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This study introduces Glucose Level Understanding and Control Optimized for Safety and Efficacy
(GLUCOSE), a distributional offline reinforcement learning algorithm for optimizing insulin dosing after
cardiac surgery. Trained on 5228 patients, tested on 920, and externally validated on 649, GLUCOSE
achieved a mean estimated reward of 0.0 [–0.07, 0.06] in internal testing and –0.63 [–0.74, –0.52] in
external validation, outperforming clinician returns of –1.29 [–1.37, –1.20] and –1.02 [–1.16, –0.89]. In
multi-phase human validation, GLUCOSE first showed a significantly lowermean absolute error (MAE)
in insulin dosing, with 0.9 units MAE versus clinicians’ 1.97 units (p < 0.001) in internal testing and 1.90
versus 2.24 units (p = 0.003) in external validation. The second and third phases found GLUCOSE’s
performance as comparable to or exceeding that of senior clinicians inMAE, safety, effectiveness, and
acceptability. These findings suggest GLUCOSE as a robust tool for improving postoperative glucose
management.

Cardiac surgery elicits a substantial metabolic stress response resulting in
postoperative hyperglycemia regardless of diabetic status1. Post-operative
hyperglycemia after cardiac surgery is common, occurring in 60–80%
patients with diabetes2, and over 50% non-diabetic patients3. It is associated
with higher rates of post-operative infections4,5, acute kidney injury3,6–8,
cardiac arrhythmias3, longer length of stay3, and higher mortality6–9. Due to
its significance, the Society of Thoracic Surgeons (STS) recommends
maintaining blood glucose levels below 180mg/dL after cardiac surgery10.

Achieving adequate glucose control post-operatively is challenging. A
study found that only 15% of patients had appropriate glucose control,
defined as glucose level between 70mg/dL to 180mg/dL,within thefirst day
after cardiac surgery11. This early post-operative period, when patients are
critically ill and require care in intensive care unit (ICU) settings, is highly
dynamicwith rapidly changing clinical characteristics of patients.Currently,
post-operative glucose management involves titration of regular insulin
based onhospital specific protocols and the experience of treating clinicians.
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However, due to the highly dynamic nature of this early post-operative
period, some treatment regimens may be more suitable for certain patients
or only effective for a limited time as their condition evolves. This leads to
high rates of hyperglycemic and hypoglycemic episodes11,12, both associated
with worse outcomes, as these protocolized regimens often fail to account
for individual patient variability in real-world settings13,14. Therefore, per-
sonalized and dynamic insulin titration is crucial for improving glucose
control in patients following cardiac surgery.

Prior algorithmic approaches to inpatient insulin management have
primarily involved institution specific sliding scale doses, focusedon glucose
prediction, or used static daily insulin dose estimation. Sliding scale insulin
regimens are standard across most institutions, but they are reactive and
non-personalized, providing the same dose for a given glucose regardless of
patient-specific factors, a practice that can be both ineffective and
dangerous15. Nguyen et al. developed a supervised machine learning model
to predict the total daily dose of insulin to improve upon weight-based
dosing guidelines16.However, this approach excluded ICUpatients anddoes
not provide real-time dosing recommendations. Alternatively, while there
exist many supervised machine learning models for inpatient glucose pre-
diction to address such challenges in glycemic management, including in
ICU settings, these models forecast glucose trends rather than recom-
mending sequential insulin dosing strategies17,18.

Several modeling approaches have been explored for glucose predic-
tion and control, including stochastic modeling frameworks that leverage
variable-length time-stamped data to capture seasonal glucose patterns. For
example, a seasonal stochastic localmodeling approach (Glucose Prediction
under Variable-Length Time-Stamped Daily Events) has been proposed to
address inter-day variability in glucose regulation19. While these models
offer valuable predictive capabilities, they often lack adaptive decision-
makingmechanisms for real-time insulin dosing. In contrast, reinforcement
learning (RL) provides a dynamic approach that learns optimal insulin
dosing policies by maximizing cumulative rewards in response to patient-
specific glucose fluctuations. By transitioning from predictive modeling to
decision-based RL frameworks, we aim to enhance personalized glucose
management in the high-risk postoperative setting.

RL is a type of machine learning where an agent learns to make deci-
sions by performing actions in an environment to maximize cumulative
rewards20. RL algorithms receive feedback in the form of rewards or
penalties based on the actions taken, allowing the agent to improve its policy
over time. This adaptability makes RL particularly well-suited for tasks that
involve complex decision-making and require real-time adjustments, such
as insulin titration in the dynamic postoperative environment.

Implementing an RL-based system for insulin titration can address
the limitations of current glucose management protocols. By con-
tinuously learning from individual patient data, RL can provide perso-
nalized treatment plans that account for specific patient variability and
maintain glucose in optimal range. Additionally, RL’s capability to adapt
to rapidly changing clinical characteristics ensures that insulin dosing
remains optimal as patient conditions evolve. Traditionally, offline RL,
where the agent learns from a fixed dataset without further interaction
with the environment, has been limited by its focus on expected rewards,
often overlooking the uncertainty in patient responses21. This limitation
can lead to suboptimal treatment plans, as it fails to account for the full
spectrum of possible outcomes. As a result, offline RL systems may not
adequately address the diverse risk profiles associated with different
patient actions, potentially compromising the safety and effectiveness of
interventions22.

Our approach addresses this limitation by integrating distributional
RL, which characterizes the entire distribution of potential outcomes rather
than just the expected reward22. This methodology provides a more com-
prehensive understanding of the risks and benefits associated with various
actions, allowing formore nuanced decision-making under uncertainty22–24.
By considering the full range of potential patient responses, distributional
RL can enhance the personalization and safety of insulin titration protocols,
ensuring optimal dosing as patient conditions change.

Our proposed model, Glucose Level Understanding and Control
Optimized for Safety and Efficacy (GLUCOSE), aims to improve glucose
management on the first day after cardiac surgery, potentially leading to
better patient outcomes and more effective clinical decision-making. We
have developed GLUCOSE using data of patients undergoing cardiac sur-
gery in the Medical Information Mart for Intensive Care-IV (MIMIC-IV)
database25. We then validated the model externally with cardiac surgery
patients from the eICU Collaborative Research Database (eICU-CRD), a
diverse, multicenter database of critically ill patients26.

Results
Study population
GLUCOSE was trained and validated on two separate ICU datasets: the
MIMIC-IV database25 and the eICU-CRD database26. MIMIC-IV was used
as the development cohort and split into training and internal testing sets.
eICU-CRD was used as the external validation dataset. Based on the
inclusion and exclusion criteria, our study included 6,148 patients in
development dataset and 649 patients in external validation dataset. The
mean age of patients in the development dataset was 67.8 ± 11.6 years with
71.1% males, and in external validation dataset was 67.0 ± 11.3 years with
67.2% males. At least one hypoglycemic event ( < 70mg/dL) occurred in
7.6% of patients in the development dataset and among 7.2% of patients in
the external validation dataset. Similarly, at least one hyperglycemic event
( > 180mg/dL) occurred in 47.8% of patients in development dataset and
47.3% of patients in external validation dataset. The baseline characteristics
of the patients are shown inTable 1 and Supplementary Table 1. The overall
structure of our study is illustrated in Fig. 1.

Performance of GLUCOSE
To mitigate the sampling and stochastic biases inherent in offline RL27 we
trained, in line with previous literature, multiple models until we observed
no significant improvements in the RL policies28–30. Consequently, we
trained 200 independent models and selected the model with the maximal
lower bound of the 95% CI of mean estimated performance returns within
the internal testing set as theGLUCOSEmodel.We compared the estimated
performance returns ofGLUCOSEat the lower boundof its 95%CIwith the
upper bound of clinicians’ 95%CI (Fig. 2a) using fitted Q estimation (FQE)
for off policy evaluation (OPE)31,32, illustrating the differences in average
estimated performance after evaluating 200 policies. The dotted blue and
dotted orange lines reflect the 95% confidence intervals of the mean per-
formance for the observed clinicians behavior in internal testing and
external validation, respectively, while their non-dotted counterparts reflect
the estimated performance of GLUCOSE through OPE (Fig. 2a). The best
model, GLUCOSE, resulted in a mean estimated performance return of 0.0
[-0.07, 0.06] in the internal testing set and–0.63 [–0.74,–0.52] in the external
validation dataset, showing significant improvements over the clinician
returns of –1.29 [–1.37, –1.20] in the internal testing set and –1.02 [–1.16,
–0.89] in the external validation dataset.

GLUCOSE policy analysis
We further assessed the model by evaluating the time in range (TIR) of
70–180mg/dL for glucose level when the actual clinician administered
insulin dose was similar or different from the dose recommended by
GLUCOSE. In the internal testing set, 27.3% of the time patients received
insulin doses from clinicians identical to those recommended by GLU-
COSE, while in the external validation dataset, this occurred 20.3% of the
time. As shown in Fig. 2b, patients who received insulin doses like those
suggested by GLUCOSE had the highest average TIR in both the internal
testing set and external validation dataset. The TIR decreased as the dif-
ference of model recommended doses minus clinician administered doses
increased, indicating that the model identifies areas for improvement in
insulinmanagement. For example, atmore negative cumulative differences,
where the average glucose is also lower, GLUCOSE suggests less insulin to
mitigate the risk of hypoglycemia (Fig. 2b, c). Conversely, at more positive
cumulative differences, where average blood glucose is higher and average
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TIR is worse, the model suggests higher insulin doses to avoid hypergly-
cemia. To explore subgroup-specific performance, we conducted a TIR
analysis stratified by sex, race, and diabetic status (Supplementary Fig. 1).
Across all subgroups, GLUCOSE achieved the highest average TIRwhen its
recommended insulin dose matched the clinician-administered dose. This
consistent pattern across all groups suggests that GLUCOSE performs well
across these subgroups of patient populations.

The action distribution of Fig. 2c further illustrates these dosing pat-
terns. Across glucose ranges below 180mg/dL, GLUCOSE consistently
recommends lower average insulin doses than clinicians, reflecting a
guideline-aligned strategy that prioritizes maintaining glucose between 140
and 180mg/dL while reducing the risk for hypoglycemia. The recom-
mended insulin dose starts to increase after this threshold and surpasses the
clinician doses when glucose levels were above 200mg/dL, demonstrating a
proactive approach to correcting significant hyperglycemia aligning with
the recommendations to avoid hyperglycemia while minimizing the risk of
hypoglycemia.

To characterize clinician-model disagreement, we analyzed the clinical
features associated with the top and bottom deciles of absolute differences
between clinician-administered insulin and GLUCOSE-predicted insulin,
corresponding to the highest and lowest disagreement, respectively. Across
both internal and external cohorts, the largest disagreements occurred near
glucose values of approximately 140mg/dL. This range lies near the lower
boundary of the 140–180mg/dL target recommended for glucose man-
agement among critically ill patients. In the internal testing set, clinicians
administered an average of 5.9 units of insulin in high-disagreement cases

compared to the model’s 1.8 units, with a mean glucose of 142mg/dL.
Similarly, in the external validation set, clinicians gave 6.7 units versus the
model’s 1.6 units at a mean glucose of 139.5mg/dL.

To gain insight into model representations and ensure its clinical
interpretability, we derived feature importances for GLUCOSE using
SHapley Additive exPlanations (SHAP) (Supplementary Fig. 2)33. This
analysis revealed that the most heavily weighted features align well with
clinical intuition. Notably, recent and historical glucose measurements
emerged as key predictors, underscoring the value of capturing real-time
trends. Additionally, indicators of patient acuity, which may influence
stress-inducedhyperglycemia, such as theuseof anddurationofmechanical
ventilation, Sequential Organ Failure Assessment (SOFA) score, Elixhauser
Comorbidity Index, and the type of surgery, were weighed heavily. These
findings suggest that GLUCOSE uses clinically relevant information in its
decision making.

Human evaluations of GLUCOSE
For clinical applicability and robustness, we conducted a multi-phased
human evaluation. In the first phase, two senior endocrinologists, eachwith
over 10 years of clinical experience, provided their recommendations for
hourly insulin dosing for the first day after cardiac surgery for 10 patients in
both internal testing and external validation datasets. To allow the endo-
crinologists to provide the most accurate dosing schemes to use as a refer-
ence, we provided themwith the entire time series of patient data, including
the insulin doses actually administered by the treating clinicians, and
resultant glucose levels. We compared the hourly insulin doses

Table 1 | Patient characteristics

Development cohort External validation cohort P value

Admission Age, median [Q1, Q3] 68.0 [61.0,76.0] 67.0 [60.0,75.0] 0.093

Gender, n (%) Female 1746 (28.4) 213 (32.8) 0.02

Male 4402 (71.6) 436 (67.2)

Height, median [Q1,Q3] 173.0 [165.0,178.0] 170.2 [162.6,177.8] 0.059

Weight, median [Q1,Q3] 83.2 [72.0,96.0] 85.6 [72.6,99.7] 0.005

BMI, median [Q1,Q3] 28.2 [25.1,32.1] 29.2 [25.8,33.9] <0.001

24 h Sequential Organ Failure Assessment Score, median [Q1,Q3] 5.0 [3.0,7.0] 6.0 [4.0,8.0] <0.001

Race, n (%) Asian 136 (2.2) 15 (2.3) <0.001

Black 222 (3.6) 51 (7.9)

Hispanic 175 (2.8) 79 (12.2)

Native American 11 (0.2)

Other 219 (3.6)

Unknown 841 (13.7) 72 (11.1)

White 4544 (73.9) 432 (66.6)

Coronary Artery Bypass Graft, n (%) 4390 (71.4) 516 (79.5) <0.001

Valve Repair/Replacement, n (%) Aortic 835 (13.6) 125 (19.3) <0.001

Pulmonary 0 (0.0) 0 (0.0) <0.001

Mitral 332 (5.4) 69 (10.6) <0.001

Tricuspid 221 (3.6) 1 (0.2) <0.001

Unspecified 1424 (23.2) 11 (1.7) <0.001

Type 1 Diabetes, n (%) 33 (0.5) 2 (0.3) 0.77

Type 2 Diabetes, n (%) 868 (14.1) 59 (9.1) <0.001

End Stage Renal Disease, n (%) 131 (2.1) 17 (2.6) 0.503

Congestive Heart Failure, n (%) 1665 (27.1) 52 (8.0) <0.001

Chronic Obstructive Pulmonary Disease, n (%) 297 (4.8) 65 (10.0) <0.001

History of Hypertension, n (%) 3814 (62.0) 177 (27.3) <0.001

History of Myocardial Infarction, n (%) 1782 (29.0) 56 (8.6) <0.001

Percentages may exceed 100% for types of surgery as patients may undergo both coronary artery bypass grafting and valvular surgery, including multiple valves, simultaneously.
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Fig. 1 | Study overview. a Schema for model development, testing, and selection. bOverview of clinician validation study. Created in BioRender. Desman, J. (2025) https://
BioRender.com/k11i184.

Fig. 2 | GLUCOSE performance. a OPE counterfactual estimated performance of
the model computed by FQE (solid lines) compared to the returns by the treating
clinicians (dotted lines) with 95% CI. b Comparison of TIR and average glucose

relative to insulin dosing differences with 95% CI. c Average insulin doses across
several glucose ranges with 95% CI.
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recommended byGLUCOSE, which unlike the endocrinologists had access
only to the current state, to those actually administered by clinicians using
the average endocrinologist doses as the reference. Across both datasets,
GLUCOSE achieved significantly lower mean absolute error (MAE) in
hourly insulin dosing, indicating that its dosing schememore closely aligned
with the recommendations of the endocrinologists. In the internal testing
set, GLUCOSEhad anMAEof 0.9 units compared to the treating clinician’s
1.97 units MAE (p < 0.001). In the external validation dataset, GLUCOSE
had anMAE of 1.90 units compared to the treating clinician’s MAE of 2.24
units (p = 0.003).

In the second phase, two senior cardiac intensivists ( > 5 years’
experience), two junior cardiac intensivists ( < 5 years’ experience), and two
cardiac intensive care unit nurse practitioners provided their recommen-
dations for hourly insulin doses for the same patients. These clinicians were
also provided with the entire time series of data, actual insulin adminis-
tration record, and glucose levels to allow them to generate their most

retrospectively optimal possible human policies. We then compared the
GLUCOSE recommended doses, which again only had access to a single
state of information at the current timestep, to those recommended by these
6 clinicians, with the endocrinologist recommendations as the reference
(Fig. 3a). In internal testing, GLUCOSE achieved an MAE of 0.90 units
compared to that of senior intensivists’ 0.82 unit MAE (p = 0.57), junior
intensivists’ 1.15 unit MAE (p = 0.25), and nurse practitioners’ 1.23 unit
MAE (p = 0.21). In external validation,GLUCOSEachieved anMAEof 1.90
units compared to that of senior intensivists’ 1.58 units (p = 0.32), junior
intensivists 2.15 units (p = 0.53), and nurse practitioners 2.28 units
(p = 0.38). Although the differences in MAE did not reach statistical sig-
nificance,GLUCOSEdemonstrates a trend toward lowerMAEs than that of
junior intensivists and nurse practitioners when compared against endo-
crinologists as the reference.

In thefinal phase, we conducted a blinded evaluation ofGLUCOSE and
all 8 clinician dosing recommendations using an expert panel of 2 separate

Fig. 3 | Human validation study results. aMAE of clinician groupings and GLUCOSE relative to an endocrinologist baseline with standard error of the mean. b Blinded
ratings across safety, effectiveness, and acceptability of all clinicians by a blinded senior intensivist panel with standard error of the mean.
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senior intensivists to assess practical safety, effectiveness, and acceptability of
the model’s recommended insulin doses. The two additional senior intensi-
vists used a 5-point Likert scale to assess the safety (to reduce hypoglycemia),
effectiveness (if the regimen would bring glucose into an acceptable range),
and acceptability (if the regimenwould be acceptable in a clinical scenario) of
each recommended insulin regimen for the samegroupof20patients. Inboth
internal testing and external validation datasets, GLUCOSE’s rated safety,
effectiveness, andacceptability demonstrated either comparable performance
or statistically significant improvements over all human policies (Fig. 3b).
Notably, GLUCOSEperformed at or above the level of senior cardiac surgery
intensivists across all domains in both the internal testing and external vali-
dation datasets. This demonstrates GLUCOSE’s reliability and consistent
high-level performance across diverse clinical scenarios.

To illustrate GLUCOSE’s real time decision making, we provide
representative case examples comparing its insulin dosing recommenda-
tions with actual clinician-administered doses (Fig. 4). Overall, GLUCOSE
consistently demonstrates dynamic and personalized insulin dosing stra-
tegies, adapting to changes in glucose trajectories. Across randomly selected
internal testing and external validationpatients,GLUCOSEprovided timely
insulin adjustments, oftenmoderating dosing to avoid overshooting glucose
targets. These cases highlight how GLUCOSE responds to evolving patient
conditions and targets an optimal glucose range more in line with STS
guidelines.

Evaluation of GLUCOSE’s recommendations among excluded
patients
Finally,weevaluatedGLUCOSE’s recommendations in subsetsof the external
validation dataset that were excluded from the primary analysis due to the
presence of ambiguous administration of insulin, vasopressors or inotropes.
These patients had documented insulin, vasopressor, or inotrope adminis-
trationbutwith insufficient information todetermine the exact timingordose
- an issue commonly reported in themulticenter eICU-CRDdatabase34. Based
on the affected medication, we performed this evaluation separately in

patients with only ambiguous insulin data (3,001 patients) and in those with
ambiguous data for both insulin and vasopressors/inotropes (1,804 patients).
As there were only 33 patients with non-ambiguous insulin but ambiguous
vasopressor/inotrope data, we excluded them from this analysis.

The external validation cohort, the ambiguous insulin subset, and the
ambiguous medication subset were similar in terms of age, gender, and
weight. However, these additional subsets included a higher proportion of
white patients (66.6% vs 81.1% vs 89.7%, p < 0.001) and fewer patients with
type 2 diabetes (9.1% vs. 3.1% vs. 1.2%, p < 0.001). While there were sta-
tistically significant differences in the average glucose levels (134.5 mg/dL vs.
132.2mg/dL vs. 130.6 mg/dL, p < 0.001) these small differences are not
clinically meaningful. Full demographic analysis can be found in Supple-
mentary Table 2.

Due to the lack of accurately recorded insulin in these subgroups, we
were unable to perform OPE or direct comparisons which depend on
accurate insulin administration records.However, the overall distributionof
model recommended actions was comparable across datasets (Supple-
mentary Fig. 3). Although there were statistically significant differences, all
differences in average insulin across all glucose ranges were less than half a
unit and therefore not clinically significant (Supplementary Fig. 3).

Discussion
In this studywehavedevelopedGLUCOSE, adistributional offlineRLbased
algorithm, that dynamically suggests personalized regular insulin dosing for
patients in thefirst day after cardiac surgery. The algorithmwas validatedon
an independentmulticenter dataset and further demonstrated its robustness
and safety through rigorous human evaluations.

Hyperglycemia early after cardiac surgery is associated with higher
rates of post-operative infections4,5, acute kidney injury3,6–8, cardiac
arrhythmias3, longer length of stay3, and higher mortality6–9. This under-
scores the importance of glucose control in the early post-operative period.
Moreover, research indicates that the harmful effects of hyperglycemia are
dose-dependent, with longer exposure and higher glucose levels leading to

Fig. 4 | Case examples. Representative case examples to compare GLUCOSE’s insulin dosing recommendations compared with actual clinician administered insulin in
internal testing (a–c) and external validation (d–f) patients. Lines indicate glucose levels and insulin doses. Colored bands indicate glycemic ranges.
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worse outcomes35. Therefore, it is essential to manage both the severity and
duration of hyperglycemia. The STS recommends maintaining blood glu-
cose levels below 180mg/dL after cardiac surgery10. To achieve this target,
most cardiac surgery centers employ institutional protocols for managing
hyperglycemia15,36–38. However, a significant challenge in early postoperative
glucose management is that insulin, the primary treatment for hypergly-
cemia, has a narrow therapeutic window39. Since these protocolized regi-
mens often fail to account for individual patient variability in real-world
settings13, 14, hypoglycemia becomes a significant risk, particularly with
intensive insulin dosing schemes40,41. Hypoglycemia, defined as a blood
glucose level <70mg/dL, can trigger increased sympathetic activity leading
to increased heart rate or arrhythmias42, impairment of autonomic cardiac
reflexes43, poor neurological outcomes44, and death12. This hypoglycemia is
seen in 5–21% patients after cardiac surgery11,12,40 prompting a more con-
servative insulin dosing which, in turn, can result in persistent hypergly-
cemia. Thus, not surprisingly, these protocols frequently fall short, with only
15% of patients reaching the recommended glucose levels without hypo-
glycemia on the first day after surgery11, which is the most critical and
dynamic period after cardiac surgery.

Clinicians review over 1300 data points per patient each day,making it
difficult to effectively use all this information for clinical decision-making45.
An algorithm that can systematically process and interpret these data points
can significantly enhance clinician workflow while improving patient out-
comes. The GLUCOSEmodel addresses this by evaluating over 70 features,
such as vasopressor doses, SOFA score, mechanical ventilation needs, past
glucose values, and BMI, every hour. It recommends personalized insulin
doses that account for the patient’s evolving clinical status. Importantly, the
algorithm prioritizes features that are clinically relevant, as reflected in the
feature importance analysis. Consistently, the GLUCOSE dosing scheme
outperforms traditional clinician-driven dosing strategies in terms of esti-
mated average performance.

The TIR for glucose was highest when the administered insulin dose
closelymatched themodel’s recommendations. As the discrepancy between
the administereddoses andGLUCOSE’s suggesteddoses increased, the time
in range decreased. Notably, when the difference was negative, meaning
GLUCOSE recommended less insulin than what was administered, the
average glucose level was lower. Conversely, with positive differences—
whereGLUCOSEsuggestedmore insulin thanwhatwas given—the average
glucose level was higher. This indicates that aligning insulin doses more
closely with GLUCOSE’s recommendations could potentially increase time
in range and reduce glucose variability, which is associated with worse
clinical outcomes13,14.

Although there have been algorithms developed to assist clinicians in
insulin doses, they are mostly limited to simulated settings without any
human evaluations, include exclusively patients with diabetes, and none
specifically target post-cardiac surgery patients46–48. To ensure clinical
applicability and acceptability of our study we performed a comprehensive
3-phase human evaluation inspired by prior work46, which is a significant
strength of our study. The results of our multi-phased human evaluation
underscore the clinical robustness and reliability of the GLUCOSE algo-
rithm in guiding insulin dosing for post-cardiac surgery patients. The sig-
nificant reduction in MAE achieved by GLUCOSE compared to observed
clinician dosing across both internal and external datasets highlights the
algorithm’s agreement with rigorous clinical evaluation. Particularly note-
worthy is GLUCOSE’s performance in the final phase of the evaluation,
where it was assessed by senior intensivists on safety, effectiveness, and
acceptability. The algorithm was either comparable to or exceeded the
standards set by experienced clinicians, including senior cardiac surgery
intensivists. It is important to note, that unlike GLUCOSE, which only had
access to patient data till each current time-step, the clinicians that per-
formed human evaluations had access to the entire patient time series of
data. This made their approach nearly optimal, against which GLUCOSE’s
performance was measured. In reality, clinicians also only have access to
data up to the current time step, making GLUCOSE ‘s performance parti-
cularly notable in this context. This suggests that GLUCOSE can provide a

valuable tool in themanagement of hyperglycemia in this critically ill patient
population, offering a level of reliability and clinical applicability that is on
par with traditional human-driven dosing strategies. The ability of GLU-
COSE to maintain high performance across diverse clinical scenarios fur-
ther supports its potential integration into clinical practice, where it could
enhance patient outcomes by reducing variability in insulin dosing and
minimizing the risks associated with both hyperglycemia and
hypoglycemia.

Incorporationof distributionalRL is another significant strengthof this
study. Even among patients with seemingly similar clinical profiles, there
can be considerable variation in physiological responses. Distributional RL
is particularly well-suited to address this challenge, as it quantifies the
intrinsic uncertainty within a Markov Decision Process (MDP), which is
characteristic of stochastic environments23. By learning to approximate the
distribution of potential outcomes, this approach strengthens the model by
preparing it to handle the inherent uncertainties of real-world clinical
settings.

Given the variability in hospital protocols and patient populations, the
successful integration ofGLUCOSE into clinical practicemay require site or
unit specific customization. For example, finetuning the model for distinct
clinical scenarios, such asmanaging sepsis in the ICUor treating patients on
thewardswith subcutaneous insulin, could broaden its applicability beyond
the post-cardiac surgery context. Future work should explore the use of
transfer learning to adapt GLUCOSE for the general wards, non-cardiac
ICUs, or other settings characterized by unique nutritional and metabolic
demands. Such tailored adaptations would not only enhance the model’s
generalizability but also promote the widespread use of dynamic insulin
titration protocols, ultimately improving patient outcomes by reducing
dosing variability and mitigating hyper- and hypoglycemia risk. To further
promote generalizability, we limitedGLUCOSE’s input features to routinely
collected ICUdata that are standardized across institutions and consistently
available in electronic health records. This design choice allows GLUOCSE
to operative effectively across heterogeneous hospital systems, such as those
included in the eICU-CRDdataset. GLUCOSE’s strong performance in this
multicenter external validation cohort, including under scrutiny of senior
clinicians, supports the robustness of the overall approach.

We envision GLUCOSE as a clinical decision support tool integrated
into electronic health record systems to provide real-time, personalized
insulin dosing recommendations. GLUCOSE is designed to integrate
seamlessly into existing ICU workflows. The model utilizes routinely col-
lected clinical data, ensuring that no additional data collection burden is
placed on healthcare providers. It can be deployedwithin existing electronic
health record systems with minimal technical adjustments, making it
accessible to a wide range of hospitals. By continuously analyzing patient
data, GLUCOSE moves beyond standardized protocols to deliver tailored
insulinmanagement that adapts to each patient’s evolving clinical condition
without disrupting patient care processes. This would, however, require an
initial silent deployment to evaluate its performance against current prac-
tices, followed by a prospective clinical trial to rigorously assess its safety and
efficacy.

Successful real-world deployment will also require addressing key
regulatory and operational considerations. These include ensuring com-
pliancewith institutional policies and federal privacy regulations, such as the
Health Insurance Portability and Accountability Act (HIPAA), robust
protocols for ethical oversight and patient safety, and overcoming technical
challenges of integrating the system into existing electronic health record
platforms. Successful navigation of these hurdles will require close colla-
boration with hospital IT departments, clinical leadership, and institutional
stakeholders, as well as sustained investment in implementation
infrastructure.

While GLUCOSE demonstrates significant potential, several limita-
tions should be considered when interpreting these results. First, although
our retrospective study strongly supports the use of GLUCOSE as a clinical
decision support tool, these findings require validation through prospective
studies and clinical trials involving large anddiversepatient cohorts. Second,
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theGLUCOSEmodel has been trained, tested, and externally validated only
for the first day following cardiac surgery. Though this is themost dynamic
time-period for patients after cardiac surgery, expanding this work to
evaluate insulin regimens over longer postoperative periods would further
enhance GLUCOSE’s clinical utility. Future versions of GLUCOSE could
extend the observation window beyond the first 24 h or leverage transfer
learning to enable adaptation to longer-term glucose management. Third,
our current algorithm does not incorporate explicit dietary data. While
nutrition is a known contributor to glycemic variability, there are several
considerations that mitigate its impact in our current context. During the
initial 24 h following cardiac surgery, patients typically receive minimal or
no oral intake due to postoperative recovery protocols, mechanical venti-
lation, and anesthesia. This substantially reduces the influence of nutritional
intake on glucose dynamics during this early window, which is the focus of
our current study. Additionally, in real-world clinical settings, precise and
time-stamped dietary data are rarely collected as part of routine care,
making consistent integration into algorithmic models challenging. The
need for such granular data could also hinder scalability and clinical
adoption. Notably, prior studies have demonstrated that RL algorithms can
achieve effective glycemic control without explicit meal information47. This
is likely because postprandial glucose fluctuations are captured within the
glucose time series itself, allowing the model to learn latent representations
of meal-related effects. By implicitly capturing the impact of nutrition
through glucose dynamics, GLUCOSE reduces dependence on non-
standard data inputs while maintaining clinical relevance. Nonetheless, we
acknowledge that the exclusion of dietary data may limit performance in
scenarios where nutritional intake becomes more variable, such as during
extended ICUstays or in generalward settings.Weview this as an important
area for future exploration as we move toward broader deployment of the
model. Finally, to ensure accurate training and validation of the model, we
restricted ourselves to patients that had accurately documented doses of
medications such as insulin, given that it was the action, and vasopressors/
inotropes, which indicate the risk of disease severity and thusmay portend a
higher risk of hyperglycemia, in both development and external validation
cohorts. With this, we did not need to exclude any patients in MIMIC-IV,
but had to exclude 4,838 patients in eICU-CRDdataset. Thismissingness in
eICU-CRD is a known issue with the dataset34, but with patients from over
200 hospitals, it is a highly heterogenous dataset and thus remains impactful
for external validation. To ensure that our model’s recommendations still
generalize appropriately in the excluded subset of the external validation
datasetwe assessed the distribution of recommendations of themodel in the
subset with just ambigious insulin data, and in the subset with ambiguous
data about both insulin and vasopressor/inotropes. We found that the
distribution of recommendations was very similar in the 3 groups, with no
clinically meaningful differences in actions, which suggests good general-
izability of the model.

In summary, we have developed and externally validatedGLUCOSE, a
distributional RL based model to dynamically optimize glucose manage-
ment in cardiac surgery patients. The comprehensive three-phase human
evaluations support GLUCOSE’s clinical robustness and safety, demon-
strating its effectiveness in real-world settings and its performance on par
with or surpassing that of experienced clinicians. Future studies should be
focused on randomized controlled trials to further evaluate the effectiveness
and safety of GLUCOSE in diverse clinical settings.

Methods
Study design and databases
For this retrospective study, we used the MIMIC-IV database25 to develop
the GLUCOSE algorithm (Development dataset). MIMIC-IV is a single-
center database constructed from deidentified ICU admissions at the Beth
IsraelDeaconessMedicalCenter from2008 to2019.Weexternally validated
the derived policy using the heterogeneous eICU Collaborative Research
Database (eICU-CRD)26 (External Validation Dataset). eICU-CRD is
constructed from over 200,000 de-identified admissions to 208 United
States hospitals between 2014 and 2015.

Study population
We included all adult patients (age ≥18 years) who were admitted to ICU
after cardiac surgery. We used ICD-9-PCS and ICD-10-PCS codes to
identify patients who underwent cardiac surgery in MIMIC-IV database
(SupplementaryTable 3).The eICU-CRDdatabase doesnot include ICD-9-
PCS or ICD-10-PCS procedure codes. As per prior literature26, we have
identified patients admitted to the ICU after cardiac surgery using the
“admissiondx” table that provides the primary diagnosis for ICU admis-
sions (Supplementary Table 4). We excluded patients who died within first
24 h of ICU admission, had ambiguous medication administration infor-
mation such that it did not allowus to calculate the exact dose ofmedication
administered, or did not have available glucose levelswithinfirst three hours
of documented ICU admission time after surgery. As our focus was to
develop a policy to personalize the administration of regular insulin, we
excluded patients who received other short acting insulins (aspart, lispro,
NPH, insulin 70/30) (Supplementary Fig. 4).

Feature extraction and preprocessing
We extracted information about patient demographics (age, sex, race),
comorbidities (history of diabetes, hypertension, end stage renal disease,
chronic obstructive pulmonary disease, asthma, prior myocardial infarc-
tion, congestive heart failure, Elixhauser comorbidity score), laboratory
values (complete blood count, comprehensive metabolic panel, coagulation
studies, and blood gases), vital signs (systolic blood pressure, diastolic blood
pressure, mean arterial pressure, heart rate, respiratory rate, temperature,
and oxygen saturation), vasopressor and inotrope doses, mechanical ven-
tilation status, and SOFA scores.We extracted the data asmultidimensional
discrete time series in 1-h time intervals, with features summed or averaged
as clinically appropriate. We excluded features with over 30% missingness.
In line with standard approach to handling missingness in these data, we
used forward fill imputation for all features with k-nearest neighbor (k-NN)
imputation (k = 5) to impute any remaining missing data28,49. Only the first
24 h of data for each patient was utilized. All features were checked for
outliers using a frequency histogram and descriptive statistics. Errors were
corrected as appropriate, such as conversionof temperature toFahrenheit to
Celsius. The full feature list can be found in the Supplementary Table 1. All
features across all datasets were normalized into range [0, 1] based on the
training set to improve training stability.

Our outcome was appropriate glucose control, defined as an hourly
glucose level between 70–180mg/dL10,50, in the first day after cardiac sur-
gery. Consequently, we began recording timesteps from the availability of
the first glucose level measurement after admission to ICU.

Computational modeling
We used conservative Q learning (CQL), a state-of-the-art offline RL
algorithm that allowsmodel to suggest clinical actions while regularizing
the learned policy to mitigate overestimation in low-coverage or out-of-
distribution state-action pairs51. CQL was chosen over other offline RL
methods, such as Batch-Constrained Q-Learning (BCQ), Behavior
Regularized Actor Critic (BRAC), and TwinDelayedDeepDeterministic
Policy Gradient with Behavior Cloning (TD3+ BC), because it explicitly
and conservatively regularizes the learned policy by penalizing actions
outside the dataset distribution, while still allowing for strategic
generalization27,52,53. CQL is considered among the state-of-the-art in
offlineRL due to its strong performance across standard benchmarks and
its robust handling of out-of-distribution actions51,54. Its conservative
approach is particularly suited to our domain, where insulin manage-
ment involves high-stakes decisions and a narrow therapeutic index.
Therefore, CQL helps ensure that the policy remains grounded in safe
and high-reward actions observed in the data, mitigating the risks
associated with extrapolating to unsupported state-action pairs. To
further enhance the model’s understanding of uncertainty and risk, we
integrated CQL with distributional RL, an approach that characterizes
the entire distribution of potential outcomes rather than focusing only on
the expected reward. By capturing the full range of possible patient
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responses, this methodology enables more nuanced decision-making,
particularly for rare but critical events such as hypoglycemia, which
traditional RLmethods may underestimate. All models use a multi-layer
perceptron (MLP) network with 3 512-dimension hidden layers. This
integration is crucial for making safe and effective decisions especially
with clinical actions that have a narrow therapeutic index, such as insulin
dosing. To achieve this, we incorporated Implicit Quantile Networks
(IQN) into CQL, leveraging the strengths of distributional RL to better
model the variability in patient responses, thereby improving the
robustness of GLUCOSE24. Unlike other distributional methods that
require explicitly defining the number of quantiles, IQN adds a layer
which flexibly learns the full return distribution by sampling from con-
tinuous quantile values during training, allowing it to approximate the
entire outcome distribution without fixed bins. This enables a more
comprehensive representation of potential outcomes while improving
upon its non-distributional counterparts22–24. As a result, the model can
better capture clinical uncertainty and make decisions around nuanced
risk profiles, particularly in settings with high variability. To the best of
our knowledge, this is the first application of integration of CQL with
distributional Q functions in healthcare.

Finally, we implemented a batch training sampling strategy for offline
RL, which avoids overregularization by low-return actions, allowing the
learned policy to reflect more high-return trajectories55.

State space
RL typically considers problems asMDPs. AnMDP can be represented as a
tuple of (st, a, r, st+1) for each time step t. Here, st represents a vector
observation of features at that hour index t, and st+1 represents the the state
at the next hour index after taking action a. The reward, r, is given for taking
action a at state st.

We used the features derived from demographics, comorbidities,
laboratory values, vital signs, medications, mechanical ventilation, and
SOFA scores binned into hourly time-steps to develop the state space. Based
on previous literature, we incorporated the prior four hours of glucose
values, when available, into the RL model56. To provide additional context,
we included information on glucose level changes during this period and
calculated the ratio of glucose change to insulin dose for each hour, with the
minimum insulin dose set at 0.1 for this calculation.

Action space
In our offline RL model, actions are defined as the amount of regular
insulin administered each hour, utilizing a continuous action space. For
ease of interpretability, we have rounded the recommended insulin
doses to the nearest integer. This practice aligns the model’s recom-
mendations with practical clinical standards and facilitates the clinical
implementation of suggested doses. Additionally, we capped the insulin
doses recommended and observed by GLUCOSE at a maximum of 10
units per hour. This decision was based on both data-driven con-
siderations and clinical safety parameters. The mean hourly insulin
dose in MIMIC-IV was 2.2 ± 3.0 units/hour, with doses exceeding 10
units/hour accounting for only 2.29% of all administered doses. From a
clinical perspective, given insulin’s narrow therapeutic index, this cap
serves as a safeguard to minimize the risk of hypoglycemia. It also
reinforces the importance of maintaining a physician-in-the-loop
framework for cases that may necessitate higher doses, ensuring safety
and clinician oversight.

Reward
We designed our reward to maximize optimal glycemic control while
strongly discouraging behavior that would result in both hypoglycemia
(glucose <70mg/dL) and hyperglycemia (glucose >180mg/dL). We pro-
vided a maximum reward of +0.2 within the 140–180mg/dL range and
penalties become increasingly negative, down to –1, outside that range. We
chose a reward with relatively low magnitude to improve training stability,
anda relativelynegative reward todisincentive anyoutof rangevalues57.The

reward is outlined in Eq.(1):

r ¼

�1; x < 70

3x=175 � 2:2; 70 ≤ x < 140

0:2; 140 ≤ x < 180

�0:03x þ 5:6; 180 ≤ x < 220

�1; x ≥ 220

8
>>>>>><

>>>>>>:

ð1Þ

To ensure the safety of insulin dosing recommendations, considering
insulin’s narrow therapeutic window, we implemented an exponentially
increasing penalty that serves to discourage large overcorrections and
promotes more cautious dosing adjustments58:

rt ¼ rt � 0:001a2t
� � ð2Þ

GLUCOSE model training and external validation
To train the policies, wefirst split the development dataset into 85% training
and 15% internal testing sets. Since RL is particularly subject to high sto-
chastic training variation27, we sought to mitigate sampling and stochastic
biases by trainingmultiple models on subsampled 80% splits of the training
set. Each training run and sampling split utilized a unique seed to ensure
different training sets and distinct sampling order while maintaining
reproducibility. We continued training models until substantial and sig-
nificant improvements over the clinician policies were observed in the 15%
internal testing set. Thefinalmodel (GLUCOSE)was selected as the one that
had the highest lower bound of the 95% CI for estimated performance
returns in the internal testing set28. We then evaluate GLUCOSE on the
external validation set (Fig. 1).

Trainingwas conducted inbatches of 256,with actor andcritic learning
rates of 1e–4 and 3e–4, respectively. The discount factor γ was set at 0.67,
corresponding to a 3 h effective horizon (calculated as 1/(1-γ)). Discount
factors are problem specific, and the choice of a lower discount factor is
critical in the context of this problem.Higher discount factors, such as those
exceeding 0.95, extend the effective horizon beyond the episode length,
resulting in future rewards being weighted nearly as heavily as immediate
rewards. Glucose levels can change rapidly, which could lead to suboptimal
policy development as the model may either overly prioritize distant future
rewards unaffected by the current state or become insensitive to immediate
low reward states. Using a lower discount factor aligns the temporal focus of
themodel to ensure it remains responsive to rapidly changing glucose levels.
A dropout rate of p = 0.1 was applied during training to improve policy
generalization.Allmodelswere implemented inPython3.8.2 usingd3rlpy59.

Off-policy evaluation
We used fitted-Q-evaluation (FQE) for offline policy estimation (OPE) to
estimate the performance of the learned policies31,32. FQE is effective in
handling large policy deviations from observed behaviors as well as sto-
chasticity, and it has shown consistency and calibration in various
healthcare-specific benchmarks60,61. Bootstrapping was applied across all
episodes in the datasets to generate 95% confidence intervals by sampling
with replacement 10,000 times. We then estimated the performance using
FQE on both internal testing set and external validation dataset.

We further exploredpolicy performance by analyzing the time in range
(TIR) (70–180mg/dL) in relation to the difference of GLUCOSE’s dosing
recommendations and clinician-administered doses (Fig. 2b). We calcu-
lated the cumulative differences as the model’s predicted insulin doses
minus the observed insulin doses over the first 24 h of ICU stay:

Δ ¼
XT

t

at;RL � at;observed ð3Þ

Cumulative differences are positive when the RL model recommends
more insulin than what was administered, while negative differences
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indicate that themodel predicted a lower insulin dose compared towhatwas
observed.

Estimation of feature importance
The interpretability of machine learning models is crucial in clinical care,
where the rationale behind a model’s predictions must be clear to ensure
patient safety and informeddecision-making. SHAP, amethod grounded in
cooperative game theory, assesses the contribution of each feature to a
model’s prediction by analyzing all possible combinations of feature
values33. In this study, we employ Permutation SHAP to estimate these
contributions, as it provides a model-agnostic framework for elucidating
model outputs.

Human evaluations
We further assessed the clinical validity of GLUCOSE in three separate
phases of human evaluations. In the first phase, we compared the hourly
insulin dosing recommendedbyGLUCOSE to that administered to patients
in both internal testing and external validation datasets. Two senior endo-
crinologists (RS, AG), each with over ten years of clinical experience, pro-
vided their own hourly insulin dosing recommendations for 10 randomly
selected patients in each cohort. Using the average hourly insulin doses
recommended by endocrinologists as reference, we compared the insulin
doses recommended by GLUCOSE to those administered to these patients.

In the second phase, we had two senior cardiac intensivists ( > 5 years’
experience) (PM, VN), two junior cardiac intensivists ( < 5 years’ experi-
ence) (DP, JG), and two cardiac intensive care unit nurse practitioners (AC,
DG) provide their recommendations for hourly insulin doses in thefirst day
after cardiac surgery for the same patients. We then compared the GLU-
COSErecommendeddoses to those recommendedby these clinicians, again
using the average endocrinologist recommendations as references.

In the third phase, a panel of two senior intensivists (AS, GK) con-
ducted a blinded evaluation of GLUCOSE against other clinician recom-
mended insulin dosing schemes. Senior intensivists were selected for this
phase because, in practice, these frontline clinicians are frequently respon-
sible for making rapid decisions regarding glucose control in critically ill
patients. They evaluated each dosing scheme for each patient using the
following 5-point Likert scale questions:
1. Q1 (Safety)—Howmuch risk for hypoglycemia does this regimen put

the patient at? 1. Very high risk 2. High risk 3.Medium risk 4. Low risk
5. Minimal risk

2. Q2 (Effectiveness)—How effective is this regimen in bringing the
glucose levelwithinanacceptable range? 1.Not effective at all 2. Slightly
effective 3. Moderately effective 4. Very effective 5. Extremely effective

3. Q3 (Acceptability)—How acceptable would this regimen be to you in
clinical settings? 1. Strongly unacceptable 2. Unacceptable 3. Neutral 4.
Acceptable 5. Strongly acceptable

Evaluation of model recommendations in excluded patient
subsets
We also evaluated the GLUCOSE ‘s recommendations using the part of
external validationdataset thatwas excluded fromtheprimary analysis due to
presence of ambiguous insulin administration data, which prevented us from
makingdirect comparisonsorcalculatingOPE.Patients forwhichexactdoses
of insulin, vasopressors, or inotropes could not be resolved were separated
and underwent the same exclusion criteria and preprocessing used for the
primary external validation cohort. Any ambiguous data was zero-filled.

Statistical analysis
We performed comparisons of categorical features using Chi-squared test
and continuous features using t test and Kruskal-Wallis test, as appropriate.
All significance levels were set at α = 0.05. To compare insulin doses
administered by clinicians andGLUCOSE before hypo- and hyperglycemic
episodes, we used Mann–Whitney U tests given the skewed distributions.
To evaluate the accuracy of the insulin dosing schemes, we calculated the
mean absolute error (MAE) between the insulin doses recommended by

various dosing schemes to those provided by endocrinologists. MAEs were
determinedby subtracting the endocrinologists’ recommendations from the
doses suggested by clinicians and the GLUCOSE system for each hourly
dose administered or recommended for the 20 retrospectively reviewed
patients.We then performed a t test to identify any significant differences in
MAE between the observed clinicians’ dosing and the endocrinologist’s
suggested dosing, andMAEbetweenGLUCOSE’s suggested dosing and the
endocrinologist’s suggested dosing. To assess differences in the average
insulin doses across subsets of excluded patients, we used ANOVA tests for
group-wise assessment and two sided t-tests for pairwise assessment. All
statistical tests were conducted using Python 3.8.2 using SciPy62.

Data availability
All datasets used and analyzed in this present study are publicly available.
MIMIC-IV and eICU-CRD data can be obtained via their online reposi-
tories at https://physionet.org/content/mimiciv/2.2/ and https://physionet.
org/content/eicu-crd/2.0/, respectively.

Code availability
The underlying code for this study is not publicly available for proprietary
reasons.Code forGLUCOSEmaybe sharedupon reasonable requests to the
corresponding author.
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