Table 1 Performance metrics (ROC–AUC and AUC–PR) for personalized federated learning models compared to federated learning baseline across various strategies
ROC–AUC ↑ | AUC–PR ↑ | |||||
---|---|---|---|---|---|---|
Personalized FL | FL | Personalized FL | FL | |||
Experiments | Fine-tuned | Adaptive | Baseline | Fine-tuned | Adaptive | Baseline |
FedAVG | 0.8370 ± 0.0016 | 0.8384 ± 0.0014 | 0.7840 ± 0.0019 | 0.5156 ± 0.0046 | 0.5290 ± 0.0062 | 0.4030 ± 0.0059 |
FedProx | 0.8375 ± 0.0019 | 0.8398 ± 0.0019 | 0.7834 ± 0.0019 | 0.5221 ± 0.0044 | 0.5346 ± 0.0029 | 0.4081 ± 0.0058 |
FedAdagrad | 0.8340 ± 0.0012 | 0.8361 ± 0.0021 | 0.7762 ± 0.0021 | 0.5043 ± 0.0043 | 0.5131 ± 0.0062 | 0.3913 ± 0.0061 |
FedYogi | 0.8369 ± 0.0027 | 0.8178 ± 0.0026 | 0.7910 ± 0.0028 | 0.5379 ± 0.0072 | 0.4702 ± 0.0059 | 0.4420 ± 0.0078 |
FedAdam | 0.8339 ± 0.0015 | 0.8324 ± 0.0032 | 0.7920 ± 0.0031 | 0.5383 ± 0.0050 | 0.5197 ± 0.0073 | 0.4488 ± 0.0061 |
Centralized | 0.8092 ± 0.0012 | 0.4605 ± 0.0043 |