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Hybrid machine learning for real-time
prediction of edema trajectory in large
middle cerebral artery stroke
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Ethan Phillips1, Odhran O’Donoghue1, Yumeng Zhang2, Panos Tsimpos3, Leigh Ann Mallinger4,
Stefanos Chatzidakis5,6, Jack Pohlmann4, Yili Du7, Ivy Kim4, Jonathan Song8, Benjamin Brush9,
Stelios Smirnakis5,6,10, Charlene J. Ong4,8,11 & Agni Orfanoudaki1,11

In treating malignant cerebral edema after a large middle cerebral artery stroke, clinicians need
quantitative tools for real-time risk assessment. Existing predictive models typically estimate risk at
one, early time point, failing to account for dynamic variables. To address this, we developed Hybrid
Ensemble Learning Models for Edema Trajectory (HELMET) to predict midline shift severity, an
established indicator of malignant edema, over 8-h and 24-h windows. The HELMET models were
trained on retrospective data from 623 patients and validated on 63 patients from a different hospital
system, achievingmean areas under the receiver operating characteristic curve of 96.6% and 92.5%,
respectively. By integrating transformer-based large language models with supervised ensemble
learning, HELMET demonstrates the value of combining clinician expertise with multimodal health
records in assessing patient risk. Our approach provides a framework for accurate, real-time
estimation of dynamic clinical targets using human-curated and algorithm-derived inputs.

Largemiddle cerebral artery (MCA) infarction is a potentially lethal formof
stroke, occurring in between 18% and 31% of ischemic stroke cases invol-
vingMCA occlusion1. Amajor driver of poor stroke outcomes is malignant
cerebral edema, which can result in a 40–80% risk of neurological dete-
rioration and death1. Specifically, space-occupying malignant edema dis-
places and compresses the surrounding brain tissue, causing further damage
referred to as mass effect1–6.

Early recognition of evolving cerebral edema is imperative as treat-
ments, suchas surgical decompression, can reduce the risk ofmortality from
80% to 20% in eligible patients7,8. Pharmaceutical strategies, such as
hyperosmolar therapy, are also widely employed by intensivists in efforts to
treat worsening or life-threatening edema9,10. However, the course of
malignant edema can be unpredictable, varying rapidly over mere hours or
more slowly over multiple days. For this reason, stroke patients at risk of
malignant edema are often monitored in intensive care unit settings to
closely watch for signs of neurological deterioration.

In practice, clinicians use a variety of dynamic information available to
them to monitor the risk of edema for individual patients at specific time
points, including physical exam assessments, laboratory data, vital signs,

and neuroimaging results9. Neuroimaging techniques, often in the form of
computed tomography (CT) and magnetic resonance imaging, are parti-
cularly important for determining the extent of edema as they provide
quantitative evidence of edemaprogression8,11. A commonclinicalmarker is
the midline shift (MLS) of the septum pellucidum, measured inmillimeters
of displacement from the cerebral midline8,11. MLS is a measurable, quan-
tifiable, and clinically relevant indicator of worsening mass effect, used to
standardize communication for edema severity, and thus becomes a key
determinant of stroke patient treatment and management decisions8,12,13.
Prior studies have shown that MLS greater than 5 mm within the first two
days is associated with neurological deterioration and early mortality13.
More recently, MLS as low as 3 mm has been shown to be associated with
worse long-term outcomes12.

Current strategies for monitoring mass effect and other secondary
injuries primarily rely on physical examination and confirmatory imaging.
However, guidelines recognize that the clinical practice of detecting arousal
depression due to mass effect is often inadequate, as it may only become
evident after a significant secondary injury has already occurred1. This
challenge is compounded in patients whose mental status is already
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depressed fromother factors, including the initial injury,medications, fever,
or toxic-metabolic abnormalities. Therefore, in the absence of continuous
neuroimaging, early signs of deterioration may go unnoticed. Near-
continuous CT imaging is impractical, however, due to constraints on CT
availability, risks associated with patient transport, and concerns regarding
radiation exposure14,15. Imaging in many clinical settings is often limited to
once every 24 h, or prompted only by clear signs of clinical deterioration. As
a result, current guidelines do not specify the optimal frequency for sur-
veillance CT imaging to monitor edema progression, leaving decisions to
clinician discretion and contributing to variability in practice and quality of
care9,13,16.

Data-driven models for edema risk assessment could lead to more
personalized and accurate screening policies. However, existing models
predicting cerebral edema risk17–20 rely on structured and curated data
collected early in hospitalization to forecast late clinical outcomes, such as
death or the need for surgical decompression after medical interventions
have taken place (see also Supplementary Table 1). Relevant predictors
identified by thesemodels include approximations of higher infarct volume
(such as the national institutes of health stroke scale (NIHSS)), baseline
laboratory values, and severe early mass effect17,19–21. Limited research exists
on effectively integrating dynamic changes in these variables into standar-
dized risk assessments, which is critical for providers making real-time
decisions across iterative time points. In addition to limited external vali-
dation and relatively small sample sizes17–19, currently available staticmodels
often lack utility for personalized decision-making as new information
becomes available, and are therefore not frequently consulted by physicians
in practice. This is a significant limitation, particularly for patients where
treatmentdecisions, including surgical decompression, aremadeoutside the
time frame for which there is high-quality evidence of efficacy (<48 h)22.

For these reasons, improved methods to estimate cerebral edema tra-
jectory are needed to leverage the rich sources of structured and unstruc-
tured data currently available in electronic health records. Readily-available,
dynamic, and accurate MLS severity estimation tools could assist medical
providers in making more timely treatment decisions, improving opera-
tional and clinical outcomes, and deliveringmore personalized care. Recent
efforts to dynamically identify other important hospitalization events,
including sepsis and non-neurological clinical deterioration, reinforce the
need and potential utility of dynamic forecasting in neurocritical care
settings23,24. Specifically in the context of cerebral edema, a backward-
looking trajectory approach analyzing trends in laboratory and vital sign
data identified subtle increases in white blood cell count, temperature, and
sodiumprior to clinical deterioration events, highlightingpotential dynamic
biomarkers of worsening cerebral edema25.

Based on these findings, we curated a retrospective, multi-modal,
multi-institutional dataset comprised of both static and time-varying vari-
ables from electronic health records, radiographic report texts, and expert-
labeled neuroanatomic features derived from radiographic images21,25,26.
This multi-modal approach builds on prior research showing that inte-
grating data of different types from multiple sources into a single model
leads to improved predictive performance over models which used just one
data type27. Using this dataset, we developed and externally validated the
Hybrid Ensemble Learning Models for Edema Trajectory (HELMET) to
predict worseningMLS class (0mm, 0–3mm, 3–8mm, and >8mm)within
8-hour (HELMET-8) and 24-hour (HELMET-24) windows. We employed
a combination of machine learning techniques, including large language
models for the interpretation of the raw radiographic texts and an ensemble
learning algorithm for downstream final predictions from structured data
inputs. HELMET provides a paradigm for the development and validation
of dynamic prediction scores for complex and volatile targets that are not
routinely captured within structured electronic health records.

Our aim is to complement existing non-temporal cerebral edema
prediction models and build on their successes by providing more granular
data to inform imaging and treatment decisions at critical moments in a
generalizable way. By incorporating data from two distinct academic
medical centers with differing patient pool demographics, our study

demonstrates the generalizability of HELMET in diverse patient
populations28. Our work can assist in prompting earlier life-saving inter-
ventions and more efficient resource use by making edema progression
predictions accessible to clinical teamsatdynamic timehorizons.Webelieve
our findings represent the first step toward developing policies that alert the
clinical team to evolving secondary injury and aid in the appropriate use of
diagnostic testing.

Results
Study population
The derivation cohort consists of 623 patients with acute MCA ischemic
stroke, affecting at least half of theMCA territory, who were retrospectively
identified fromadmissions toMassachusettsGeneralHospital andBrigham
and Women’s Hospital—core institutions of the Mass General Brigham
healthcare system in Boston, Massachusetts—between January 2006 and
July 2021. We also leveraged a prospective external validation cohort of 60
patients with acuteMCA ischemic stroke, affecting at least half of theMCA
territory, admitted to Boston Medical Center between May 2019 and
November 2023, drawn from an existing available dataset originally com-
piled for pupillometry research. The latter constitutes the largest safety-net
hospital in New England with a different racial and socioeconomic patient
populationmakeup thanMassGeneral Brigham.The derivation cohortwas
used to train theHELMETmodels, while theBostonMedicalCenter cohort,
selected for its diverse patient population, served as an independent dataset
for external validation. The full patient inclusion diagrams for both cohorts
are shown in Fig. 1. Information on the exclusion criteria can be found in
Section “Patient Identification & Exclusion”.

Table 1 summarizes the characteristics of both patient cohorts. For the
Mass General Brigham cohort, the average age was 68.0 years, and 48.8% of
the patients were female. In the Boston Medical Center cohort, the average
age was 67.7 years, and 60.0% of the patients were female. A statistically
significant difference in racial composition was found between the two
cohorts, with the BostonMedical Center cohort having a higher proportion
of non-White patients (p-value < 0.001). The BostonMedical Center cohort
also had worse average stroke severity indicators at admission (NIHSS and
the Alberta Stroke Programme Early CT Score (ASPECTS)) by a small but
statistically significant margin (p-values < 0.005). While no difference was
found in the proportion of uninsured patients, the Boston Medical Center
cohort had a significantly higher proportion of Medicaid beneficiaries (p-
value < 0.001) which reflects the hospital’s safety net status.

The number of patients by maximum MLS class reached over their
hospitalization is shown for both cohorts in Supplementary Table 5, further
showcasing the slight differences in edema severity across the cohorts. Since
edema trajectory and overall risk of patient deterioration are highly
dependent on initial edema severity, we present summarized characteristics
of hospitalization for patients in both cohorts disaggregated by the patient’s
MLS class after their initial CT scan in Supplementary Table 6. We focused
on predictions in the first seven days following patient presentation to the
hospital and truncated data beyond this point. For full details of our
inclusion criteria and data transformations, please see the Methods section.

Toderive dynamic predictionmodels of edema trajectory, longitudinal
patient datawere transformed toper-hourobservations for eachpatient over
the course of their hospitalization (described in Section “Data Curation”).
For the Mass General Brigham dataset (derivation cohort), data transfor-
mations resulted in 8515 observations (patient-hours) for the 8-hr predic-
tion task and 15,696 observations for the 24-hr prediction task. For the
BostonMedicalCenterdataset (external validation cohort), transformations
resulted in 1891 observations for the 8-hr prediction task and 3713 obser-
vations for the 24-hr prediction task. Total observations for each outcome
class and horizon prediction task are reported in Table 2.

Model performance
The HELMET models were trained using randomized five-fold boot-
strapped partitions of the derivation cohort patients, and evaluated on
the remaining test set patients from the Massachusetts General
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Brigham derivation cohort as well as the full external validation cohort
from Boston Medical Center. Two separate models were trained to
predict MLS severity on 24-hr (HELMET-24) and 8-hr (HELMET-8)
horizons, respectively. The HELMET models were retrospectively
evaluated in head-to-head comparisons against multinomial regres-
sionmodels trained separately in the derivation and external validation
cohorts using the same input features as the pre-existing EDEMA

score, originally developed to predict potentially life-threatening
malignant edema17. By design, the EDEMA baseline models were
provided an edge over the HELMET models on the external validation
cohort since they were trained separately on both the derivation and
external validation datasets, while the HELMET models were only
trained on the derivation dataset. Figure 2 provides an illustration of
the dataset curation, feature extraction, and model derivation process.

Fig. 1 | Patient inclusion diagrams.After applying exclusion criteria and removing
patients with insufficient data, 623 patients were included in the derivation cohort
dataset for the 8-hr task, and 60 patients were included in the external validation
cohort dataset for the 8-hr task. For the 24-hr task, 533 patients were included in the
derivation cohort, and 55 patients were included in the external validation cohort.

*Patients may meet multiple exclusion criteria, leading to sums that do not match
with total number of excluded patients. †Pupillometry criteria required a minimum
of three observations preceding radiographic or clinical evidence of mass effect (e.g.
MLS≥5mm), with no data gaps exceeding 24 hrs, and initially reactive, non-sluggish
pupils.
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Table 1 | Patient cohort characteristics

Variables Mass General Brigham Boston Medical Center p-value Captured in Medical Record

Number of patients

8-h task 623 60

24-h task 533 55

Patient Demographics

Age (years), mean (SD) 68.0 (15.3) 67.7 (16.0) 0.858 Yes

Sex - Female 304 (48.8%) 36 (60.0%) 0.128 Yes

Race - White 481 (77.2%) 17 (28.3%) 0.000 Yes

Race - Black 40 (6.4%) 15 (25.0%) 0.000 Yes

Race - Asian 26 (4.2%) 4 (6.7%) 0.000 Yes

Race - Other/Unknown 76 (12.2%) 24 (40.0%) 0.000 Yes

Insurance Status

Non-Medicaid Insured (Medicare, MA, or Private) 464 (74.5%) 26 (43.3%) 0.005 Yes

Medicaid Beneficiary 136 (21.8%) 31 (51.7%) 0.000 Yes

Uninsured 23 (3.7%) 3 (5.0%) 0.879 Yes

Previous Stroke* 70 (11.2%) 7 (11.7%) 1.000 Yes

History of atrial fibrillation 301 (48.3%) 17 (28.3%) 0.005 Yes

History of hypertension 448 (71.9%) 41 (68.3%) 0.662 Yes

Admission Vitals and Labs

NIHSS, mean (SD) 17.2 (5.8) 19.6 (6.2) 0.003 Yes

ASPECTS, mean (SD) 4.7 (2.9) 6.1 (2.7) 0.001 Yes

Mean Arterial Pressure (mmHg), mean (SD) 103.3 (17.8) 110.1 (19.1) 0.006 Yes

Systolic Blood Pressure (mmHg), mean (SD) 149.9 (28.7) 158.4 (30.8) 0.031 Yes

Diastolic Blood Pressure (mmHg), mean (SD) 79.7 (15.3) 85.9 (15.7) 0.003 Yes

Heart Rate, mean (SD) 81.8 (19.5) 84.3 (18.8) 0.374 Yes

Body Temperature (∘F), mean (SD) 97.7 (1.0) 97.4 (1.1) 0.124 Yes

White Blood Cell Count (1000 cells/μL), mean (SD) 11.7 (8.3) 10.7 (3.8) 0.268 Yes

Blood Glucose* (mmol/L), mean (SD) 149.7 (59.1) 158.0 (67.9) 0.452 Yes

HbA1c* (mmol/mol), mean (SD) 6.2 (1.3) 6.2 (1.4) 0.246 Yes

Osmolality (mOsmol/kg), mean (SD) 298.8 (12.1) 306.8 (16.4) 0.002 Yes

Creatinine (mg/dL), mean (SD) 1.1 (0.8) 1.1 (0.5) 0.575 Yes

Sodium (mEq/L), mean (SD) 137.8 (3.5) 137.6 (3.3) 0.643 Yes

Blood Urea Nitrogen (mg/dL), mean (SD) 20.9 (12.0) 17.7 (8.6) 0.009 Yes

Length of Stay (days), median (IQR) 11 (9) 18 (19) 0.001 Yes

Initial Stroke Characteristics

Left Hemisphere Stroke 297 (47.7%) 33 (55.0%) 0.342 No

Anterior Cerebral Artery Involved 37 (5.9%) 10 (16.7%) 0.007 No

Vessel Occlusion 298 (47.8%) 29 (48.3%) 0.666 No

0 - None, ICA, or ICA Terminus 457 (73.4%) 29 (48.3) 0.000 No

1 - MCA Horizontal Segment 117 (18.8%) 14 (23.3%) 0.000 No

2 - MCA Insular Segment 42 (6.7%) 12 (20.0%) 0.000 No

3 - MCA Opercular or Cerebral Segments 7 (1.1%) 5 (8.3%) 0.000 No

Ongoing Stroke Characteristics

CT scans per patient, median (IQR) 4 (3) 5 (3) 0.000 No

Hours Between Scans, mean (SD) 11.3 (9.1) 18.8 (22.7) 0.003 No

First MLS (mm), mean (SD) 3.7 (2.8) 0.4 (0.9) 0.000 No

Maximum MLS (mm), mean (SD) 6.6 (4.3) 6.6 (5.5) 0.560 No

Petechial Hemorrhage 314 (50.4%) 16 (26.7%) 0.000 No

Parenchymal Hemorrhage 60 (9.6%) 16 (26.7%) 0.000 No

Collateral Score 416 (66.8%) 32 (53.3%) 0.051 No

0 - No collaterals 34 (8.2%) 3 (9.4%) 0.285 No

1 - < 50% with > 0% MCA territory 193 (46.4%) 12 (37.5%) 0.285 No
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Eachmodel’s performancewas assessed using both the original dataset
encompassing all observations (overall metrics) as well as a filtered dataset
including only observations where the patient’s current MLS state differed
from their future target classwithin the predictivewindow (filteredmetrics),
to further analyze model performance on observations capturing clinically
relevant transitions inMLSstate. Figure3 illustrates in radarplots the overall
and filtered performance of each model for each task and cohort. The five
radial axes represent the performance metrics of sensitivity, specificity,

accuracy, area under the precision-recall curve (AUPRC), and area under
the receiver operating characteristic curve (AUROC). Across all measures,
higher values are plotted further from the center, indicating superior pre-
dictive performance. Since our classification problem required prediction of
futureMLS among four possible classes, a randomguessmodelwould result
in an average AUROC of 0.5, average AUPRC of 0.25, accuracy of 0.25,
sensitivity of 0.25, and specificity of 0.75. Therefore, performance scores
exceeding these thresholds are described as better than random. The exact

Table 1 (continued) | Patient cohort characteristics

Variables Mass General Brigham Boston Medical Center p-value Captured in Medical Record

2 - > 50% with < 100% of MCA territory 144 (34.6%) 10 (31.3%) 0.285 No

3 - 100% of MCA territory 45 (10.8%) 7 (21.9%) 0.285 No

Cerebral Atrophy 620 (99.5%) 66 (100%) 1.000 No

0 - Normal volume or mild ventricular enlargement 350 (56.5%) 40 (66.7%) 0.164 No

1 - Moderate or severe ventricular enlargement 270 (43.5%) 20 (33.3%) 0.164 No

Treatment

Medical Thrombolysis* 280 (44.9%) 15 (25.0%) 0.004 Yes

Mechanical Thrombectomy* 128 (20.5%) 48 (80.0%) 0.000 Yes

Hours before Mechanical Thrombectomy,
median (IQR)

6.0 (3.0) 5.0 (7.5) 0.297 Yes

Thrombolysis in cerebral infarction (TICI) 127 (20.4%) 47 (78.3%) 0.000 No

TICI 0 - No perfusion 23 (18.0%) 5 (10.6%) 0.022 No

TICI 1 - No distal branch filling 9 (7.0%) 0 (0%) 0.022 No

TICI 2a - <50% filling 28 (21.9%) 5 (10.6%) 0.022 No

TICI 2b - >50% filling 36 (28.1%) 17 (36.2%) 0.022 No

TICI 2c or 3 - 100% filling 31 (24.2%) 20 (42.5%) 0.022 No

Treated with osmotic therapy 221 (35.5%) 34 (56.7%) 0.002 Yes

Hypertonic saline (3%) 76 (12.2%) 27 (45.0%) 0.000 Yes

Hypertonic saline (23.4%) 90 (14.4%) 0 (0.0%) 0.003 Yes

Mannitol 185 (29.7%) 27 (45.0%) 0.021 Yes

Decompressive Hemicraniectomy 73 (11.7%) 13 (21.7%) 0.044 Yes

Clinical Outcomes

Modified Rankin Score, mean (SD) 5.0 (0.9) 5.0 (0.9) 0.609 Yes

Discharge Disposition 622 (99.9%) 60 (100%) 1.000 Yes

Home 18 (2.9%) 1 (1.7%) 0.000 Yes

Rehabilitation 273 (43.8%) 22 (37.3%) 0.000 Yes

Long Term Care 120 (19.3%) 1 (1.7%) 0.000 Yes

Hospice 38 (6.1%) 8 (13.6%) 0.000 Yes

Death 173 (27.8%) 18 (30.5%) 0.000 Yes

Other 0 (0.0%) 10 (16.7%) 0.000 Yes

Basic patient characteristics across the derivation and external validation datasets. All descriptive statistics were calculated using the 8-h task patient cohorts. Continuous variables are reported as the
mean (standard deviation) and used either a two-sample t-test or theMann-Whitney U test for significance testing, depending on normality. Categorical or binary variables are reported as the patient count
(proportion) and used the χ2 test for significance testing.
*Included in EDEMA baseline models.

Table 2 | Observation† counts per prediction class for each task

Data set Task Maximum MLS class

0mm 0–3mm 3–8mm > 8mm

Mass General Brigham 8-h 2012 1568 3405 1530

(derivation cohort) 24-h 2638 2713 6867 3478

Boston Medical Center 8-h 523 309 620 439

(validation cohort) 24-h 873 696 1223 921
†Observations are transformed hourly sets of data for a given patient. Each patient may account for up to 8 observations per scan on the 8-h task, and up to 24 observations per scan on the 24-h task.
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formulation of composite average metrics is described in Section “Model
Evaluation”.

In the out-of-sample evaluation of the derivation cohort, the large
language model-enhanced HELMET-24 model achieved a mean AUROC

score of 96.7%, sensitivity of 91.2%, and specificity of 94.0%. These scores
outperform the EDEMA-24 baseline by 18.7 percentage points in AUROC,
53.6 percentage points in sensitivity, and 9.7 percentage points in specificity.
On the 8-hr prediction task, HELMET-8 resulted in a mean AUROC of

Fig. 2 | Data processing and model development. The figure summarizes the
curation and transformation of input data, leading to the training and evaluation of
HELMET models and EDEMA baseline models. Across the panels, we show the

study site cohorts a; multimodal dataset construction using static, time-varying, and
text-based variables b; transformations applied to the data to generate observations
c; and subsequent model training d.
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96.6%, sensitivity of 57.7%, and specificity of 90.2%, outperforming the
EDEMA-8 model by 16.1, 25.6, and 2.6 percentage points across the three
metrics, respectively. In the datasetfiltered for changes inMLS severity class,
both HELMET-24 and HELMET-8 outperformed baseline EDEMA
models.HELMET-24 achieved amean filteredAUROCof 94.1% compared
to 54.7% for the baseline, while HELMET-8 achieved 76.2% compared to
baseline performance of 57.5%.

To assess the generalizability of our models, we also evaluated the
HELMET models on the entirety of the external validation cohort. We
observed that the HELMET models consistently outperform the EDEMA
baseline models by a significant margin across both sites and both tasks.
HELMET-24achieved ameanoverall AUROCof 69.7%and ameanfiltered
AUROC of 70.7% on the 24-hr task, outperforming the EDEMA-24model
by 18.4 percentage points on overall AUROCand 19.6 percentage points on
filteredAUROC. On the 8-h task, HELMET-8 achieved an overall AUROC
of 92.5% and a filteredAUROCof 92.1%, outperforming EDEMA-8 by 34.0
and 33.3 percentage points respectively.

The complete table of performance metrics, including respective 95%
confidence intervals, is presented in Supplementary Table 11, and receiver
operating characteristic and precision-recall curves are shown in Supple-
mentary Figs. 1 and 2, respectively. AUROC scores for eachmodel and task
stratified across various hour-based periods of hospitalization (<24 hrs since
last seen well, 24–48 hrs, 48–96 hrs, ≥96 hrs) and stratified by insurance
status are also available in Supplementary Tables 12 and 13. As a sensitivity

analysis, we also compared the HELMET framework with the EDEMA
baseline on a simplified binary classification task using a 5mm threshold to
distinguish severe midline shift. The results of this analysis are summarized
in Supplementary Section 7 and Supplementary Table 14.

Model feature interpretation
To determine the relative importance of contributing features to our
models, we applied the Shapley Additive Explanation framework on each
of the four prediction MLS classes of HELMET-24 and HELMET-8 (see
also Section “Feature Importance Analysis”). Figure 4 illustrates the
compositionof the 20most important features, rankedby ShapleyAdditive
Explanation values, in the HELMET models for the 24-hr and 8-hr pre-
diction tasks, categorized by the most recent prior MLS class. The Shapley
analysis allowed us to gain insight into the interplay of the different data
sources comprising the HELMET predictions. Specifically, our results
indicate that the large language model predictions on radiological report
texts are highly important across both the 8-h and 24-hr prediction task
models. Human-extracted features by neurology experts, which may not
always be present in the dictated radiology reports, and their associated
times make up the second-largest category of high-impact features. We
also observe that while dynamic variables (such as laboratory test results
and vital signs) contribute significantly to the 8-hr horizon predictions,
they are not as important to the 24-hr predictions. Static variables (either
demographic variables or measurements from the time of admission) also

Fig. 3 | Performance comparison. Comparative performance of HELMET models
and EDEMAbaselinemodels across all cohorts and prediction tasks. Each radial axis
represents a distinct performance metric, with higher performance values further
from center. Polyhedrons with greater total area on the plots show higher-
performing models, and smaller polyhedrons show lower-performing models. Blue
lines represent the overall performance for the HELMET models, green lines
represent the filtered performance for the HELMET models, red lines represent the

overall performance for the baseline EDEMAmodels, and orange lines represent the
filtered performance for the baseline EDEMA models. Specifically, we summarize
model performance across tasks and cohorts in the following panels: a derivation
cohort for the 8-hr prediction task; b derivation cohort for the 24-hr prediction task;
c external validation cohort for the 8-hr prediction task; d external validation cohort
for the 24-hr task.
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contribute significantly to both models. The detailed Shapley Additive
Explanation plots for each task are provided in Supplementary Fig. 3 and
the exact definition of variables included in each class of features are
described in Supplementary Section 2.

In the 24-hr prediction task, text-based predictions generated by the
large language models emerge as key determinants of patient trajectory.
Expert-curated radiographicmeasurements, including themost recentMLS
value, the prior MLS value, and the time and value of the first measured
MLS, also contribute significantly to HELMET predictions. Our analysis
also highlights the role of approximate stroke size basedonNIHSS, aswell as
laboratory markers, such as maximum white blood cell count over the past
24 hours and blood urea nitrogen at admission. Notably, the administration
of 23.4% hypertonic saline is the only treatment-related feature ranked
among the top predictors. Furthermore, patient age becomes a significant
factor in predicting edema progression within higher MLS classes.

In the8-hr prediction task, themost recent andpriorMLSvalues, along
with class probabilities derived from the large languagemodel, are themost
significant contributors. Similar to the 24-hr model, the timing and value of
the first MLS measurement, as well as the time of the first MLS value
exceeding 3 mm, rank among the top features. Laboratory markers,
including white blood cell count and blood glucose levels, alongside vital
signs such as pulse and temperature, further aid in distinguishing between
edema states. Notably, no treatment indicators are among the highest-
ranked predictors.

Discussion
Our dynamic time series models leverage nonlinear machine learning
algorithms to predict the risk of edema and the trajectory of MLS using a
comprehensive multi-modal dataset for two distinct future time windows.
To the best of our knowledge, HELMET-8 and HELMET-24 constitute the
first dynamic risk models for predicting the trajectory of cerebral edema on
an hourly basis, leveraging data from two healthcare systems.

Existing cerebral edema risk scores provide only static predictions
of late clinical outcomes, such as death or decompressive hemi-
craniectomy, primarily using linear techniques17–20 (with some use of
nonlinear models29). While useful for initial triage, these models are
limited in their utility as clinicians follow individual patients over time
and make decisions based on new data. Recent work by our group has
highlighted the significance of incorporating post-baseline patient data
to enhance the prediction of inpatient outcomes21. No studies to our
knowledge had utilized granular updating information over the course
of hospitalization to estimate the actual state of cerebral edema by
objective measurements, such as MLS.

Our analyses in the derivation cohort reveal that HELMET-24 out-
performed HELMET-8 by a small margin across all overall metrics. How-
ever, the performance difference across tasks was more pronounced when
looking atfilteredmetrics, indicating that theHELMETarchitecturemay be
better suited formakingpredictionsover longer timewindows.Onepossible
explanation for this observation is that changes in edema trajectory can
appear to occur more abruptly when looking at closer time horizons, while
such changes in edema trajectory are smoothed over longer prediction
windows.Another key contributing factor is likely the frequency of imaging,
the primary input feature of ourmodels, whichwas obtained approximately
every 11.3 hrs in the derivation cohort and every 18.8 hrs in the validation
cohort. This difference in scanning frequencybetween the cohorts likely also
explains the improvedperformanceofHELMET-24overHELMET-8 in the
external validation cohort. Information on the frequency of laboratory and
vital sign data collection is reported in Supplementary Section 2.2 and the
missingness analysis in Supplementary Section 3. Subsequent studies could
elucidate optimal predictive horizons for these newly developed hybrid
models.

By incorporating predictions from fine-tuned large language models
into HELMET, we advance the existing literature on multimodal machine
learning in medicine30,31. Our models were significantly improved by the
inclusion of both upstream predictions from large language models fine-
tuned on raw radiology reports as well as manually-measured neuroana-
tomic variables hypothesized as relevant by neurology experts (see Fig. 2).
Our hybrid approach highlights the benefit of using clinician-generated raw
texts to capture otherwise unmeasured variables and physician beliefs about
the patient’s trajectory. However, while features derived from the large
language model predictions make up a plurality of high-impact features
across both tasks (see Fig. 4), the large language model predictions in iso-
lation were inadequate indicators of MLS trajectory (see Supplementary
Section 6.1). Our findings underscore that multi-modal hybrid approaches
combining both expert-derived features and rawdata appear to significantly
enhance outcome prediction accuracy in clinical settings and may inform
which features should be routinely included in radiology reports.

Our study builds on recent efforts to understand the temporal evolu-
tion of physiologicalmarkers in patients with largeMCA stroke. Ong et al.25

applied a retrospective, trajectory-based analysis to examine how changes in
laboratory and vital sign variables were associated with cerebral edema-
related outcomes. The use of multivariable time-dependent Cox regression
provided valuable insight into cohort-level risk patterns and the potential
prognostic value of dynamic biomarkers. These approaches are com-
plementary, resulting in an in-depth exploration of emerging trends.
However, the study by Ong et al.25 was designed to identify average trends

Fig. 4 |HELMETFeature Importance Composition.Comparison of importance of
HELMET feature categories across tasks by previous MLS class of hourly patient
observations. Dark blue represents proportion of high-importance features from
large language model interpretation of radiology report texts, orange shows

proportion from human-extracted radiology image features, teal shows proportion
of features from dynamic medical records, and green shows proportion from static
patient characteristics. first panel a shows feature composition for HELMET-24
model, while second panel b shows feature composition for HELMET-8 model.
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across populations, rather than to deliver individualized forecasts that
update in real time as new data become available. In contrast, the HELMET
framework leverages nonlinear machine learning methods to generate
patient-specific predictions of edema progression over clinically relevant
time horizons. By integrating multimodal inputs, HELMET-8 and
HELMET-24 dynamically estimate the severity of midline shift for each
patient. This individualized, forward-looking approach enables real-time
clinical decision support, complementing earlier trajectory-based work and
offering a pathway toward dynamic proactive management of cerebral
edema in critical care settings.

The Shapley Additive Explanation analysis (Supplementary Fig. 3)
enables us to infer key clinical variables that drive model performance.
Dynamic variables capturing previous MLS measurements were the most
critical predictors of future MLS status. Additionally, key time-related fea-
tures, such as the time of thefirst non-zeroMLS and thefirstMLS exceeding
3 mm, highlight the natural course of edema growth, which typically peaks
between 2 and 5 days post-ictus7,11,13,32–34. Time is a crucial factor often
overlooked in other studies.While clinicians often assess risk based on time
subjectively, our model is the first to quantitatively integrate time in a
standardized way. In contrast tomost risk algorithms that neglect temporal
dynamics, our results demonstrate that accurate time quantification is
essential for predicting imminent edema progression, aligning with clinical
intuition that the same degree of edema is less critical later in the treatment
course. In the absence of clear guidelines on imaging timing and its influence
on surgical outcomes9, our model provides valuable guidance for clinicians
in predicting MLS worsening and optimizing patient management using
real-time data.

Consistent with the literature, our Shapley Additive Explanation
analysis highlighted other influential variables, including dynamic white
blood cell count, admission blood glucose, and temperature. Elevated glu-
cose at presentation has been previously linked to malignant edema and
poor outcomes17, while recent analyses showed that white blood cell count
and temperature increase before radiographic evidence ofmass effect25. Our
results alsohighlighted that laboratory test results and vital signs havehigher
predictive power in the 8-hour compared to the 24-hr task, capturing more
effectively short-term changes closer in time to the event. Our finding that
hypertonic saline administration was also among the top features for
HELMET-24 likely reflects the subjective physician risk assessment of the
patient and, due to the observational nature of thedata, does not provide any
causal insights. Intriguingly, we did not observe similar importance of
mannitol or other preparations of hypertonic saline, which may reflect its
use in clinical practice and should be further studied. Given the hetero-
geneity in medical treatment patterns9, the connection between osmotic
therapy and clinical intuition should be interpreted with caution.

Our results reveal that human insights and radiographic features
extracted from scan images play a complementary role to the large language
model predictions, despite using the same foundational data source (CT
images). Medical professionals bring nuanced understanding through
expert-curated radiographic features, adding a layer of interpretability and
context that purely algorithmic approaches may lack, especially in settings
with limited sample size. Complementing past studies focused on human-
AI interactions35,36, our work underscores the significant role of human
insights in enhancing the predictive power of large language models, par-
ticularly in scenarios where critical variables, such asMLS, are not routinely
recorded in structured form.The importance of such specific expert-curated
radiographic features in our models indicates a possible improvement to
radiology reporting whereby clinicians should aim to extract and record
additional radiographic features at the time of observation in their
report texts.

The synergy between algorithm-derived insights from large language
models and human-extracted features highlights the potential of hybrid
artificial intelligence systems in clinical settings. These systems leverage the
precision and scalability of machine learning while retaining the critical
contextual understanding provided by human expertise. This combination
is especially valuable in settings such as neurocritical care, where the

dynamic nature of conditions like cerebral edema demands a nuanced
approach topredictionand intervention. In suchhighly specific tasks, and in
the absence of large databases for research, the successful creation of robust
machine learning models may hinge on the consistent and coherent
extraction of features. Researchers should aim to work with clinicians to
generate more robust datasets of human-extracted variables needed to
develop better prediction tools, and future studies in clinical machine
learning can benefit from using such datasets by employing hybrid
approaches. As deep learningmodels for radiographic images becomemore
powerful andwidespread37, theremay also be additional value in integrating
their outputs into hybrid frameworks such as HELMET. Further research
should therefore aim to explore combinations of further datamodalities and
additional interpretiveAI-based toolswithhuman-extracted features,with a
focus on synergistic integration of automated and expert-driven insights.

Notably, the HELMET models generalize to an external population
substantially better than previous baseline models17,18. While there is an
expected decrease in performance from internal validation to external
cohorts due to unmeasured, context-dependent factors, our results
demonstrate that model generalizability can be enhanced by leveraging
dynamic, time-updated features. Defining an acceptable performance
threshold for any predictive model requires not only benchmarking against
existing tools, but also understanding how the model compares to clinician
gestalt and how it integrates into real-world clinical workflows. Optimizing
such models for clinical application will require further prospective studies
that assess both their relative accuracy and their impact on decision-making
and patient outcomes. When deployed to a new site, we anticipate that
HELMET, like other models, will benefit from re-calibration to local prac-
tice patterns for maximally effective use. Nevertheless, our external valida-
tion results enhance confidence in the applicability of HELMET, as well as
the broader use of our dynamic, hybrid approach for developing risk pre-
diction models in clinical practice.

An important implication of our work is that shifting risk prediction
from a single baseline assessment to a continuous, longitudinal approach
could improve real-time patient triage, optimize imaging resource use, and
explore whether early-warning alerts based on these predictions can
enhance patient outcomes and care quality. Studying the implementation of
these algorithms will be crucial in assessing their clinical utility. Future
research could build on existing studies showing the effectiveness of
machine learning tools when paired with well-designed clinical interven-
tions. Additionally, sensitive models like these could have a significant
impact in smaller or under-resourced settings where neurointensive care
may be unavailable or overburdened. Further investigation is also needed to
bridge the gap between prediction and action by using machine learning-
derived predictions to provide prescriptive recommendations for when
scans or clinical interventions should occur.

There are several limitations to our work. The dataset size was con-
strained by the specific inclusion criteria and the manual labeling of
radiographic images. Since imaging was performed at the discretion of
treating physicians, the timing of MLS measurements was inconsistent.
While MLS is just one indicator of worsening mass effect, and its clinical
relevance may vary depending on factors such as age and brain atrophy, it
remains awell-established, critical, andmeasurable radiographic biomarker
of cerebral edema.

Similar to other retrospective studies, our dataset contains missing
values due to its reliance on hospital electronic health records, which were
imputed using widely established techniques. While the impact of missing
data in dynamically updated variables was reduced through forward filling
and rolling maximums, the high degree of missingness in some static vari-
ables (such as body temperature at admission) is a limitation of our data that
could have biased our findings. Future studies should seek to collect patient
data prospectively to ensure consistent collection of key variables. Such
prospective studies should also evaluate howHELMET-8 andHELMET-24
can be integrated into clinical workflows to guide imaging frequency, ICU
monitoring, and early interventions. Implementation strategies should focus
on real-time clinical decision support, ensuring that predictions are
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actionable and seamlessly incorporated into existing care protocols. Addi-
tionally, understanding clinician adoption and whether real-time alerts can
enhance patient care will be critical for optimizing their deployment.

Related to the limitations due to data missingness, temporal trans-
formations in the data may introduce bias, as patients with more complete
data have multiple observations. Our approach using the most recent and
maximum values may oversimplify the trajectory of MLS measurements.
We also lacked access to keyphysical examinationdata, such as neurological
deterioration, quantitativepupillometry, andother longitudinalmultimodal
monitoring methods including electroencephalograms, optic nerve sheath
diameter, or direct intracranial pressure monitoring. The integration of
these variables along with complementary data modalities, such as the
radiographic images, constitute a clear focus for future direction. However,
the instruments needed to collect these data are not ubiquitous among all
hospital centers or are not routinelyused in clinical care (such as intracranial
pressuremonitoring in ischemic stroke). Therefore, using variables available
to most neuroICU centers leads to broader model generalizability and
utility.

We also acknowledge that there was a significant increase in reported
observations per patient after 2016 due to a change in the electronicmedical
record system. This created two quasi-distinct data distributions within the
training set. We believe that the successful generalization to external vali-
dation cohort data suggests that both distributions within the derivation
cohort are valuable to the training of our model. Both the derivation cohort
data and the external validation cohort datawere collected fromhospitals in
the same metropolitan area (Boston, Massachusetts). While the baseline
descriptive statistics presented in Table 1 highlight significant differences in
race, ethnicity, stroke severity, and Medicaid enrollment (a proxy for
socioeconomic status) across the two patient populations, we acknowledge
that geographic similarity or the under-representation of Asian populations
may bias the generalizability of our results. Even though our hospital sys-
tems differ significantly in racial and socioeconomic composition, future
investigations should prioritize external validation among more diverse
patient populations to ensure the applicability of such models to a wider
range of patient groups and locations.

Our choice of using 8-hr and 24-hr horizon predictions reflects the
needs of clinicians tomake real-time scanning and treatment decisions over
short timewindows during a patient’s hospitalization. However, these short
prediction horizons limit the ability of our models to make longer-term
predictions of lethal edemaoccurance. Further, we lacked reliable functional
outcome data from the end of a patient’s hospitalization, such as modified
Rankin Scale (mRS) values, which limits our models’ ability to predict the
final patient condition.

Methods
Figure 2 illustrates the study design, including dataset curation, feature
extraction, and model development. The summary diagram presents how
themultimodal datasets were constructed, transformed, and used formodel
development and evaluation. Section “Patient Identification & Exclusion”
outlines the data sources and patient selection criteria (Panel a). Sections
“Data Curation-Large Language Model-Derived Features” describe the
structure and processing of the clinical and radiographic datasets, including
temporal feature engineering, imputation, and target outcome construction
(Panels b and c). Sections “HELMET Model Development, EDEMA
Baseline Model Development” detail the model training and evaluation
process for the HELMET and EDEMA baseline models (Panel d). Section
“Model Evaluation” specifies themodel evaluation procedure, while Section
“Feature Importance Analysis” presents the interpretability analysis con-
ducted on the HELMET models.

The updated Transparent Reporting of Multivariable Prediction
Models for Individual Prognosis or Diagnosis (TRIPOD+AI) and Journal
of Medical Internet Research Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical Research were
followed38,39. A completed reporting checklist can be found in the Supple-
mentary Information (see Supplementary Fig. 4).

Patient identification & exclusion
The derivation cohort data was obtained from the Massachusetts General
Brigham hospital system Research Patient Data Registry and Electronic
Data Warehouse, which form the centralized clinical data registries of the
organization. To promote the inclusion of diverse and historically mar-
ginalized populations, we sourced external validation data from a more
racially and socioeconomically diverse patient population. The external
validation cohort was obtained from the Boston Medical Center electronic
medical records (see panel A of Fig. 2) stored in the hospital’s Clinical Data
Warehouse. The patient inclusion diagrams for both cohorts are shown in
Fig. 1. Ethical approval for the studywas granted by the Institutional Review
Boards at Massachusetts General Brigham and Boston Medical Center.
Informed consent was not required because the only patient data collected
was standard of care, no research intervention was implemented, and the
study used anonymized, retrospective patient records. The clinical data
obtained from the two hospital systems included both structured demo-
graphic, vitals, lab, and outcome data and unstructured data in the form of
radiology reports and clinical notes. Decision rules regarding ascertainment
and cleaning of all data from the electronic health records are described in
Pohlman et al.26.

For the retrospectively identified derivation cohort, we queried the
Massachusetts General Brighamdata registry for unique patient encounters
between January 8th, 2006 and July 5th, 2021 with stroke diagnosis codes
and used an established natural language processing model to identify
patientswith acuteMCAstroke involving≥1/2of theMCAterritory40,41. For
the prospectively-collected external validation cohort, we leveraged an
existing registry of patients with acute MCA ischemic stroke involving at
least 1/2 of theMCA territory admitted afterMay 15th, 2019 anddischarged
beforeNovember 25th, 2023who also had pupillometrymeasurements.We
excluded patients with confounding injuries, including acute contralateral
or posterior fossa injury; encephalomalacia exceeding 1/2 of the vascular
territory; extraparenchymal, subarachnoid, epidural, or subdural hemor-
rhage; moyamoya disease; and cerebral venous sinus thrombosis. Patients
were also excluded for having anunknown last-seen-well date or a last-seen-
well date more than 24 hrs before presentation. For patients who had
hemicraniectomies, data were omitted after a hemicraniectomy had
occurred. In the external validation cohort, we also excluded patients for
whom life-sustaining treatment was withdrawn within 24 hrs of admission
without an interval CT scan and those whose pupillometry data did not
meet established criteria. Established pupillometry data criteria included
having a minimum of three observations prior to MLS ≥5mm or other
evidence of mass effect, no data gaps exceeding 24 hrs, no history of con-
ditions which might effect pupillometry data, and initially reactive and
normal pupils. Finally, patients from either cohort were excluded for not
having radiographic imaging data after the initial 24 hrs of hospitalization.

Data curation
We used demographic, clinical, and text-based variables at varying time
horizons to construct the HELMET models. These variables include time-
invariant demographic variables, clinical variables recorded at the time of
admission, time-censored dynamic clinical variables changing throughout
admission, and radiology reports generated by clinicians at the time of each
true scan. The multi-modal structure of the datasets and the operations
applied to create the final features are illustrated in panel b of Fig. 2. Further
details regarding the curated variables are available in Supplementary Sec-
tion 2.

Demographic variables included age and sex. Race and ethnicity were
not used as inputs to the HELMET models in order to reduce the risk of
introducing discriminatory bias into the predictions. Other static
admission-related variables included the time of admission, time last seen
well, past medical history (including prior stroke, hypertension, and
anticoagulant or antiplatelet use), vitals and laboratory blood value readings
taken on admission, and the NIHSS score. Static variables from patient
medical records accounted for 33 features in the final datasets. Dynamic
clinical variables included 16 features, including vital sign data, laboratory
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test results, and treatments administered. Features were selected from the
patient medical record due to their possible association with malignant
edema1,8,42,43. Radiographic variables were collected by neurology-specialized
team members who labeled the radiographic images at the time of dataset
construction. The main variables of interest from the radiographic images
were the size of MLS and the size of the pineal gland shift from each scan.
We also extracted the time and value of measurements exceeding certain
clinically relevant thresholds, such as the first MLS value over 3 mm. A total
of 36 human-labeled radiographic variables were included in the dataset (see
Supplementary Section 2.3 for further information).

Feature data was aggregated into hourly intervals, and missing values
for static variables were imputed using the mean of each feature column,
employing the SciKit Learn Simple Imputer44. To increase the number of
trainable observations per patient, multiple hourly observations were gen-
erated, starting from the time of admission and continuing until either
discharge or surgical intervention (decompressive hemicraniectomy). Each
observation hour was re-indexed based on the number of hours since the
patient was last seen well. Static variables were carried forward across all
hourly observations, while dynamic variables were assigned to observations
corresponding to the specific hour at which they were recorded. A detailed
analysis of the cohort’s missing data for both datasets is presented in Sup-
plementary Section 3.

Given that each observation was constructed on a single-hour interval,
data from previous hours was absent in subsequent observations, and any
variables not measured within a particular hour were treated as missing. To
enhance model performance, we incorporated historical information into
each observation by applying time-based transformations of the dynamic
variables. Specifically, time varying features from both electronic medical
records and radiographic imaging were carried forward using twomethods,
resulting in two derived features per original variable: one representing the
maximum value over the previous 24 hrs (rolling window), and the other
capturing the most recent available measurement (forward-fill). Panel C of
Fig. 2 provides an illustration of this process. These transformations yielded
32 features from16originalmedical record variables and72 features from36
original radiographic variables. Additionally, a 73rd forward-filled feature
was introduced to capture the last knownMLS value prior to themost recent
measurement, enabling better characterization of the patient’s trajectory.
The full lists of variables used in trainingHELMET-8 andHELMET-24with
feature definitions can be found in Supplementary Tables 7 and 8.

Target outcome construction
We chose future MLS as the outcome of interest due to its critical role in
determining the severity of ischemic stroke17,20,45. We divided the continuous
range of MLS values into discrete MLS categories, chosen based on input
from collaborating physicians as to the most clinically useful thresholds
corresponding roughly to no, mild, moderate, and severe MLS. While MLS
≥5 mm has been previously used to define severe edema1, more recent
research has shown that MLS >3 mm is strongly predictive of poor
outcomes12. Based on this evidence, 3mmwas set as the first threshold of our
edema classes. Preliminary exploration of our dataset revealed that patient
MLS typically approached 8 mm before decompressive hemicraniectomy,
leading to the choice of 8mm as the upper threshold of the prediction classes.
We therefore employed the MLS categories (classes) of no MLS [0 mm],
MLS of less than 3mm (0–3mm),MLS between 3mm and 8mm (3-8mm),
and MLS exceeding 8mm (>8mm). To assess the robustness of our frame-
work under a more conventional binary classification target, we also con-
ducted a sensitivity analysis using a 5mmMLS threshold (see Supplementary
Section 7).

Wedefined twoprediction targets: themaximumMLSvaluewithin the
subsequent 8-hr window and the maximum MLS value within the sub-
sequent 24-hr window. These intervals were selected for their clinical rele-
vance, providing a balance between the need for timely diagnostic and
therapeutic interventions and the typical cadence of updated clinical data,
including laboratory results, imaging studies, and vital signs. The targetMLS
values were derived as the maximum MLS recorded from radiographic

imageswithin the specified predictionwindowand subsequentlymapped to
one of four pre-definedMLS classes, thus creating two distinct classification
tasks for each observation.

To ensure target validity, we excluded from our analysis observations
for which no radiographic scan occurred within the relevant prediction
window (e.g., for a 24-hr prediction task, if there was a 40-hr gap between
scans, the first 16 hrs post-scan were excluded as valid targets could not be
constructed). This approach resulted in the generation of up to eight
observations per scan for the 8-hr prediction task and up to 24 observations
per scan for the 24-hr task.

Large language model-derived features
Radiology reports, written by radiologists at the time of hospitalization as
interpretations of CT scans, offer clinical insights not captured by the
quantitative measurements of MLS and pineal gland shift alone. The
Clinical-Longformer46, initially trained on large corpora of clinical text for
general medical language modeling, was adapted for multi-class classifi-
cation using the radiology reports and their corresponding future MLS
class labels. This particular pre-trained transformer model was selected
based on a review of recent literature47. By specifying the intended task of
text classification when loading the pre-trained model, a linear classifi-
cation layer was added at the model head to transform the default output
into predictions on the four-class MLS ranges. We fine-tuned three
separate text-classification large language models using the derivation
dataset to predict the future maximum MLS value within windows of
8 hrs, 24 hrs, and 36 hrs, respectively. Training targets corresponding to
the maximumMLS reached over the following 36 hrs were derived using
the same process described above for the 8-hr and 24-hr targets, but were
only used in training the large language model classifiers. The 36-hr
horizon predictions provided more information about long-term MLS
trajectory, but were not included for the downstreamHELMETmodels as
they were not deemed to be clinically relevant.

These classifiers were trained using raw radiology report texts generated
by clinicians at the time of each scan to describe the characteristics and
diagnoses associated with a patient’s stroke and edema state progression. In
order to standardize the reports across hospitals, we cropped the texts to only
include the “Findings” and “Impression” sections, which were available in
reports fromboth datasets. Before training, the textswere tokenized using the
pre-trained Clinical-Longformer tokenizer46. Text data from the derivation
set were split by patient into training and test sets, with data from 80% of
patients being used for fine-tuning and 20%of patients being reserved for the
testing set.

The model’s pre-trained weights were updated by minimizing the
categorical cross-entropy loss between the predicted class probabilities and
the trueMLS class labels for each predictive window. The fine-tuning process
included six epochs at an initial learning rate of 2*10-5, using the Hug-
gingFace Transformers package and following previously established
methods for the Clinical-Longformer model47,48. Fine-tuning was conducted
on a Microsoft Azure NC24ads A100 v4 virtual machine using a single
Nvidia A100 GPU. The predictive performance of these fine-tuned large
language models is reported in Supplementary Section 6.1. By leveraging the
pre-trained language model’s understanding of clinical terminology and
combining it with task-specific data, we enabled themodel to effectively learn
nuanced patterns in the radiology reports relevant to future MLS prediction.

After transfer learning was complete, the four class probabilities for
each of the three large language models (12 total variables) for each radio-
graphic report were then incorporated into the datasets to be used as input
features for the downstream ensemble learning models alongside the vari-
ables from patient medical records and human-extracted features from
radiographic images. We forward-filled anymissing hours prior to training
of the downstream ensemble learning models.

HELMETmodel development
To derive HELMET-8 and HELMET-24, multi-class classification models
were trained to predict the 8-hr and 24-hr MLS trajectories. By discretizing
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continuous MLS values into four predefined classes, the models reframed
the regression task into a classification problem, predicting intowhich of the
four MLS ranges a patient’s maximumMLS would fall during the specified
prediction window.

The HELMET models are trained using the XGBoost algorithm49, a
well-established ensemble learning technique suitable for multi-class clas-
sification that leverages tree-based gradient-boosting. We also explored the
use of alternative methods, but we opted to use XGBoost as we did not see
any significant changes in downstream performance (see Supplementary
Section 5.2). We divided the derivation data using five-fold randomized
splits. Data were partitioned at the patient level to ensure there was no
leakage of observations from the samepatient in the training and testing sets
of the derivation cohort. Each HELMET model was trained on data from
80% of the patients in the derivation cohort in each of the five splits.Models
were then evaluated on data from the remaining 20% of the Massachusetts
General Brigham patients for internal validation, and all Boston Medical
Center data for external validation. We aggregated performance metrics
across all randomized data partitions, allowing us to report confidence
intervals around each averaged performance metric.

To prioritize accurate identification of MLS worsening, the algorithm
training was based on a modified cross-entropy loss function that gives
higher importance to observations with target values different from the
immediately preceding MLS class. We refer to these transitioning obser-
vations as the “filtered”dataset,with the set of all observations (transitioning
and non-transitioning) referred to as the “overall” dataset. The non-
transitionweight valuewas tuned as amodel hyperparameter. Themodified
cross-entropy loss function incorporates both filtered and non-filtered
observations to account for transitions in the patient’s state. LetN represent
the total number of observations, and C be the total number of classes. For
each observation i∈ {1,…,N}, yi∈ {0, 1}C is the one-hot encoded true label
vector, where yi,c = 1 if observation i belongs to class c, and pi,c denotes the
predicted probability that observation i belongs to class c. Let F �
f1; . . . ;Ng represent the set of filtered observations, where a patient’s state
changes over time, and NF ¼ f1; . . . ;Ng n F denote the non-filtered
observations, where no state change occurs. The loss function is given by
equation (1), wherew∈ (0, 1) is a weight applied to reduce the contribution
of non-filtered observations. Thefirst term represents the cross-entropy loss
forfiltered observations, and the second term represents theweighted cross-
entropy loss for non-filtered observations. The final values of the weighting
term, w, for both models can be found in Supplementary Table 10.

Lðy; pÞ ¼ �
X

i2F

XC

c¼1

yi;c logðpi;cÞ � w
X

i2NF

XC

c¼1

yi;c logðpi;cÞ; ð1Þ

Leveraging the Weights & Biases machine learning training platform50, we
applied Bayesian optimization to fine-tune the hyperparameters of the
HELMET models, utilizing filtered AUROC as the optimization objective
function51. The resulting values of the HELMET models hyperparameters
are detailed in Supplementary Section 5.3. We also conducted several
sensitivity analyses to test our model structure and development methods,
which are explained in further detail in Supplementary Section 5.4. All
computational experiments, including model development, validation, and
evaluation, were performed using Python 3.11 and the Scikit Learn library44.

EDEMA baseline model development
To compareHELMETwith a baseline, we opted to use linearmodels akin to
the models commonly reported in the existing literature18,19,45. Specifically,
we developed multinomial regression models that leverage similar inde-
pendent variables to the EDEMA score17. The EDEMA score is a multi-
nomial regression model developed for predicting the adverse event of
malignant edema after stroke, leveraging the following variables as input:
basal cistern effacement, admission MLS, glucose, previous stroke, and the
use of medical thrombolysis or thrombectomy interventions. We approxi-
mated the EDEMA score by training multinomial regression models in the

derivation and external validation cohorts to predict our target outcomes of
interest. By separately training the baseline models to each cohort and
prediction task, we derive a different model for each dataset leading to four
total baseline models: Massachusetts General Brigham EDEMA-8 and
EDEMA-24, as well as BostonMedical Center EDEMA-8 and EDEMA-24
(see Fig. 2). Our baseline models use as input the static features of blood
glucose at admission, HbA1C at admission, history of previous stroke,
mechanical thrombectomy at any point, and medical thrombolysis using
tPA at any point, as well as the dynamic features of most recent blood
glucose, presence of basal cistern effacement on the most recent scan, and
the MLS measurement from the most recent scan (indicated by asterisks in
Table 1). The baseline models were derived using five-fold splits at the
patient level for both the derivation cohort and the external validation
cohort. For training the EDEMA-8 and EDEMA-24 for Massachusetts
General Brigham and the HELMET models, we used the same train-test
partitions to maximize comparability.

Model evaluation
The principle target metric of model evaluation during algorithm tuning
was filtered area under the receiver operating characteristic curve
(AUROC). We selected this criterion given its relatively universal use as a
performance indicator52,53 and its suitability for use in comparison between
differentmodel types. To evaluate the predictive performance of the derived
models, we report the downstreamAUROC, area under the precision-recall
curve (AUPRC), accuracy, sensitivity, and specificity of the overall and
filtered datasets across both the testing set of the derivation cohort and the
external validation dataset.We separately evaluatedmodel performance on
the filtered cohort to stress the clinical importance of cases where a patient’s
MLS class changed. All performance metrics are reported as the mean and
the corresponding 95% confidence intervals for the testing sets of the
derivation cohort and the external validation cohort.

AUROC and AUPRC are typically defined only for binary classifica-
tion models. Given that our targets belong to a four-category classification
task, we calculated the true positive rate, false positive rate, sensitivity
(recall), and precision scores in a one-versus-rest binary classification setup
across prediction thresholds ranging between zero and one44,54. The
resulting metrics were then averaged across the four classes at each given
threshold to derive the receiver operating characteristic and precision-recall
curves weighted by the number of observations in each class. Accuracy was
defined as the proportion of observations where the model correctly
assigned the highest predicted probability to the true target class. To adapt
sensitivity and specificity for the multi-class setting, we reformulated the
task to focus on correctly predicting whether a patient’s MLS state would
worsen (i.e., increase) within the prediction window. For this binary clas-
sification task, true labels were assigned a value of one if the futureMLS class
exceeded the current MLS class, and zero otherwise. Predicted values were
similarly assigned a value of one if the MLS class with the highest predicted
probability was greater than the current class, and zero if it was not. Sen-
sitivity and specificity were then computed according to their standard
definitions.

Feature importance analysis
We utilized Shapley Additive Explanation analysis to study the
relative importance of various features in our final ensemble learning
models55. The Shapley values measure the marginal contribution of
each feature to a prediction in a machine learning model by
decomposing the prediction into the sum of effects from each feature,
utilizing the principles of cooperative game theory. For each class
prediction task, Shapley values were computed to identify the fea-
tures most influential in predicting across the four MLS classes. Per-
class Shapley values were aggregated to generate a ranked list of
overall feature importance. While the absolute Shapley values are not
directly informative, the relative ranking and composition of top
features offer valuable insights into model behavior and potential
implications for future clinical practice and edema prediction.
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Data availability
The data used in our study come from two academic medical centers in the
United States subject to theHealth Insurance Portability andAccountability
Act.Due to the data use agreement thatwehave signedwithBostonMedical
Center and Massachusetts General Brigham, the datasets cannot be made
publicly accessible, as they contain protected health information and other
sensitive information about the patients. Any user that wishes to gain access
to the dataset needs to become HIPAA certified and get approved as an
authorized by the collaborating healthcare systems Institutional Review
Boards.

Code availability
The code developed for this studywill become publicly available viaGitHub
upon publication of the manuscript by a peer-reviewed journal. Model
development and testing were done using Python v3.11 and publicly
available packages (including scikit-learn, pandas, numpy, wandb, xgboost,
datasets, transformers, evaluate, torch, cupy, and fire).
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