differ between these cohorts, underlining the crucial role of personalized
foot geometries in stress simulation. Internal loading, possibly adapted
through mechanobiology, may not be accurately represented by external
forces aloneduring running55. This gap iswhatmachine learning technology
or data-driven learning aims to bridge, as shown in this study and other
recent studies31,56. Previous studies have utilized various data-driven
approaches to project knee57 and ankle31 joint moments and contact for-
ces, tibial bone loading56, and Achilles tendon stress58. To our knowledge,
this is the first study to employ transfer learning-based deep learning with
wearable technology for predicting internal foot loading. Our approach can
be seamlessly integrated into current wearable sensor-based biomechanical
assessments, offering a scalable solution that enhances personalized injury
prevention and management, while paving the way for future research to
explore its applicability across diverse populations and sports activities.

In our correlation analysis, we observed a systematic trend in the
residuals, suggesting that the linear relationship may not fully capture the
underlying data structure. This pattern indicates that the variance of the
residualsmight increase or decreasewith the predicted values,meaning that

Fig. 2 | Violin Plots ofMAPE for Predicted StressesDuringGait Phases. Comparison ofMAPE for predictedmean and peak stresses in each region during themid-stance
(a) and push-off (b) phases. Note: MAPE mean absolute percentage error, M1–M5 represent the first to fifth metatarsals.
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the errors arenot consistent across all levels of the independent variable. The
presence of these trends underscores the importance of considering both
correlation and agreement between predicted and actual values when
evaluatingmodel performance. This systematic bias could potentially lower
the overall mean difference, which suggests that while the Pearson corre-
lation indicates a strong linear relationship, there may be underlying issues
with the model’s accuracy across the full range of data59. The observed bias
highlights areas where the model could be refined, particularly in its ability
to predict extreme values. Future work should focus on improving the
model’s calibration across the entire data range, possibly by incorporating
non-linearmodeling techniques or adjusting themodel to better account for
the variability observed in the residuals.

Although this studypresents promisingfindings, it alsohas limitations.
As this study derived loading conditions from plantar pressure during
barefoot running, future studies should incorporate footwear as a covariate
to enhance the model’s applicability. Furthermore, training foot shape
models under various weight-bearing conditions, such as different gait
patterns and load distributions, could be beneficial, as it would introduce
more variations into the dataset, potentially leading to more accurate and
generalized models60. Future studies should also evaluate the performance
and generalizability of the proposed approach in female runners to account
for gender-specific biomechanical differences and broaden the applicability
of the findings. Additionally, the running stance phases were simulated
using three quasi-static models, which might oversimplify the FE models.
Explicitmodelingmaymore accurately represent foot-ankle biodynamics in
future studies.

In summary, this study presents a cutting-edge predictive model for
foot bone stress that leverages wearable sensors and LSTM with domain
adaptation. The model offers a cost-effective and innovative alternative to
traditional biomechanical analyses. Utilizing personalized 3D foot models,

our approach achieves high accuracy in predicting foot bone stress during
the stancephase, crucial forpreventing injuries among runners.Themodel’s
effectiveness across various running styles highlights its potential for per-
sonalized assessments. Despite its strengths, the study’s limitations under-
score the need for further validation across a more diverse demographic.
Overall, our findings represent a significant advancement in integrating
machine learning with running biomechanics and clinical practice. This
work contributes to digital health by providing accessible, data-driven
insights for injury prevention in running, enhancing the potential for per-
sonalized healthcare solutions.

Methods
Participants
Following recommendations from a prior evidence-based study18, we
recruited fifty male participants, comprising 38 rearfoot and 12 non-
rearfoot strikers (age: 22.7 ± 3.9 years; height: 1.76 ± 0.06m; mass:
67.7 ± 9.6 kg; BMI: 21.8 ± 2.7 kg/m2). Recruitment was facilitated via social
media and by distributing posters in universities and running clubs. All
participants in the study engaged in recreational running and maintained a
minimumweeklymileage of 20 km.None had experiencedmusculoskeletal
injuries in the lower limbs in the preceding six months. Participants were
free to withdraw from the study at any time without providing a reason. In
accordancewith theDeclaration ofHelsinki, this studywas approved by the
ethics committee of Ningbo University (RAGH20201137), and written
informed consent was obtained from all participants prior to the com-
mencement of the experiments.

Data acquisition
Figure 5 provides an overview of the study’sflowdiagram. Participants were
given 10–15min to warm up, which included running on a treadmill at a

Fig. 3 | Pearson correlation coefficient (r) plot (left) and Bland-Altman plot
(right) compare predicted stresses with reference stresses obtained from finite
element modeling during the mid-stance (in blue) and push-off (in purple)

phases. Labels (a–e,h–l) represent thefirst to fifthmetatarsals, while (f, g) denote the
calcaneus and talus.
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self-selected pace for a few minutes, followed by stretching exercises,
familiarizing themselves with the experimental setting, and calibrating their
running pace. Plantar pressurewas captured using a Footscan® plate system
(RSscan International, Belgium, frequency: 350Hz), securely positioned at
the center of a pathway. The design of the plate, with consistent surrounding
dimensions, ensured optimal running comfort. Plantar pressure data were
gathered using the mid-gait protocol61, in which participants ran at a self-
selected speed. The starting position was adjusted to ensure accurate pla-
cement of the right foot on the sensor platform during the fourth step. The
strike index, indicating a rearfoot striking pattern, was determinedwhen the
center of pressure was within 0–0.33 of the foot length at initial contact62.
Additionally, two nine-axial inertial sensors (IMeasureUV1, New Zealand,
frequency: 100 Hz, weight: 12 g) were affixed to the foot dorsum and distal
anteromedial tibia. These sensors recorded three-axis acceleration data,
which were synchronized with the plantar pressure measurements using a
gait event detection algorithm63. Barefoot running was chosen to eliminate

the influence of footwear on plantar pressuremeasurements and allow for a
direct assessment of internal foot loading. Three appropriate trials were
selected fromthe right foot (dominant side) basedonconsistent self-selected
pace, confirmed foot strike pattern, and high data integrity, with complete
and accurate plantar pressure and acceleration data.

An Easy-Foot-Scanmachine (OrthoBaltic, Lithuania) was utilized to
capture the 3D surface contours of participants’ feet. During the scanning
process, participants were instructed to stand still with their feet posi-
tioned shoulder-width apart, distributing their weight evenly between
both legs, while placing the right foot on the scanner’s surface. This
procedure adhered to a pre-established methodology64. The scanned foot
surface data served as input for a pipeline combining SSM and FFD, as
detailed in Xiang et al.43. A pre-trained statistical shape model, based on
principal component analysis (PCA) with skin measurements as inputs,
was employed to generate subject-specific foot surfaces. These surfaces
were then used to reconstruct internal bone meshes via FFD. A summary

Fig. 4 | Comparison of RMSE between rearfoot and non-rearfoot strike runners.
a–cMid-stance phase, while d–f push-off phase. a, b, d, e Pearson correlation
coefficients and Bland–Altman plots. c, f Box plots comparing the groups. Note:

RMSE root mean square error, and M1–M5 indicate the first to fifth metatarsals.
*p < 0.05, and **p < 0.01.
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diagramhas been included in Supplementary Fig. 2 to further elucidate the
process.

Foot and ankle joint computational modeling
Figure 6 illustrates the FEmodeling and validation process. The following
steps were taken to generate 3D meshes from 2D geometries in Hyper-
Mesh 2020 (Altair Engineering, Inc., Troy, USA): the soft tissue and inner
bone surface were initiallymeshed using triangular elements (size: 3 mm).
A volume Boolean operation was then performed to capture the encap-
sulated soft tissue geometry,whichwasmeshedusing tetrahedral elements
(C3D4). Subsequently, bones were meshed as tetrahedral elements. A
mesh convergence test was conducted to minimize discretization error
and determine the appropriate mesh size. Mesh sizes tested ranged from
5mm to 1mm in 10% intervals65. The nodes and elements in thesemodels
varied between 53,000 to 56,000 and 273,000 to 278,000, respectively. The
meshes were assembled in Abaqus 2022 (Simulia, Dassault Systèmes,
USA). Models representing quasi-static gait phases were then simulated
and solved.

The materials used to reconstruct the FE models were assumed to be
homogeneous, isotropic, and linearly elastic (see Table 2). The Young’s
modulus I and Poisson’s ratio (v) values were set at 7300MPa and 0.3 for
bones66, and 1.15MPa and 0.45 for soft tissue41, respectively. Slip ring
connectors were employed to represent plantar fascias, connecting and
gliding between the medial and lateral processes of the calcaneal tuberosity
and the base of themetatarsals42. TheAchilles tendon forcewas calculated in
OpenSim67 to represent the cumulative force from the soleus, medial, and
lateral gastrocnemius muscles. Axial forces were applied to the posterior
tuberosity of the calcaneus to simulate this Achilles tendon force. During

simulations, the encapsulated soft tissue and bones were bound together
using a tie constraint.

Plantar pressure was applied directly to the FE models as the loading
condition. Plantar pressure during the initial contact,mid-stance, andpush-
off phases of the stance was measured separately from the toes, forefoot,
midfoot, and rearfoot regions, as defined in the Footscan® software (Gait
v7.0, RSScan International, Belgium). The boundary condition was set by
fixing the 3D displacement of the proximal top of the models. The incre-
mental effect was set to imitate the cumulative impact of gait following the
initial contact and mid-stance phases. The FE simulation models were
validated by comparing the vertical compression-deformation relationship
and peak plantar pressure during standing (0.136 ± 0.01MPa vs.
0.143 ± 0.01MPa) between the simulation results from five participants and
experimental measurements reported in a previous study68, as depicted in
Fig. 6c.

Data-driven approaches
Three-axial acceleration data were normalized and padded to 300 data
points, allocating 100 points for each phase: initial contact, mid-stance, and
push-off. Consequently, the input features were defined as:

xt ¼ ½x1 tð Þ; . . . ; xi tð Þ; . . . ; xnðtÞ�T 2 R3�n ð1Þ

where xðtÞ is the concatenated vector at time step t,T indicates the transpose
operation applied to the vector xðtÞ, and R3�n denotes a 3n-dimensional
real space.

In this study, the number of sensors (n) was 2, and the output features
yt 2 R7þ5. The response features comprisedmean andmaximum values of

Fig. 5 | A hybrid biomechanical modeling approach coupled with data-driven
methods predicts von Mises stress in the foot bones from inertial sensors during
running. aAcquisition of sensor data from the foot and ankle joint; bGeneration of
foot-ankle models from foot scans, informed by statistical shape modeling (SSM)
coupledwith free-formdeformation (FFD); cApplication of a data-driven approach,

using inertial sensor data as inputs and bone stress as outputs; d Finite element
simulation projects bone stress during the mid-stance and push-off phases of run-
ning. Note: IMU inertial measurement unit, SSM statistical shape modeling, PC
principal component, FFD free-form deformation.
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von Mises stresses for the calcaneus and talus at initial contact, the first to
fifth metatarsals, calcaneus, and talus during the mid-stance phase, and the
first to fifth metatarsals during the push-off phase, summing up to 28
features in total. Each feature from the input and output data was stan-
dardized by removing the mean and scaling to unit variance
independently69. The mean and standard deviation, computed from the
training/validation set, were utilized for centering and scaling the corre-
sponding testing set to prevent data leakage.

The models were trained participant-wise and validated using a leave-
one-out cross-validation approach. This practice ensures that data from the
test set is not exposed during training, thereby guaranteeing robust gen-
eralization of the model.

For this investigation, six scenarios were designed for model training:
TCN, CNN, LSTM, CNN+ LSTM, LSTM+MLP (multilayer perceptron
networks), andLSTM+AM.The selectedarchitectureswere chosen for their
established effectiveness in biomechanical time-series prediction, computa-
tional efficiency, and suitability for short, high-frequency wearable sensor
data. The formula for the forget gate in the LSTMmodel is expressed as:

f t ¼ σ Wf ht�1; xt
� �� �

þ bf ð2Þ

where σ represents the sigmoid function, xt is the input, ht�1 is the previous
hidden state,Wf is theweightmatrix between the forget gate and input gate,

and bf is the connection bias at time step t. The equations for the cell stateCt
and hidden state ht are given by:

Ct ¼ f tCt�1 þ it eCt ð3Þ

ht ¼ ottanhðCtÞ ð4Þ

where it is the input gate, eCt denotes the candidate for the cell state at time
step t, and ot represents the output gate.

A supervised domain adaptation algorithm was implemented to
extract domain-invariant biomechanical features, enhancing model gen-
eralization and performance by designating the trainedmodel as the source
domain and the test dataset as the target domain70. In this framework, label
prediction corresponds to estimating bone stress values, while domain
classification helps distinguish data distributions between the source and
target domains. The optimization follows an adversarial training strategy,
where the model minimizes the task-specific loss (bone stress prediction)
while maximizing the domain classification loss, thereby improving gen-
eralization across different subjects and running conditions. To achieve this,
a Gradient Reversal Layer was integrated allowing the model to learn
domain-invariant features that cannot be easily distinguishedby thedomain
classifier. The objective function was optimized by identifying the

Fig. 6 | Finite element modeling and validation. aGeometry acquisition from foot
scanning and reconstruction, informed by statistical shapemodeling (SSM) coupled
with free-form deformation (FFD); b Finite element simulation for the initial con-
tact,mid-stance, and push-off phases during running, employing plantar pressure as

the loading condition; c Model validation was performed by comparing vertical
compression to displacement and by comparing plantar pressure during standing
across five reconstructed models with experimental measurements.

Table 2 | Material properties representation for different parts in foot-ankle models

Young’s Modulus E (MPa) Poisson’s Ratio v Topology structure

Bone 7300 0.3 3D-Tetrahedra

Soft tissue 1.15 0.45 3D-Tetrahedra

Ground 17,000 0.4 3D-Tetrahedra

Plantar Fascia – – Link element (Slip ring connectors)

Achilles tendon – – Force was represented from gastrocnemius and soleus
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saddle point:

E θf ; θy; θd

� �
¼ 1

n

Xn
i¼1

Liy θf ; θy

� �
� λ

1
n

Xn
i¼1

Lid θf ; θd

� �
þ 1

n0
Xn
i¼nþ1

Lid θf ; θd

� � 

ð5Þ

whereLiy andL
i
d represent the loss functions for label predictionanddomain

classification, respectively, estimated for the i-th training example. The
architecture of the domain adaptation-basedLSTMis depicted in Fig. 7. The
deep learning models were developed using the Tensorflow framework
(2.5.0) and trained on an Nvidia Tesla A100 GPU with 80 gigabytes of
memory.

Hyperparameter tuning was conducted usingOptuna 3.3.0, leveraging
Bayesian hyperparameter optimization with the Tree-Structured Parzen
Estimator algorithm. To enhance computing efficiency, each scenario
underwent 100 trials, with early pruning of unpromising ones. The sampler
initially operates as a random sampler, recording hyperparameter settings
and objective values from previous trials. It then suggests hyperparameter
values for subsequent trials based on the past promising past results.
Hyperparameters, including the optimizer, learning rate, activation func-
tion, drop rate, epochs, batch size, convolutional layers, MLP layers, LSTM
units, numbers of TCNfilters, TCNdilations, convolutional kernel size, and
dense units, were fine-tuned to achieve optimal solutions across different
scenarios. The results for hyperparameter tuning are shown in Supple-
mentary Table 2. Attention mechanisms were employed to enhance inter-
pretability by identifying the most critical features in the sensor data for
stress prediction. Specifically, weights from the bidirectional LSTMwere fed

into a self-attention layer, and the resulting scores were normalized and
visualized. Evaluation metrics, including the Pearson’s product-moment
correlation coefficient (r), mean squared error, RMSE, mean error (ME),
mean absolute error (MAE) and mean absolute percentage error (MAPE),
were calculated to estimate the prediction performance by comparing the
FE-derived reference values with the predictive values on the test sets.

Statistical analysis
An independent t-test was conducted to assess the statistical differences in
peak von Mises stress between rearfoot and non-rearfoot strikers. This
comparison was included to validate the framework’s ability to detect bio-
mechanically meaningful differences between distinct gait patterns. Addi-
tionally, we compared the predictive accuracy of peak stresses between
rearfoot andnon-rearfoot strikers usingRMSE.When the Shapiro-Wilk test
indicated a violation of the normality assumption, theWilcoxon rank-sum
test was employed for statistical analysis. The significance level was set
at p < 0.05.

The performance of the predictive model was evaluated by calculating
Pearson’s correlation coefficient (r) to assess the strength of the linear
relationship between predicted and actual bone stresses, and by generating
Bland-Altman plots to examine the agreement between these values. The
Bland-Altman analysis involved calculating the mean difference and the
limits of agreement (mean difference ± 1.96 SD) to identify any systematic
errors or trends across the range of observed data.

Data availability
The statistical shape models used in this study are freely available at https://
doi.org/10.5281/zenodo.13297928. The finite element models are freely

Fig. 7 | Architecture of the proposed domain adaptation-based LSTM. a Illustration of bidirectional-LSTM; b Use of a gradient reversal layer to distinguish domain-
invariant features; c Demonstration of a single LSTM unit. Note: LSTM long short-term memory.
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available at https://simtk.org/projects/foot3d-model. All data needed to
evaluate the conclusions in the paper are present in the paper and/or the
Supplementary Materials.

Code availability
The statistical modeling algorithms and codes are available at: https://
github.com/musculoskeletal/gias3. The code for model training is available
at: https://github.com/Biomechicshub/Bone_stressPred.
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