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Artificial intelligence should genuinely
support clinical reasoning and decision
making to bridge the translational gap

Check for updates

Kacper Sokol1 , James Fackler2,3 & Julia E. Vogt1

Artificial intelligence promises to revolutionisemedicine, yet its impact remains limited because of the
pervasive translational gap. We posit that the prevailing technology-centric approaches underpin this
challenge, rendering such systems fundamentally incompatible with clinical practice, specifically
diagnostic reasoning and decision making. Instead, we propose a novel sociotechnical
conceptualisation of data-driven support tools designed to complement doctors’ cognitive and
epistemic activities. Crucially, it prioritises real-world impact over superhuman performance on
inconsequential benchmarks.

Artificial intelligence (AI) is advancing at abreakneckpacewith apromise to
overcome numerous real-life challenges across many domains1. Of parti-
cular relevance is medicine, where data-driven tools can lead to better
quality of and access to healthcare—especially in resource-scarce regions—
by helpingwith early detection and prevention of diseases as well as delivery
of personalised treatments2–4. Specifically, AI has the potential to increase
the efficiency of healthcare institutions, abate shortages of medical profes-
sionals, aidwithmanaging the demand for care in viewof population ageing
and lifestyle diseases, alleviate the economic burden of healthcare as well as
reduce the recovery time, mortality and morbidity of devastating medical
conditions, saving numerous lives on a global scale.However, even themost
advanced AI models boasting state-of-the-art or superhuman predictive
performance on benchmark tasks have negligible or non-existent benefit—
setting aside the technical progress itself—if they are never integrated into
clinical practice. While there have been some success stories in this regard,
they remain scarce compared to the sheer number of such systems currently
being developed5–7.

This phenomenon is a stark manifestation of a translational barrier
that is ubiquitous in AI for healthcare research8–11. While significant focus
remains on advancing predictive performance of such models2,10,12–15, this
approach does not appear to offer much progress in terms of AI adoption,
except for a very limited rangeof clinical applicationdomains5–7. Someof the
underlying reasons include technical misalignment and incompatibility of
such systems with deployment requirements8, but frictions at the interface
of users and technology as well as societal concerns are more prominent9.
While research into AI fairness, accountability, robustness, interpretability
and the like attempts to address these challenges16–18, progress across these
disciplines has thus far not managed to unequivocally overcome the
translational barrier19–23. Since such technological advancements on their
own do not seem to deliver the anticipated real-life impact, an alternative

sociotechnical approach focused on seamless integration of AI-based sys-
tems into clinical practice and their overall acceptability may be more
fruitful14,24–32. After all, even rudimentary data-driven tools that offermodest
improvements across a disease lifecycle can have bigger impact than strictly
more powerful systems if only the former are adopted by clinicianswhile the
latter remain purely a research feat.

In this Perspective we outline a promising sociotechnical research
direction that could help medical AI models to overcome the translational
barrier by realigning their operation with the needs and expectations of
doctors aswell as the intricate environments inwhich these systems operate.
Achieving these goals requires an interdisciplinary, human-centred
approach that abandons the autonomous view of (artificial or human)
intelligence and acknowledges its social and relational nature33,34. Instead of
striving to replace clinicians with undesired, fallible and potentially harmful
data-driven automation, we posit that AI systems ought to seamlessly
integrate into and augment—as opposed to disrupt—well-established
medical workflows as well as real-life reasoning and decision-making pro-
cesses. Consequently, artificial intelligence can assist healthcare profes-
sionals in their everyday tasks, complement their abilities, boost their
effectiveness and champion clinical best practice8,10,14,23–25,27,29,33–44.

By recognising insights from cognitive sciences and embracing the
systems ecology of clinical decision making—that is the complex inter-
connected network of its various facets—we can design a new generation of
AI tools. One that supports fundamental cognitive (pertaining to conscious
intellectual activity) and epistemic (relating to knowledge) functions of
doctors—for example, reasoning under noise and uncertainty—therefore
empowers them to make the best judgement given available information.
Such systems could, among others, improve consistency of decisions (e.g.,
by eliminating decision noise), alleviate common reasoning limitations and
faults (e.g., arising due to cognitive biases), reduce overall (clinical) errors
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andmistakes (e.g., resulting from a lapse of judgement) and generally make
the underlying thought processes more principled2,24,25,27,28,45–52. Our dis-
cussion throughout the rest of this Perspective is supported by observations
and hurdles from (paediatric) sepsis since this disease offers a representative
case study of commonplace reasoning and decision-making challenges in
medicine; nonetheless, the argumentswe present generalise to other areas of
healthcare as well as different (high stakes) domains.

Sepsis is a life-threatening condition that arises when human body
injures itself in response to an infection53. It is the third leading cause of
death (estimated at over ten million a year) and critical illness worldwide, it
is the primary cause of mortality from infection and in hospitals, and its
survivorship often entails long-term health problems54,55, not to mention its
considerable economic burden13,53. However, since sepsis spans a diverse
range of incompletely understood processes, it remains elusive53, especially
in children forwhom it is just asmuch of a threat as for adults yet it is far less
explored56. This is particularly concerning given that many observations
from the better-understood adult sepsis do not transfer or generalise to the
paediatric population with its six clinically and physiologically distinct
subgroups57,58.

Building upon decades of research, paediatric sepsis is currently
defined by the rigorous Phoenix Criteria established through an interna-
tional consensus56. Its diagnosis is based on suspected or confirmed infec-
tion in presence of potentially life-threatening organ dysfunction of the
respiratory, cardiovascular, coagulation and/or neurological systems
determined by a Phoenix Sepsis Score of two or more. Nonetheless, some
aspects of this definition remain problematic due to their inherent ambi-
guity. Chief among them is predicating sepsis on suspected infection, which
is interpreted as a physician placing anorder for amicrobiological test; but it
is well known that such tests are overutilised59, likely leading to sepsis
overdiagnosis and consequently antibiotic overtreatment60. Presupposing
organ dysfunction is also a point of contention as this guideline can be
compared to expecting cancer to only be diagnosed after discovering its
metastases. Further recognition nuances include the existence of culture-
negative sepsis, which lacks a generally accepted definition but refers to
sepsis caused by an infection that is either undetectable by a bacteria culture
test or simply when this result is assumed to be a false negative61,62.

Sepsis is thus best described as poorly understood. Its true incidence is
unknown, its best treatment strategy is uncertain and attempts over the past
two decades to develop new treatments have been largely unsuccessful—we
still lack rigorous clinical criteria, biological markers, imaging features and
laboratory tests to identify this disease13,53. As it stands, bedside clinicians
often struggle to anticipate, identify and treat (paediatric) sepsis given
variations in medical guidelines and poor predictive value of many current
indicators, creating an urgent need for suitable diagnostic tools that could
aid doctors in (less biased and more consistent) decision making and
delivery of personalised care58,63.

Medical artificial intelligence adoption challenges
Medicine is uniquely positioned to reap the benefits of the recent progress in
artificial intelligence given the high impact of evenminute improvements in
clinical practice3,4. AI tools are of particular importance to the field of
paediatrics, where they have been largely underutilised in the recent past2.
Building these systems now is especially timely given the increased avail-
ability of high-quality, large-scale, real-life data as well as leaps in AI,
opening this technology up for many real-world applications1.

Success stories include automated analysis of medical imaging data—
e.g., detection of diabetic retinopathy5, classification of skin cancer6 and
detection of lymphnodemetastases from breast cancer7—enabled by recent
advances in deep learning. However, such modelling problems are not
necessarily representative of medical workflows since they deal with self-
contained tasks whose broader context can often be disregarded. Addi-
tionally, many of these success stories pertain to the visual domain. But the
accuracy of doctors’ diagnostic abilities varies widely between disciplines
and tends to be task-specific, with visual specialities—e.g., dermatology,
radiology or anatomic pathology—exhibiting a far lower error rate (one to

two per cent) than many other areas of medicine (around fifteen per cent).
Such disparities can, among other factors, be attributed to a dispropor-
tionate signal-to-noise ratio inherent to different specialities26.

Looking at application of AI-based predictive models and decision-
support tools in healthcare through the lens of (paediatric) sepsis offers a
more comprehensive perspective. In addition to being prototypical, yet
unlike other illnesses, this disease ismultifaceted andprovides enoughdepth
and complexity to elicit real-life desiderata and requirements of such
technologies. Specifically:
• sepsis recognition is problematic due to the ambiguity surrounding

relevant definitions (as explained in the previous section);
• its management is impeded by the lack of well-established and

universally accepted tools and techniques for gauging patient risk as
well as anticipating the disease progression and its severity; and

• the treatment of this illness is inconsistent because of the underlying
uncertainty as well as lack of reliable mechanisms to systematically
monitor patients’ response to therapy (i.e., antibiotics).For the pae-
diatric population, its heterogeneity further compounds these issues as
they need to be addressed independently for each age group.

With its diverse open challenges and plentiful avenues for
improvement, sepsis offers a perfect case study to stimulate and guide
the development of novel medical AI systems3,4,58,64. While artificial
intelligence techniques have been applied to this disease before, real-life
impact of such tools is limited. Data-driven models were used to predict
mortality and learn personalised optimal treatment strategies for
adults13,15,65; the paediatric population, nonetheless, remains largely
neglected with only a few studies modelling sepsis onset and
mortality58,66–68. More broadly, AI was used to predict infection as well as
assess susceptibility to antibiotics, quantify exposure to them and opti-
mise their choice69–71.

Among these, as well as many other, medical AI systems, traditional
supervised and unsupervised models for classification and regression
tasks are the most prominent, e.g., answering questions like “Will the
treatment be continued in five days?” or “How many more days will the
antibiotics be given?” Such practice, however, inadvertently transposes
common predictive paradigms onto healthcare applications without
considering their suitability or adapting them to fit the underlying, well-
established clinical reasoning and decision-making workflows and their
broader institutional situatedness2. For example, while the evolution of a
patient pathway is an inherently continuous process, such a sequence of
events is often converted to a classification problem that yields a col-
lection of independent point-in-time predictions about a patient’s state
in fixed time intervals. To illustrate the pitfalls of thismodelling approach
consider two patients: one whose health is declining and another who is
recovering; at some point in time their state may be captured by the same
data point, therefore they will receive an identical, naïve prediction
despite one being ready for discharge and the other requiring critical care
in the near future.

AI systems that account for temporality—thus are able to answer
questions such as “When is the best time to administer antibiotics?” or “In
how many days will the patient require critical care?”—are more appro-
priate, yet broadly underutilised2,72,73. While the core activity of healthcare
professionals is tomanage patients’ trajectories by investigating, monitoring
and intervening to palliate and cure medical conditions8, AI solutions that
support such responsibilities, or simply model patient pathways, are largely
missing74,75. This is particularly problematic for (paediatric) sepsis since this
disease is characterised by a change in the patient’s condition rather than
their absolute health state; in case of children, this process is represented by
an increase in their Phoenix Sepsis Score, which reflects progressive organ
dysfunction (as explained in the previous section).

Consequently, despite significant technological advancements,
healthcare remains one of the least digitised spheres of life with many open
challenges8,10,76,77. While the number of technical solutions proposed in the
literature has soared in recent years, such contributions largely focus on
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developing or adapting general-purpose algorithms to solve narrowly-
definedbenchmark tasks—e.g., intensive care unit (ICU)mortality or length
of stay—that are selected primarily based ondata availability and evaluation
ease. These systems are also predominantly optimised for predictive per-
formance with the goal of matching or surpassing capabilities of expert
clinicians, boasting impressive results—often in synthetic or unrealistic
experimental settings—that donotnecessarily translate toclinical efficacyor
acceptability (among others, due to their inherent misalignment with
medical practice)10,12,14.

While artificial intelligence—as a technology—is agnostic of its
application, it is fundamentally not a one-size-fits-all solution; applying
generic data-driven algorithms to medical challenges simply because
relevant data are available is thus unlikely to deliver useful tools8.
Healthcare requires bespoke AI models tailored to each unique clinical
application, especially since incorporating domain-specific knowledge
into them tends to enhance their performance and improve their
acceptability9. The lack of such considerations leads to a mismatch
between development/validation and deployment contexts or desi-
derata, preventing AI tools from being integrated into clinical work-
flows or simply making them unusable in practice8,58. In case of
technical requirements, for example, it is common to presuppose access
to biomarkers from medical test results at the time of acquiring a
sample as opposed to receiving the corresponding lab report, thus
allowing AI to rely on information from the future, which disqualifies it
from real-time operation13.

When such ill-conceived AI systems—whose functioning is at odds
with practical constraints—are deployed, they are often ignored or dis-
missed by clinicians because of general frustration as well as mistrust,
apprehensionor aversion towards their outputs22,23. In part, these attitudes
can be attributed toAI being overly time-consuming to use, entailing high
cognitive burden, failing to deliver the necessary information, disrupting
or not integrating well into existing decision-making workflows and the
like28,29,78. The lacklustre adoption of such tools is further compounded by
pervasive reproducibility issues, history of unsafe systems being deployed
prematurely, prevalence of false automation promises as well as scarce
data that are inherently private, difficult to collect, store, access or share,
and often riddled with numerous biases20,79,80. Ethical concerns and
negative societal consequences of deploying data-driven predictive
models in healthcare—where they may cause direct harm on a large scale
—also stymie their integration into clinical practice.While the algorithmic
nature of such techniques streamlines decision-making processes and
arguably makes them more objective and equitable by replacing biased
and fallible humans81, these anticipated benefits have time and again not
come to fruition or been overshadowed by unforeseen adverse societal
impact, disproportionately affecting minorities and people of
colour9,19,21,82–86.

From historical biases and discrimination captured in data and per-
petuated by automated decisions, through entire populations being
underrepresented in training samples leading to predictive performance
disparities and unfairness, to modelling reliant on spurious data patterns,
building AI models without unintended consequences is a formidable
challenge82,83,87,88. Fairness considerations are particularly pertinent in
medical applications where protected attributes such as income, gender or
ethnicitymay be good (proxy) clinical predictors.Healthcare is a high stakes
domain that requires thoroughly validated, fair, privacy-preserving, inter-
pretable, reliable, robust and accountableAI systems; they additionallymust
satisfy the necessary regulatory requirements as well as be compatible with
clinical workflows and suitable for real-time operation2,16–18,89. Deploying
and maintaining data-driven models to keep them functional, usable and
relevant can also be a hurdle given resource constraints like computational
infrastructure requirements and running costs. All of these aspects con-
tribute to the aforementioned translational barrier—a chasm between
technical solutions and clinical applications—which while pervasive is
sporadically documented because AI is rarely tested (prospectively) in real-
life clinical settings8–11,13,15,69–71.

Systems ecology and artificial intelligence
The factors outlined in the previous section often lead to data-driven tools
that are impractical and lack real-world usability, which hampers their
adoption28,29,58. This phenomenon is further compounded by the challenge
of defining the epistemic task that AI should solve; consequently, predictive
models are primarily trained to mimic human decisions since this strategy
offers a tractable proxy objective that allows for direct optimisation of
predictive performance as well as evaluation and benchmarking against
humanexperts.However, such a reductionist approach that (over)simplifies
the role of technology in its designated real-world environment often leads
to pervasive lack of ecological validity26. The umbrella term of data-driven
decision support tools used to describe these systems is thus a misnomer
since they are rarely designed to genuinely support decision making and
instead present users with ready-made conclusions that compete with and
curtail their own judgement27. The support aspect, if any, is mostly confined
to justifying predictions with algorithmic explanations and embedding this
process within a human-in-the-loop interaction protocol that seemingly
blends human and machine decisions29,30,40.

This fundamental misalignment between the operationalisation of AI
and human decision making leads to undesired automation that biases
perception, impedes cognition, limits independent reasoning, inhibits nat-
ural exploration and hinders sense making29,31,90. These factors tend to
contribute to unwarranted reliance on AI and automation bias, but more
notably they erode the value of expertise, disruptwell-establishedworkflows
as well as disempower, disenfranchise and displace people instead of sup-
porting themand augmenting their abilities. In theworst case, for predictive
models integrated into clinical practice, eliciting such behavioural patterns
can reinforce cognitive blunders of doctors, thus undermine the care they
provide26,91. This is especially worrying in the context of the medical diag-
nostic error being estimated as one of the most consequential, and often a
leading cause of (preventable) death26,48. Notably, themajority of such errors
are not rooted in insufficient medical knowledge or inadequate expertise,
but rather in structural causes that result indeficiencies ofmedical judgment,
with misdiagnosis rate reaching twenty-three per cent in everyday practice
for healthcare domains that necessarily rely on high levels of subjectivity,
where interobserver variation in diagnosis is to be expected47,92,93.

The aforementioned structural factors include, among others, time
pressure, uncertainty and various cognitive biases, all of which lead to
problematic synthesis of diagnostic information. The two most prevalent
causes are anchoring—i.e., steadfastly sticking to an initial impression, thus
possibly ignoring subsequent evidence that may be contradictory or dis-
proving—and premature closure—i.e., jumping to a conclusion without
considering all the available or necessary evidence. These biases seem to
affect doctors regardless of their experience, but they appearmore common
in experts47. While medical reasoning and diagnostic error is amply docu-
mented in retrospect, detecting and preventing it prospectively is inherently
difficult, and largely underexplored in the literature, because it does not
manifest as openly as practical mistakes. As a consequence, any data that
capture such aspects of clinical work may implicitly encode outcomes of
inconsistent or incorrect diagnostic reasoning, with the ensuing AI models
inadvertently perpetuating these errors.

In view of these observations, overcoming the translational barrier is
likely to require a fundamental change in the design and implementation of
artificial intelligence systems. Specifically, their creation ought to be moti-
vated by concrete needs, requirements and challenges faced by human
decision makers, helping people to overcome their limitations while also
eliciting their strengths8,29. Additionally, the integration of these tools into
decision-making workflows should not only be informed by viewing
humans as independent agents, but also by recognising their role and pla-
cement in the broader context of the processes and environmental con-
straints inwhich they operate14,24,25,42,43,58. SuchAI systems have the potential
to augment specific cognitive tasks, boost comprehension, promote active
exploration, stimulate creative problem solving and facilitate (prospective)
critical reasoning, thus truly aid and support evidence-driven decision
making instead of attempting to “solve” it algorithmically through

https://doi.org/10.1038/s41746-025-01725-9 Perspective

npj Digital Medicine |           (2025) 8:345 3

www.nature.com/npjdigitalmed


disruptive automation. To this end, artificial intelligence could, for example,
fill the gaps in people’s knowledge, allow individuals to challenge automated
decisions and then help them to consider and compare alternatives via AI-
assisted prospective mental simulation, or aid people in progressively
updating their beliefs to arrive at sound conclusions and decisions24.

The technological translational barrier described in theprevious section
should therefore also be viewed as a sociotechnical gap—i.e., the differ-
entiation of what must be supported socially and what can be supported
technically43,94,95—overcomingwhich requires an interdisciplinary approach
that draws insights from social and cognitive sciences8,10,35,96. The afore-
mentioned (counterproductive) drive to match or exceed human-level
performance in selected (oftennarrowly-or ill-defined) taskswith the aimof
fully automating and replacinghumans is thus amanifestationofAI systems
being commonly misconstrued as “autonomous rather than social and
relational”33. This paradigm—sometimes referred to as the race to the bot-
tom given its intention to remove agency and decision-making power from
(individual) humans, shifting the authority to AI and its developers—is
nonetheless challenged ever more frequently24,34. Replacing humans with
artificial intelligence may not yield the anticipated level of automation but
instead shift people from (meaningful and engaging) decisive positions to
(frustrating and dreadful) supervisory roles, by and large depriving them of
any autonomy and (collective) bargaining power (by making them appear
redundant)34,40,97. Such a reconfiguration is particularly ironic for high stakes
domains where lifting the perceived limitations and failures of humanswith
AI often requires those same flawed humans to monitor, interpret, vet and
correct computers’ output98.

In addition to possible bias, discrimination, unfairness and displace-
ment, full automation also raises ethical concerns given unclear attribution
of responsibility when an algorithmic decision causes unintended harm. In
contrast, the responsibility remains with humans when instead of replacing
them, AI augments and aids their decision making by providing them with
supporting information to be utilised within well-established frameworks
like evidence-based medicine27. Similarly, while ignoring or overriding
decisions of AI whose performance is supposedly superior to that of human
experts could be considered malpractice99, such claims are often technically
dubious (as argued earlier) andarise primarily from the autonomous viewof
intelligence42. This is not to say that (full automation based on) predictive
systems should be discarded altogether, but rather that the adoption of data-
driven tools ought to be based on sound justification and robust defence of
the process and means via which scientifically grounded and rationally
defensible decisions are reached100.

Consequently, integration of AI cannot be premised on trust, e.g.,
established over prolonged interaction episodes101, as this concept is ill-
suited for technology102; instead, artificial intelligence should be judged in
terms of reliability and robustness. After all, “if the outcome of a traditional
machine becomes unpredictable, we do not think that it is creative or ori-
ginal—we think that it is broken”103, and AI should be treated no different.
These observations reinforce the relevance ofante-hoc interpretable artificial
intelligence whose inherent soundness and human intelligibility are guar-
anteed bymeans of constraining the underlyingmodel form, e.g., to account
for application-specific requirements, making it suitable for high stakes
domains like healthcare18,104. ThisAI transparency paradigm is distinct from
more prevalent post-hoc explainability, which simplifies opaque predictive
systems to make them human-understandable by approximating their
operation. The insights output by such methods, however, are not guar-
anteed to reflect the true behaviour of the underlyingmodels; theymay thus
be misleading, hence unacceptable in some (safety-critical) applications18.
Out of the two, it is ante-hoc interpretability that delivers a solid foundation
for building human-centred predictive systems that are acceptable—as a
result of appropriate social structures—reliable—because of sound technical
practices—and safe—due to open management strategies105.

In addition to recognising people as independent agents interacting
with or being replaced by AI, they should also be viewed holistically as
members of various societal and organisational structures that connect
diverse stakeholders and facilitate their seamless communication and

collaboration43. To avoid disrupting the fragile systems ecology, (inter-
disciplinary) AI development teams need to identify the best way of inte-
grating this technology into such complex real-life settings; relevant
considerations include ensuring its compatibility with environmental con-
straints, established communication protocols as well as institutional
interdependencies, workflows, processes, objectives, desiderata, require-
ments, regulations, (industry) standards and best practice8,14,35–38,58. Within
this landscape, one must account not only for the relation between AI and
individuals, but also their groups and the overarching organisations, striving
tounderstand the roles, responsibilities andneedsof eachunit: how itworks,
interacts with other units, processes or exchanges information and makes
decisions41. Many such interconnected systems are set up to provide
operational frameworks that streamline task execution by division of labour
and responsibility. This arrangement allows each unit to treat parts of the
process as black boxes (which may only appear so while in principle being
comprehensible with suitable expertise106) that are robust and reliable given
the existence of organisational mechanisms to ensure their proper func-
tioning, manage risk and absorb contingencies43.

By considering the broader societal context when building AI tools, an
opportunity arises to assist, enhance, support and enable humans toflourish
and excel at their work—a strategy that appears more promising than
simply attempting to replace them. This vision can be realised not only with
full automation of selected tasks, but crucially through human–machine
symbiosis, collaboration, co-creation or hybrid intelligence8,10,14,25,33,39,40. In
view of the systems ecology, implementing AI within the distributed cog-
nition paradigm—where distinct responsibilities are allocated to specialised,
algorithmic or human, agents—can be highly beneficial, allowing to support
people in their various cognitive and epistemic activities, e.g., comprehen-
sion, sense making, reasoning, problem solving, decision making and task
execution24,42,107.

As an example, consider doctors’ reliance on and widespread inte-
gration into clinical workflows of laboratory test results or outputs of
advancedmedical devices likemagnetic resonance imaging (MRI).While in
principle these instruments are not black boxes, they can be safely used as
such, without in-depth understanding of their inner workings or the
underlying chemistry, physics or signal processing principles. This is pos-
sible because the responsibility for correct and reliable functioning of these
tools has been shifted to appropriate entities: industries (e.g., tasked with
device construction), government bodies (e.g., overlooking its certification
processes) and professional staff (e.g., entrusted with its calibration and
operation)43. Consequently, the existence of these organisational structures
streamlines the day-to-day work of doctors.

In medicine, but also elsewhere, AI is perceived no different to such
tools25. Its reception is more favourable when it is provided as a digital
partner that complements, augments, amplifies and supports people’s
abilities anddecisionmaking—e.g., by addingmore evidence, compensating
for humanweaknesses, preventing commonbiases and overcoming human
limitations—rather than replacing human intelligence or reducing the role
of people to accepting/rejecting algorithmic recommendations8,23.

Human decision making and artificial intelligence
To overcome the challenges outlined in the previous section, it is first
necessary to understand how experts make decisions in highly structured
environments and place this process in the context of human–AI dynamics.
Under the assumption that replacing people or competing with them is
counterproductive at best and harmful at worst33,34, we can identify different
modes of artificial intelligence operating vis-à-vis humans2. While many
fine-grained taxonomies exist108, distinguishing the following three levels of
AI integration suffices for our purposes.

autonomy Tasks that do not require direct human input can be
automated, with the resulting artefacts integrated into higher-level work-
flows as additional sources of information or treated as prescriptive decisions
only to be monitored by people.

assistance (human-in-the-loop) Tasks that require human input can
benefit from descriptive (summarising information and extracting insights
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of interest) or predictive (forecasting quantities)modelling, with the resulting
artefacts supporting problem understanding and decision making. To this
end, the insights produced by AI are incorporated into the corresponding
workflows as clues, diagnoses or recommendations to be reviewed and
accepted or rejected by people.

augmentation (machine-in-the-loop) Tasks whose full or partial
automation is undesired or infeasible, thus confining them to the purviewof
humans, can be streamlined by supporting the higher-level cognitive and
epistemic functions of people responsible for their completion. To this end,
descriptive and predictive modelling can be integrated into a collaborative
co-creation process in whichAI systems complement humans’ abilities and
help them to overcome personal shortcomings and limitations, e.g., by
presenting people with a range of possible choices accompanied by their
respective positive and negative consequences.

Notably, the most suitable automation paradigm should be selected
independently for each separate (cognitive and epistemic) activity such as
data acquisition, information analysis as well as decision or action selection
and implementation thereof107,109. The specific form inwhichAI canbe safely
and responsibly operated ought to be determined based on the automation
readiness level of a particular task—a concept that can already be found in
data science (data readiness levels110), autonomous driving (levels of
automation111) and digital healthcare (levels of maturity prescribed by the
analytics adoption model112). Implementing data-driven tools in practice,
however, remains challenging. This is because we generally lack the corre-
sponding (technical) frameworks, guidelines and protocols that would
formalise and lead the development and deployment of these systems.
While true for many domains, including medicine21, a notable exception is
data mining with its CRISP-DM process113.

This perspective on AI integration is compatible with cognitive and
behavioural psychology research, which offers two complementary
viewpoints on human decision making: Naturalistic Decision Making
studies the success of expert judgement, whereas Heuristics and Biases
(commonly known as the dual-process theory or System 1 and System 2
thinking114) deals with faults in basic reasoning81. Findings from these
disciplines suggest that people’s ability to become good decisionmakers as
well as the viable level of automation of a given task depend largely on the
properties of the domain in which such processes take place. Settings
referred to as wicked environments either offer misleading signals or lack
reliable cues, regularities and feedback for people to observe, learn from
and develop correct and complete intuitions81,115. But where humans
flourish, their actions can be studied (through Naturalistic Decision
Making frameworks) to possibly identify the source of their expertise and
codify this knowledge in textbooks or predictive algorithms. In domains
where people fail, AI may be able to learn and distil patterns that humans
cannot, and use them to make decisions or present them to people in a
digestible format109,115–117.

Through such an approach we can recognise environments that
offer sufficient regularities to be amenable to full or partial automation.
This operationalisation of AI is best suited for procedural and repetitive
tasks that both machines and humans can complete (on their own) as
well as challenges that people struggle with but (data-driven) algorithms
can streamline or outright solve. In the former case, the benefit comes
from reducing (costly) human errors that arise due to a lapse of judge-
ment, yielding improved (predictive) performance attributed to better
decision consistency and efficiency. In the latter scenario, automation
makes up for human cognitive deficiencies in tasks that are inherently
incompatible with our reasoning capabilities or simply too complex for
our minds.

Crucially, both of these AI deployment scenarios presuppose that the
stable-world principle—sometimes referred to as the closed-world principle
—holds and that the selected task is structured. The former premise implies
that the decision-making environment is inherently predictable (given a set
of observations) and that it does not evolve unexpectedly (over time), e.g.,
resulting in a data shift42,118,119. Regarding the latter tenet, we can generally
distinguish three decision categories109:

• structured tasks—referred to before—come with a well-defined
problem that has a single optimal, possibly analytical, solution, which
in principle can be found;

• for unstructured challenges, no universally accepted solution exists
given that it depends on individual preferences; and

• semi-structured problems havemultiple viable solutions—each with its
ownpros and cons—determined according to somepredefined criteria
and ranking them requires analytical methods, which may include AI,
as well as the decision maker’s input.

However, evidence-based medical diagnostic reasoning often neces-
sarily relies on incomplete and uncertain information, with some areas of
healthcare requiring a high level of subjective judgement and providing
outcomes that may not always be fully predictable93,120. This is exactly why
evidence-based medicine refrains from prescriptive rules and instead offers
best practice guidelines; a decision-making environment as complex as
healthcare cannot be easily distilled into rigid procedures that anticipate and
encompass all the unique circumstances of individual patients100. Conse-
quently, semi-structured clinical tasksmaynot be amenable to (end-to-end)
AI modelling as one “optimal” decision or solution that these systems tend
to deliver is unlikely to exist in this context. Given the assertive nature of
such algorithmic recommendations, they can also stymie human-driven
exploration and discovery of alternatives that may prove better in the long
term, possibly curtailing the progress of medicine109. More generally, since
predictive models usually optimise for past outcomes, their adoption
inadvertently risks hampering scientific serendipity as well as impeding
development of new and advancement of existing knowledge91.

In a stable-world setting, large data quantities and advanced learning
algorithms tend to offer unparalleled performance for structured and semi-
structured problems (e.g., in the game of chess or go). For open-world tasks,
however, simple and inherently transparent models or high-level decision
heuristics (both of which can be seen as forms of ante-hoc interpretable AI)
can perform on a par with or better than complex data-driven systems (e.g.,
for predicting heart attack risk)119. Humans are known to rely on such
straightforward heuristics and biases in their everyday decision making.
When studied in a laboratory setting, these mental processes give rise to
seemingly suboptimal, irrational or faulty reasoning as reported by the
Heuristics and Biases community. Yet when viewed as evolutionary adap-
tation necessary to deal with complex and unstable (open-world) decision-
making environments fraught not only with risk but also high degree of
unpredictability and uncertainty, these reasoning patterns tend to manifest
ecological rationality rather than universal defects of cognition119. While
such aspects of human decision making are largely overlooked by AI
research, they can inspire the design of predictive models—suitable for
stable- and unstable-world problems—that offer better utility and accept-
ability than what is currently available. Among others, this new class of AI
systems could help people to boost their comprehension and reasoning
abilities in complex environments, increase decision consistency, overcome
detrimental cognitive biases, reduce different types of errors and improve
overall decision hygiene.

Instances of both reliable and wicked (e.g., due to their unstable and
open-world nature) environments can be readily found in medicine. For
example, nurses in neonatal ICUs were shown to correctly identify infants
developing life-threatening infections (leading to paediatric sepsis) without
knowing blood test results, yet they were unable to describe or explain their
reasoning117. TheNaturalistic DecisionMaking framework has been applied
to study individual incidents and uncover the cues, patterns and observa-
tions that the nurses relied on, which led to the discovery of novel insights—
including infection indicators opposite to those relevant for adults—vali-
dated across different hospitals and formalised into an instructional pro-
gramme to help medical staff spot early signs of neonatal sepsis116. On the
other hand, the prevalent uncertainty surrounding various aspects of this
disease and its treatment strategy (discussed earlier) is a clear manifestation
of the underlying environment being inherently wicked. These circum-
stances contribute to doctors taking different actions in similar situations
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spread over time121—a phenomenon that in cognitive psychology is called
decision noise, defined as “undesirable variability in judgments of the same
problem”89.

In sepsis, early intervention should significantly lower the risk of
mortality andmorbidity, especially so for the paediatric population inwhich
infections can be extremely fulminant122. This belief, for example, motivates
research efforts to swiftly identify serious bacterial infections so that clin-
icians can intervene before patients develop severe organ dysfunction123.
Rapidmedical response is thus considered best practice, prompting doctors
to administer the most effective treatment—antibiotics—both when the
underlying infection is confirmed (i.e., clinically proven) or simply suspected
(i.e., for individuals at risk but not necessarily septic or when culture-
negative sepsis is surmised)63,124,125. Such an approach, however, leads to
many patients—more than ninety-eight per cent of neonates by some
estimates—receiving anunnecessary or longer than required treatment, e.g.,
when the underlying illness is self-limited or infection is disproven122.
Consequently, sepsis faces yet another challenge: antibiotic overtreatment
and its plentiful long-term dangers126.

Trading off outcomes and time by preferring immediate results—e.g.,
the perceived safety offered by antibiotics—in favour of potential future
benefits—e.g., preventing antimicrobial resistance—is captured by the time
preference theory127,128. This “bias towards short-termrewards” togetherwith
confirmation bias, entrenchment, in-group favouritism, limited attention
span and restricted short-term (working) memory are just some cognitive
biases and heuristics that may contribute to humans inadvertently making
suboptimal decisions25,47,49,50. Supporting doctors’ cognitive and epistemic
functions with AI can thus prove more beneficial than building predictive
models optimised to (naïvely) mimic and improve upon their actions58.

From benchmark to bedside
Investigating the complex andchallenging environmentposedby sepsis—in
which clinicians struggle to consistentlymake optimal decisions—inspires a
different use of artificial intelligence. One where its operation better aligns
with the underlying clinical processes, human decision-making workflows
and the broader institutional situatedness thereof; and one where its func-
tioning respects the abilities of doctors and caters to the needs of their
cognitive and epistemic activities. Adhering to these principles has the
potential to deliver a technology that is readily accepted and adopted by
clinicians, especially if it embraces, and does not disrupt, the overarching
systems ecology, hence seamlessly blends into existing structures instead of
being provided as a standalone tool58,129. Since artificial and human intelli-
gence each exhibits distinct capabilities, which tend to complement one
another, the former can augment the latter (instead of replacing it) in the
form of hybrid intelligence25,27. This integrationmay span different stages of
reasoning and decision making that arise throughout patient care, e.g.,
perception, comprehension, cognition and operation, addressing their
respective unique desiderata2,48,107,130. In particular, we can draw inspiration
from insights, tools and techniques in cognitive sciences that help human
expertsmake good and reliable decisions in highly structured environments
such as clinical practice50,92.

On a high level, these approaches strive to increase the knowledge and
expertise of doctors, offer them situational help as well as improve their
critical thinking and reasoning processes92. Crucially, these techniques can be
naturally embodied and enhanced by AI tools with the aim of providing
advanced cognitive support, preventing common biases, alleviating decision-
making challenges, overcoming human cognitive limitations and delivering
contextual data-driven insights. Such intelligent systems promise tomake up
for the shortcomings of these processes that commonly arise due to various
environmental factors and improve the overall decision hygiene on multiple
levels25,28,48. Rudimentary research in this direction has explored the influence
of selected AI explanation types on human cognitive biases, constraints and
reasoning faults, demonstrating thatwhile some canbemitigated, othersmay
inadvertently be exacerbated131–133. However, this line of work by and large
overlooks the broader systems ecology and remains confined to explainability
of predictive models that mimic human decision making134.

But in this context, AI integration possibilities are much broader, with
explainability research poised to offer a viable implementation framework134.
Among others, artificial intelligence tools could24,27,45,46,48,49,51,52:
• distil high-level human-comprehensible concepts from data, aid in

pattern recognition as well as generate and test hypotheses;
• facilitate ideation and evaluation of ideas as well as forward projections

and prospective reasoning by supporting mental simulation;
• prompt reasoning by analogies and counterexamples as well as identify

incongruent, ambiguous or atypical manifestations of modelled phe-
nomena (e.g., when evidence captured by data does not align);

• clearly indicate the context of each output by grounding it in domain
knowledge, emphasising relevant clinical guidelines and offering pieces
of knowledge that the target audiencemay be lacking (e.g., information
about drug interactions); and

• stimulate metacognition through self-monitoring, self-critique as well
as self-policing in the long term.

One such specific approach is cognitive forcing, which encompasses an
array of (intervention) techniques intended to disrupt heuristic reasoning
and trigger analytical thinking, thus prompt people to account for over-
looked or disconfirming evidence, competing hypotheses and opposing
ideas. These methods reduce overconfidence, decrease reliance on hunches
and intuitions as well as improve reasoning quality and decision
reliability48,51. Another relevant strategy is to facilitate and encourage con-
tinuous, as opposed to one-off, decision making, where people explicitly
account for the incidence of a given phenomenon (i.e., its base rate) and
progressively update their beliefs by considering standalone insights along
with their relevance/salience52. Moreover, humans tend to perform better
over time when they are provided with (immediate) feedback or are
prompted to perform post-factum evaluation of situations that they have
encountered and decisions that they have taken. This approach together
with the other aforementioned decision-making strategies facilitate and
stimulate long-term learning and expertise development.

These mechanisms can, for example, be delivered as part of an AI
toolkit that supports clinicians inmental simulation. Specifically, this type of
technology could empower doctors to explicitly project possible future
trajectories and states of patients, allowing them to test the hypothetical
effects and implications of different scenarios (e.g., realisation of selected
parameters) as well as aid them in comprehension and comparison of these
pathways. Notably, such a simulation-oriented system is capable of
embracingmissing and unknown patient information—instead of “solving”
this challenge via, potentially dubious, technical means—by outputting
alternative trajectories (and their likelihood) conditioned ondifferent values
of a selected variable, e.g., a medical test result.

More broadly, this conceptualisation of artificial intelligence is able to
support, and explicitly encourage, planning for multiple probable (future)
outcomes rather than a single one chosen (possibly without robust justifi-
cation) either based on an AI recommendation or a personal conviction.
Recognising the contingencyof different courses of actionuponmajor critical
junctures and branching points is beneficial as it promotes decisions that
remain valid for the highest number of potential scenarios aswell as solutions
that can be easily adapted to unlikely situations135,136. Such an AI tool could
allow doctors to account for the uncertainty of the clinical environment as
well as its dynamics, thus increase the robustness of their decisionmaking by
prompting them to explicitly consider the possible deviations, complications
and unexpected events at each step of a patient pathway. This type of tech-
nological support has the potential to decrease the cognitive fatigue of clin-
icians, reducing their overconfidence and errors as well as improving their
performance and decision consistency (thus overcoming bias and noise) in
the demanding, high-paced and stressful healthcare setting.

In addition to directly benefiting clinical practice, the simulation
capability of AI tools can also be used for training in a safe decision-making
environment, offering plentiful chances for mental rehearsal, practice and
learning, e.g., by replaying landmark case studies47. This functionality may
alternatively be used to provide access to digital twins of individual clinicians
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that can be consulted for “second opinions”, compared across to identify
points of disagreement leading to new insights, or used as benchmarks for
junior doctors to learn from. This particular application of AI can prove
especially potent when dealing with heterogeneous patient populations—as
is the case for paediatric sepsis—where some clinicians may unknowingly
exhibit better judgement for selected demographics. Combiningmany such
independent “opinions” also facilitates the wisdom of the crowd approach,
which is a strategy for estimating an answer to a question by polling diverse
individuals whose aggregate response is a better approximation of the
“correct” answer. A specific instantiation of this process called the Delphi
method can be used by a group of people to arrive at a consensus; for
example, clinicians rely on this technique todefineandcharacterise complex
medical conditions such as sepsis53,55–57,63.

Conclusion
Our Perspective proposes a radical shift in how artificial intelligence should
beoperationalised, away from thenarrow focusonpursuing superhumanor
state-of-the-art performance—however defined—and instead towards
supporting people’s cognitive and epistemic functions such as perception,
reasoning and decision making. This view deprives AI of any special status
or autonomy and intentionally decentres it, positioning this technology just
as a supporting tool at the disposal of humans. Exactly thirty years after
Collen concluded in his historical survey of medical informatics that
“developing a comprehensivemedical information system [appears to be] a
more complex task than putting a man on the moon had been”137 we are
witnessing an explosion in AI’s capabilities, yet on many planes its current
conceptualisation does not seem to bring us any closer to this goal. The
visionput forthby thisPerspective—far fromexhaustive in itself—presents a
different avenue for implementing artificial intelligence in medicine and
beyond; one that unlocks capabilities and benefits unavailable when a data-
driven model simply decides and its explainability legitimises.

Built atop insights from cognitive sciences, our Perspective seeks to
seamlessly integrate AI tools into the broader systems ecology, aligning
them with human needs and expectations as well as established real-life
decision-making protocols and organisational workflows, taking care not to
disrupt these (often fragile) structures. Instead of replacing people with
undesired, fallible and potentially harmful automation, this novel approach
empowers humans tomake the best judgement given available information.
Inparticular, it aims to promote best (clinical) decision-makingpractice and
alleviate common reasoning shortcomings (e.g., arising due to cognitive
biases), making these processes more factual, evidence-based and prin-
cipled. It strives to achieve these goals byminimising decision errors as well
as improving the consistency of and eliminating any undesired variability
(i.e., noise) in human judgement.

To this end, our Perspective envisions AI assisting clinicians, andmore
generally the broader population, in everyday cognitive and epistemic tasks
with which they commonly struggle or that exceed their capabilities. Pro-
viding doctors with timely and relevant (data-driven) insights can com-
plement their expertise, boost their effectiveness and increase the likelihood
of them reaching a correct diagnosis, leading to an overall improvement in
decision making. To enhance and augment the abilities of clinicians, AI
could, among others, illustrate the objective risk of various factors, present
short- and long-term consequences of specific actions and communicate
past (factual) decisions and their outcomes (e.g., to combat the time pre-
ference bias and undesired judgement variability). Artificial intelligence
could also support clinicians in hypothesising about the effects and impli-
cations of different scenario—accounting for the uncertainty of the envir-
onment—including any unlikely complications that they ought to
anticipate, yielding more robust diagnoses.

The main purpose of these algorithmic insights is to help doctors better
understand what cues they need to look out for and what interventions they
should consider implementing with the aim of alleviating the symptoms,
improving the health state and managing the trajectories of their patients.
Given the source and nature of this information, the task of interpreting and
contextualising it remains strictly within the clinicians’ remit. Its safe

incorporation into diagnostic reasoning processes is therefore the responsi-
bility of individual doctors, as is currently the case with non-AI medical
devices. Facilitating such integrationof systemsbasedonartificial intelligence,
however, requires the underlying predictive models to be sound, reliable and
robust so that they may be used as tools whose inner workings can remain
opaque to their operators106; ante-hoc interpretability appears to offer a
promising AI paradigm to achieve this goal18,104. More prosaic technological
considerations include application-specific technical and operational
requirements, e.g., availability of clinical variables for real-time deployment.

Clearly, advancing such systems along all their sociotechnical dimen-
sions ismost likely to help them overcome the pervasive translational barrier
found in medical artificial intelligence research. Doing so within the frame-
work introduced in this Perspective is particularly promising. First and
foremost, the key tenets of our approach agree with core beliefs and views of
practising clinicians about the use of artificial intelligence inmedicine138. Our
conceptualisationofAI is also crafted toclosely alignwith the aforementioned
“social and relational rather than autonomous” view of (human) intelligence.
Additionally, our envisaged operationalisation of AI positions it as a partner
for people to collaborate with or a tool at their disposal rather than their
competitor or replacement, suggesting its favourable reception. Lastly, our
approach keeps the allocation of decision responsibility with humans and
preserves their autonomy, attesting to its strong sociotechnical foundations.
All of these principles—firmly grounded in decades of interdisciplinary
research—promise to increaseacceptability and facilitate seamless integration
of artificial intelligence in clinical practice for real-world impact.

When deployed and used, these systems can reduce mortality and
morbidity of various diseases (besides alleviating their economic burden) by
personalising treatments as well as minimising diagnostic and decision-
making errors. Regarding paediatric sepsis, they could58:
• aid with its detection in view of this population’s heterogeneity and the

uncertainty surrounding this disease;
• improve its management given the lack of suitable (data-driven pre-

dictive) tools to assess its severity and monitor its progression; and
• make its treatmentmore consistent to reduce unnecessary exposure to

antibiotics.

To this end, such AI systems could, for example, be integrated into the
fabric of multidisciplinary sepsis teams139 and (bedside) sepsis huddles140,
supporting the epistemic and cognitive functions of their participants.More
broadly, these tools have the potential to generate new (scientific) knowl-
edge and insights in (bio)medicine andhealthcare aswell as otherdisciplines
amenable to AI modelling.
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