Table 3 Performance scores for different learning paradigms across countries

From: Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data

  

ROC–AUC

AUC–PR

Country

Dataset Size

Federated

Adaptive

Fine-tuned

Centralized

Local

Federated

Adaptive

Fine-tuned

Centralized

Local

CZ

55435

0.8909

0.9211

0.9193

0.8781

0.8669

0.5875

0.7214

0.6990

0.5568

0.4600

IT

54354

0.7946

0.8168

0.8108

0.7769

0.7603

0.4590

0.5099

0.4924

0.4312

0.3491

TR

37853

0.8365

0.8887

0.8854

0.8467

0.8498

0.4427

0.5953

0.5716

0.483

0.4161

ES

33396

0.7680

0.8027

0.7969

0.7713

0.7609

0.3819

0.4564

0.4393

0.4055

0.3381

CA

27131

0.7370

0.7619

0.7615

0.7488

0.7332

0.3383

0.3965

0.3949

0.3893

0.3407

AU

23906

0.7300

0.7679

0.7657

0.7490

0.7287

0.3098

0.3962

0.3805

0.3882

0.3129

PT

6884

0.7449

0.8475

0.8525

0.8252

0.7972

0.2627

0.4524

0.4774

0.449

0.3562

BE

6534

0.6495

0.8115

0.8156

0.7963

0.7987

0.1559

0.3980

0.4050

0.3553

0.2987

KW

5725

0.7445

0.9137

0.9128

0.8761

0.9164

0.1661

0.5104

0.5111

0.4558

0.4850

HU

4892

0.7128

0.9608

0.9632

0.9495

0.9549

0.3099

0.7810

0.779

0.7311

0.5924

NL

4869

0.5614

0.6595

0.6782

0.6873

0.7107

0.1797

0.2539

0.2756

0.2826

0.2650

TN

4780

0.7857

0.9535

0.9535

0.9319

0.9312

0.503

0.8639

0.8664

0.8178

0.8040

CH

3836

0.6212

0.7650

0.7700

0.7925

0.7274

0.1232

0.3042

0.3196

0.3084

0.1952

IR

2980

0.6396

0.8269

0.8330

0.8158

0.7471

0.2514

0.5570

0.5702

0.5345

0.3682

AR

2440

0.6714

0.8856

0.8719

0.8274

0.8784

0.2625

0.6287

0.6331

0.5801

0.5946

LB

1937

0.5955

0.7589

0.7398

0.7314

0.6553

0.1171

0.3343

0.3187

0.2756

0.2255

US

1344

0.5627

0.7303

0.7368

0.7437

0.7044

0.1383

0.2493

0.2797

0.3128

0.2433

IL

1140

0.6937

0.8750

0.8782

0.8537

0.8503

0.2604

0.5986

0.6310

0.5198

0.5181

OM

969

0.5339

0.8472

0.8731

0.8093

0.7981

0.0962

0.5421

0.5897

0.4763

0.2995

CU

782

0.5625

0.7971

0.8050

0.8062

0.8266

0.1864

0.4190

0.4744

0.4775

0.5260

BR

578

0.5768

0.8063

0.7680

0.7307

0.7070

0.1434

0.4308

0.4200

0.4677

0.4605

SA

256

0.6749

0.8915

0.8677

0.9374

0.8827

0.2466

0.659

0.5619

0.6851

0.7674

GB

221

0.6520

0.6060

0.6880

0.8510

0.5333

0.2576

0.3250

0.3007

0.4774

0.2529

NZ

110

0.3286

0.6095

0.4857

0.4190

0.5873

0.0738

0.1247

0.1094

0.0810

0.1057

GR

99

0.7240

0.8714

0.8703

0.9292

0.7998

0.6495

0.8794

0.8777

0.9082

0.8048

WA

 

0.7835

0.8398

0.8375

0.8092

0.7983

0.4081

0.5346

0.5221

0.4605

0.3874

  1. The table reports ROC–AUC and AUC–PR metrics for federated learning, adaptive, fine-tuned, centralized, and local approaches. The bold values indicate the best-performing results within each row, where higher values are better, as shown by the arrows in the column headers.