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Vision-language model for report
generation and outcome prediction in CT
pulmonary angiogram
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Accurate andcomprehensive interpretation of pulmonaryembolism (PE) fromComputedTomography
Pulmonary Angiography (CTPA) scans remains a clinical challenge due to the limited specificity and
structure of existing AI tools.We propose an agent-based framework that integrates Vision-Language
Models (VLMs) for detecting 32 PE-related abnormalities and Large Language Models (LLMs) for
structured report generation. Trainedonover 69,000CTPAstudies from24,890patients acrossBrown
UniversityHealth (BUH), JohnsHopkinsUniversity (JHU), and the INSPECTdataset fromStanford, the
model demonstrates strong performance in abnormality classification and report generation. For
abnormality classification, it achieved AUROC scores of 0.788 (BUH), 0.754 (INSPECT), and 0.710
(JHU), with corresponding BERT-F1 scores of 0.891, 0.829, and 0.842. The abnormality-guided
reporting strategy consistently outperformed the organ-based and holistic captioning baselines. For
survival prediction, amultimodal fusionmodel that incorporates imaging, clinical variables, diagnostic
outputs, and generated reports achieved concordance indices of 0.863 (BUH) and 0.731 (JHU),
outperforming traditional PESI scores. This framework provides a clinically meaningful and
interpretable solution for end-to-end PE diagnosis, structured reporting, and outcome prediction.

Pulmonary Embolism (PE) is a life-threatening condition caused by blood
clots obstructing the pulmonary arteries, often leading to severe complica-
tions, long-termmorbidity, and a high risk ofmortality. In theUnited States
alone, PE affects approximately 600,000 individuals annually and con-
tributes to more than 60,000 deaths1,2. Despite advances in diagnostic
technologies3,4, timely and accurate PE diagnosis remains a significant
clinical challenge5,6. Computed Tomography Pulmonary Angiography
(CTPA)7 is the gold standard for PE detection; however, interpretation can
be delayed by radiologist availability, physician fatigue, and inherent com-
plexity of the cases. Studies show that up to 30% of untreated PE cases result
in death within one month of diagnosis, underscoring the urgent need for
more efficient and reliable diagnostic solutions8.

Timely and comprehensive diagnosis of PE is essential for improving
patient outcomes. Current PE management rely strategies heavily on tools

such as the Pulmonary EmbolismSeverity Index (PESI), which are based on
a limited set of clinical variables9. However, these tools may fail to capture
important contributors to disease severity and long-term complications,
such as pulmonary hypertension and recurrence risk,which require detailed
imaging and systematic reporting for accurate assessment10.

Recent advances in vision-language models (VLMs) have demon-
strated strong potential in 3D medical imaging applications, including
abnormality detection, automated report generation, and clinical decision
support. For instance, CT-CLIP and CT-CHAT, developed using the CT-
RATE11 dataset, introduced contrastive and chat-based frameworks for
chest CT interpretation. Similarly, RadFM12 and M3D13 have extended
foundationmodel capabilities across imagingmodalities through large-scale
multimodal datasets and instruction-tuning strategies. While these models
offer generalizable solutions, their application to PE-specific diagnosis and
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prognosis using CTPA remains limited. The INSPECT14 dataset provides a
valuable foundation for multimodal PE analysis; however, few existing
approaches have integrated structured reporting and survival prediction
into a unified, clinically actionable pipeline.

The integration of AI into PE diagnosis and management has the
potential to reduce diagnostic delays, minimize human error, and
enhance the reliability of outcome prediction15,16. Unlike general-
purpose models, task-specific AI models can address the unique chal-
lenges of PE care by automatically identifying relevant abnormalities,
generating structured radiology reports, and estimating long-term
prognoses from multimodal data sources, including imaging and clin-
ical records12,17. By combining the interpretive strength of large language
models (LLMs) with the visual analytic capabilities of VLMs, these
specialized systems can assist radiologists in making faster, more accu-
rate decisions, reducing misdiagnoses, and supporting more effective
treatment strategies for PE patients18,19.

In this study, we developed and validated an agent-based framework
that integrates VLMs and LLMs to enhance the PE diagnostic workflow.
We introduce a structured, abnormality-guided reporting paradigm that
aligns closely with radiological practice, improving both accuracy and
interpretability of generated reports. The framework is evaluated across
three large-scale datasets, demonstrating strong generalizability in
abnormality detection and report quality across institutions. Expert
evaluation further validates the clinical relevance of the generated reports,
consistently favoring our structured approach over baseline methods.
Finally, we introduce a multimodal survival prediction module that
integrates imaging, clinical variables, diagnostic findings, and generated
reports, achieving robust and interpretable prognostic performance
across cohorts.

The proposed novel agent-based framework explicitly advances
beyond prior efforts by unifying three key components of the PE diagnostic
and prognostic workflow: (1) fine-grained abnormality detection from
CTPA, (2) structured, region-aware report generation aligned with radi-
ologist practices, and (3) multimodal survival prediction that incorporates
imaging, clinical variables, and AI-generated diagnostic content. Prior
models such as CT-CHAT11 emphasize VQA-style anomaly detection,
while RadFM12 and M3D13 focus on free-text report generation without
structured localization or prognostic integration. The INSPECT dataset14

enables PE-related outcome modeling but lacks automated structured
reporting. In contrast, our framework integrates all three tasks into a
clinically interpretable and operationally cohesive pipeline, validated across
multi-institutional datasets and expert assessments. This comprehensive
approach bridges diagnostic interpretation with downstream risk stratifi-
cation, offering amore complete, real-world solution to the challenges of PE
diagnosis and management.

Results
For diagnosis and report generation, we included a total of 69,761 paired
CTPA image-report studies from 24,890 patients across three datasets:
Brown University Health (BUH, n = 19,565), Johns Hopkins University
(JHU, n = 1077), and the publicly available INSPECT dataset (n = 4248)
(Fig. 1a). For survival analysis, we identified 1012 patients with confirmed
PE diagnoses (BUH: 917; JHU: 95) who had complete imaging, radiology
reports, PESI clinical variables, and follow-up outcome data. Demographic
and clinical characteristics of the cohorts are summarized in Table 1.

Structured CTPA diagnosis and reporting framework
As shown in Fig. 2, we introduce a structured, clinically informed CTPA
diagnostic and reporting framework designed to emulate radiologists’
diagnostic reasoning by systematically identifying and characterizing
abnormalities. This hierarchical framework (Fig. 1b) organizes the diag-
nostic process by evaluating seven anatomically distinct regions and
detecting 32 clinically significant abnormalities on CTPA scans. Grounded
in established diagnostic standards20,21, the framework was developed in
collaboration with radiologists, emergency physicians, and pulmonologists

from Brown University, Johns Hopkins University, and the University of
Michigan to ensure clinical relevance, consistency, and broad applicability.

The foundation of our framework is a multi-label abnormality classi-
fication module that detects the presence or absence of the 32 predefined
abnormalities from CTPA imaging data. These classification outputs serve
two key purposes: they enable accurate region-level abnormality identifi-
cation and provide auxiliary diagnostic signals that guide downstream
report generation.

To produce structured image-based reports, we implemented a CTPA
reading agent that performs region-based reporting. A medical VLM was
prompted with either organ-specific or abnormality-specific queries to
generate localized, clinically coherent diagnostic descriptions. This multi-
stage reporting pipeline mirrors real-world radiology workflows, progres-
sing systematically from detailed anatomical evaluations to concise,
actionable diagnostic summaries.

Following the region-based analysis, a report-writing agent, imple-
mented using the Llama 322 LLM, was prompted to synthesize these loca-
lized findings into comprehensive and structured reports. Specifically, the
agent composes a “Study Findings” section that summarizes diagnostic
observations across all evaluated regions and an “Study Impression” section
that highlights the most clinically significant conclusions, particularly those
related to PE.

For prognosis prediction, we integrate the multimodal data, including
rawCTPA images, generated reports, abnormality classification results, and
PESI clinical scores, into amultimodal survival predictionmodule based on
time-to-event Cox regression23. This unified, multi-task CTPA diagnostic
framework effectively combines visual, textual, and clinical information to
support precise abnormality detection, standardized reporting, and clini-
cally meaningful outcome prediction, enabling comprehensive manage-
ment of PE patients.

Abnormality diagnosis: multi-abnormality classifier vs.
medical VLMs
We evaluated abnormality diagnosis performance using multi-label classi-
fication metrics, including accuracy (ACC), area under the receiver oper-
ating characteristic (AUROC), sensitivity, specificity, and F1 score. Our
multi-abnormality classifier was compared against several state-of-the-art
(SOTA)medical VLMs: CT-CHAT (a chest CT-specificVLM)11, RadFM (a
general-purpose radiology foundation model)12, and M3D (a 3D radiology
foundational VLM)13. These VLMs were adapted for CTPA interpretation
using visual question answering (VQA) prompts targeting the same 32
abnormalities.

As illustrated in Fig. 3, our multi-abnormality classifier consistently
outperformed the VLM-based approaches across all three datasets (BUH,
INSPECT, JHU). In Figure 3a, it achieved the highest AUROC on BUH
(78.8%), INSPECT (75.4%), and JHU(71.0%), alongwith superior F1 scores
of 60.9%, 58.9%, and 56.7%, respectively. Region-wise analysis (Fig. 3b)
further highlights the classifier’s strength, with AUROC exceeding 70% in
nearly all anatomical regions and F1 scores surpassing 60% in regions such
as the lungs and airways, heart, and pleura. The per-abnormality radar plot
(Fig. 3c) shows the classifier’s consistent superiority over other SOTA
models in detecting clinically significant findings such as PE, pleural effu-
sion, and lymphadenopathy. In the dedicated PE detection task (Fig. 3d),
our model achieved the highest AUROC (74.0%) and F1 score (58.7%) on
theBUHdataset, outperforming allVLM-basedbaselines, including thePE-
specific model PENet24. These cross-institutional results also validate the
robustness and clinical relevance of our multi-abnormality classifier and
establish it as a strong foundation for downstream structured CTPA report
generation.

Image report comparison: holistic vs. structured generation
We evaluated two strategies for image-based radiology report generation:
(1) holistic caption-based generation, in which prompted VLMs directly
generate free-text reports from entire CTPA volumes, and (2) structured
region-based generation, which involves extracting region-wise findings
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using either organ-specific or abnormality-specific prompting, followed by
report composition assigned with clinical reporting standards. The per-
formance of various CTPA reading agents under these strategies is sum-
marized in Fig. 4. To assess report quality, we applied standard natural
language generation (NLG)metrics includingBLEU-1, BLEU-4,METEOR,
ROUGE-L, CIDEr, and BERT-F1. These metrics evaluate lexical overlap,
fluency, and semantic similarity between generated reports and ground-
truth references.

In the caption-based setting, CT-CHAT achieved a BERT-F1 of 0.856
(95% confidence intervals [CI]: 0.855–0.856) and BLEU-4 of 0.142 (95%CI:
0.140–0.144) on the BUHdataset under the “Caption+Organ List+One-

shot” setting. This compared to 0.830 and 0.069 for RadFM, and 0.770 and
0.001 for M3D, respectively (p < 0.001).

In the region-based generation setting, strategies guided by predicted
abnormalities showed higher metric scores than those using organ-only
prompts. On the BUH dataset, the abnormality-predicted (Abn-Pred)
strategy using CT-CHAT achieved a BERT-F1 of 0.874 (95% CI:
0.873–0.874) and BLEU-4 of 0.149 (95% CI: 0.146–0.152). The Abn-Pred
outperforms the abnormality-all (Abn-ALL) variant without abnormality-
informed,which yieldedBERT-F1 of 0.832 andBLEU-4of 0.037. Theupper-
bound conditionusing ground-truth abnormality labels (Abn-GT)produced
the highest scores, which reached BERT-F1 of 0.881 and BLEU-4 of 0.169.
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Fig. 1 | Patient flowchart. Structured diagnosis and reporting framework.
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Compared to the caption-based CT-CHAT baseline for holistic gen-
eration, the Abn-Pred strategy for structured generation improved BERT-
F1by2.1% (from0.856 to 0.874) andBLEU-4by 4.9% (from0.142 to 0.149).
In addition, ROUGE-L, as a metric reflecting content recall and structural
alignment, also increased by 16.3% (from 0.245 [95% CI: 0.243–0.246] to
0.285 [95% CI: 0.282–0.288]).

Across datasets, structured report generation using the BUH-designed
framework showed variations in performance due to differences in insti-
tutional report styles. For instance, BLEU-4 scores were lower on INSPECT
and JHU datasets, while other metrics such as BERT-F1 and ROUGE-L
showed moderate changes. The INSPECT dataset includes only brief,
unstructured “Impression” sections, which limits direct comparison with
full structured reports and affects alignment on language-based metrics.

CT-CHAT under the “Caption+Organ List+One-shot” setting
yielded the highest scores among caption-based baselines. Our structured
generation approaches, particularly those incorporating abnormality pre-
dictions, reported higher metric scores across all three datasets.

Study findings comparison
Togenerate study-level radiology reports, a report-writing agentwas used to
aggregate region-levelfindings into structured “Study Findings" sections.As
shown in Fig. 5a, we compared the performance of structured generation
methods, specifically organ-based and abnormality-based approaches, with
the strongest caption-based baseline (“Caption+Organ List+One-shot”).
This baseline leverages organ-specific cues and example-driven prompting
to improve long-form reasoning and contextual alignment.

Across all testing datasets and CTPA reading agents (CT-CHAT,
RadFM, M3D), the abnormality-based strategy (Abn-Pred) yielded higher
scores than the caption-based baseline. On the BUH dataset using CT-
CHAT agent, the Abn-Pred strategy achieved BERT-F1 of 0.880 (95% CI:
0.879–0.880], which improved by 1.3% over captioning, and BLEU-4 by
114.9% (from 0.074 to 0.159). ROUGE-L also increased by 43.8%, and
METEOR by 28.8% (from 0.160 to 0.206). CIDEr score showed a relative
improvement of 26.3% (from 0.019 to 0.024).

The abnormality-guided generation demonstrated superior general-
izability in cross-institutional settings. On the INSPECT dataset, Abn-Pred
using the CT-CHAT agent achieved a BERT-F1 of 0.829 (95% CI:
0.829–0.830], outperforming the captioning approach (0.828). This perfor-
mance gap (p < 0.001) widened with M3D (0.829 vs. 0.825) and RadFM
(0.830 vs. 0.824). On the JHU dataset, Abn-Pred show stronger language-
grounding with BERT-F1 values of 0.842 (CT-CHAT), 0.843 (M3D), and
0.843 (RadFM). Despite lower absolute scores in BLEU-4 due to the
unstructurednatureof the INSPECTreports (BLEU-4 = 0.001 forAbn-Pred),
BERT-F1 remained the highest (0.828-0.830) across all agents for Abn-Pred.

Compared to organ-based generation, the Abn-Pred strategy con-
sistently outperformed across all three agents on the BUH dataset. For CT-
CHAT, BERT-F1 increased 3.8% (from 0.858 to 0.891), 1.9% for RadFM,
and 4.2% forM3D, respectively. In addition to BERT-F1, Abn-Pred also led
to consistent gains in BLEU-4, ROUGE-L, and CIDEr scores compared to
organ-guided prompts.

While using ground-truth abnormality labels (Abn-GT), the upper-
bound performance was observed across datasets. On BUH, Abn-GT
achieved the highest values across all metrics, including BERT-F1 of 0.897,
BLEU-4 of 0.179, and ROUGE-L of 0.337.

Study impression comparison
To generate the “Study Impression” section, the report-writing agent syn-
thesized high-level diagnostic summaries from the structured “Study
Findings”, focusing on key conclusions such as the presence or absence of
PE. As shown in Fig. 5b, we evaluated the same four prompting strategies
used in the findings generation task: holistic captioning, organ-based, and
two abnormality-based methods (Abn-Pred and Abn-GT).

Across datasets and model configurations, abnormality-based prompt-
ing consistently outperformed holistic caption-based approaches. On the
BUH dataset, the Abn-Pred prompting strategy consistently outperformed
the caption-basedbaseline across all agents. ForCT-CHAT, theBLEU-4 score
tripled from0.005 to 0.015 (95%CI: 0.015–0.016), while ROUGE-L increased
by over 5% from 0.172 to 0.181. BERT-F1 remained stable at 0.879–0.880
across both settings. Notably, RadFM and M3D also exhibited substantial
gains in BLEU-4, increasing from 0.005 to 0.018 and 0.016, respectively.

On the INSPECT dataset, where heterogeneous reporting styles con-
tributed to lower absolute scores, the Abn-Pred strategy consistently out-
performed the caption-based baseline across all agents.M3Dagent achieved
BLEU-4 of 0.011 (95% CI: 0.010–0.011), improved from 0.003, and
ROUGE-L increased by 12.9% from 0.139 to 0.157, while BERT-F1
remained comparable (0.825 vs. 0.822). All improvements were statistically
significant (p < 0.001). Similar improvements were observed over 50%
improved BLEU-4 for CT-CHAT and RadFM.

In the JHU cohort, the Abn-Pred strategy using CT-CHAT achieved a
BLEU4 score of 0.016 (95% CI: 0.015–0.018), representing a 167% increase
over the caption-based baseline (0.006; 95% CI: 0.005–0.007). ROUGE-L
remained comparable (0.152 vs. 0.152, p = 0.002), and BERT-F1 showed a
slight decrease from 0.849 to 0.838 (p < 0.001). Consistent trends were

Table 1 | Patient characteristics of the total and prognostic
cohorts

Brown
University
Health System

Johns Hopkins
University-
affiliated hospital

p value

CTPA-report paired data

Patient number 19565 1077

CTPA image number 59754 5759

Sex 0.6143

Male 8327 (42.6%) 464 (43.1%)

Female 11238 (57.4%) 613 (56.9%)

Age (years) 60.0 (18.0) 57.0 (26.0) <0.0001

Multimodal prognosis data

PE patient number 917 95

Sex 0.9142

Male 435 (47.4%) 46 (48.4%)

Female 482 (52.6%) 49 (51.6%)

Age (years) 64.0 (25.0) 58.0 (27.5) 0.1063

PESI variables

Age ≥ 80 177 (19.3%) 14 (14.7%) 0.3353

Chronic cancer 262 (28.6%) 43 (45.3%) 0.0014

Chronic heart failure 70 (7.6%) 27 (28.4%) <0.0001

Chronic obstructive
pulmonary disease

195 (21.3%) 28 (29.5%) 0.0696

Heart
rate ≥ 110 beats/min

149 (16.2%) 8 (8.4%) 0.0518

Systolic BP < 100mmHg 86 (9.4%) 12 (12.6%) 0.2793

Respiratory
rate ≥ 30 breaths/min

24 (2.6%) 48 (50.5%) <0.0001

Temperature < 96. 8 °F 41 (4.5%) 17 (17.9%) <0.0001

Altered mental status 66 (7.2%) 25 (26.3%) 0<0.0001

O2 saturation < 90% 24 (2.6%) 12 (12.6%) <0.0001

PESI score 87.0 (44.0) 122 (67.5) <0.0001

Death 163 (17.8%) 46 (48.4%) <0.0001

Follow up days 1212.0 (1594.0) 404.5 (559.0) <0.0001

Short-term follow up
(days < 30)

124 (13.5%) 7 (7.4%) 0.1086

The total cohort comprises CTPA image-report pairs collected from two academic institutions.
Demographic information and PESI variables are summarized for the prognostic subset.
Continuous variables are presented as median (interquartile range), and categorical variables as
counts (percentage). P values are calculated based on comparisons between the two cohorts.
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observed with other agents, RadFM and M3D. The Abn-GT, which uses
ground-truth abnormality labels, yielded the highest metric values across
datasets, includingaBERT-F1of 0.887onBUHandBLEU-4of0.017on JHU.

For organ-based prompting, scores were also high but slightly lower
than those obtained using abnormality-based methods. For example, on
BUH with RadFM, the organ-based method achieved a BERT-F1 of 0.878
and CIDEr of 0.020, while Abn-Pred achieved 0.882 and 0.011, respec-
tively (p < 0.001).

Case study and visualization: organ-based vs. abnormality-
informed generation
To illustrate the outputs of our organ-based and abnormality-informed
report generation strategies, we selected two representative CTPAcases and

compared the generated reports with the corresponding ground truth. As
shown in Fig. 6, the structured findings are visualized, with blue text indi-
cating agreement with ground truth and red text denoting inaccurate or
irrelevant content.

In the first case, the abnormality-informedmethod generated findings
that included “no pulmonary embolism,” “bilateral pleural effusions,”
“bilateral lower lobe volume loss”, and “normal mediastinum and hila,” all
of which matched the ground-truth report. In contrast, the organ-based
method produced additional findings that are not present in the reference,
including minor or unrelated observations.

In the second case, the abnormality-informed method correctly
included findings such as “no pulmonary embolism”, and “diffuse thick-
eningof the bronchialwall”. The generatedphrase “calcificationof the aortic

CTPA Reading
Agent

Report Writing
Agent

Findings rewrite prompt

Report Writing
Agent

Impression rewrite prompt

A. Abnormality Identification B. Region-based Findings Generation 

C. Study Report Generation

D. Multimodal Survival Prediction

Study Finding Study Impression

Survival 
Prediction

Model Outcome 
Prediction

Findings of
Images

Region findings VQA prompt

Findings of
Images

Diagnosis
Model

Clinical Exam CTPA Scan PrognosisRadiologist Diagnosis Radiology 
Report

Abnormality 
Identification

Clinical 
Variables

Report
Features 

CTPA Reading
Agent

Findings of Image: 

Pulmonary arteries

Lungs and Airways

Heart

· · ·

· · ·

Organ-based VQA prompts:

Arteries findings

Lung findings

Heart findings
Abnormality-based VQA 

Prompts

CTPA Reading
Agent

Findings section of
Pulmonary arteries: 

Enlarged pulmonary artery

Acute pulmonary embolism

Pulmonary embolism

· · ·

Findings of Image: Abnormality 
Identification: 

Yes or No

a. Organ-based Findings Generation b. Abnormality-based Findings Generation 

Image 
Features

Workflow of PE Examination                                                                                                                            

Workflow of CTPA-Agent Model                                                                                                    

Fig. 2 | Overview of agent-based CTPA examination approach. The workflow
between radiologists and the proposed CTPA examination pipeline includes disease
diagnosis, report generation, and prognosis assessment. A The diagnosis module
identifies 32PE-related abnormalities.BTheCTPAReadingAgent processes vision-

driven queries to extract region-specific findings and generate image-level reports,
prompted to interpret organ-based findings (a) and abnormality-based findings (b).
C The Report Writing Agent synthesizes these findings into a diagnostic report.
D The multimodal survival prediction module estimates patient survival risk.

https://doi.org/10.1038/s41746-025-01807-8 Article

npj Digital Medicine |           (2025) 8:432 5

www.nature.com/npjdigitalmed


wall” corresponded to the reference phrase “scattered atherosclerotic cal-
cification,” although not an exact match. The organ-based method, in this
instance, included findings not supported by the reference report, such as
“aortic dissection with an intimal flap” and “well-defined nodule with a
halo sign”.

Expert evaluation: compared with holistic captioning
To assess the clinical quality of generated radiology reports beyond auto-
matic metrics, we conducted a blinded expert evaluation involving three
independent review groups led by board-certified radiologists. The eva-
luation compared two generation strategies: (1) a holistic caption-based

method (“Caption+Organ List+One-shot”), and (2) our structured,
abnormality-guidedmethod (Abn-Pred). Bothmethods usedCT-CHAT as
the CTPA reading agent and Llama 3 as the report-writing agent.

From theBUH testing set, 30 patient caseswere randomly selected. For
each case, reviewers were presented with the ground-truth report alongside
two anonymized generated versions—one from eachmethod—for both the
“Study Findings” and “Study Impression” sections. Reviewers were blinded
to the generation strategy and asked to choose the version with higher
clinical quality based on accuracy, clarity, and relevance to the reference
report. Each evaluation included a 5-point confidence score (1 = lowest,
5 = highest) to indicate the strength of preference.
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network PENet.
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As shown in Fig. 7, the structured generationmethod was preferred in
the majority of cases across all evaluators. For the “Study Findings" section,
Abn-Pred was selected in 90.0%, 80.0%, and 96.7% of cases by Experts 1, 2,
and 3, respectively. For the “Study Impressions” section, it was selected in
90.0%, 83.3%, and 93.3% of cases. Report selections were consistently
associated with higher confidence scores.

Multimodal prognosis performance
We evaluated the performance of the multimodal survival prediction
module using Concordance index (C-index) as a measure of agreement
between predicted risk scores and observed outcomes25. Higher
C-index values indicate greater predictive accuracy, with values closer
to 1 representing near-perfect concordance. As shown in Fig. 8a,
integration of image-derived and clinical information improved

prediction performance compared to traditional or single-modality
approaches.

In the BUH cohort, the PESI baseline achieved a C-index of 0.764.
Among single-modality models, clinical variables (Clin) performed best
with a C-index of 0.789, followed by diagnosis-based features (Dia: 0.781),
text from generated radiology reports (Text: 0.786), and imaging features
(Img: 0.751). Multimodal fusion yielded higher C-index values: Img+Text
(0.798), Img+Clin (0.817), and Img+Clin+ Text (0.846). The highest
performance was achieved with the full combination of Img+Clin+
Dia+Text, reaching a C-index of 0.863.

In the JHU cohort, lower overall performance was observed. PESI
achieved a C-index of 0.596, while Img (0.635), Text (0.606), and Clin
(0.571) showed modest predictive value. Multimodal fusion improved
performance: Img+Clin+ Text achieved a C-index of 0.719, and the best
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Fig. 6 | Examples of the generated reports. The proposed organ-based and abnormality-based results are compared with the structured ground truth. The blue italic text is
the correct predictions corresponding to the actual reports, and the red areas indicate the untrue information in the predictions.

Fig. 7 | Human expert evaluation of generated
study reports on the BUH testing set. Three
independent reviewing groups led by board-certified
radiologists independently evaluated the quality of
generated Study Findings and Study Impression
sections, comparing outputs from two prompting
strategies: a holistic caption-based method (“Cap-
tion+Organ list+One-shot”) and our proposed
structured generation approach informed by
abnormality predictions. All generations were pro-
duced using CT-CHAT as the reading agent and
LLaMA 3 as the report-writing agent. For each
report pair, radiologists selected the version with
higher clinical quality, referencing the ground truth
report as context. Stacked bars represent the nor-
malized distribution of preference scores across five
levels of confidence (1 = least confident, 5 = most
confident). H
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performance again came from the full four-modal model (C-index: 0.731),
confirming the generalizability of our fusion strategy across datasets.

To evaluate potential clinical utility, we performed Decision Curve
Analysis (DCA)26, shown in Fig. 8b. DCA evaluates the net benefit of dif-
ferent predictive models across a range of threshold probabilities, reflecting
their potential impact on clinical decision-making. In both cohorts, the full
four-modal model (Img+Clin+Dia+Text) consistently yielded the
highest net benefit across a broad range of thresholds, surpassing unimodal
and partial multimodal baselines. This advantage was particularly pro-
nounced in the JHU cohort with lower censoring rate, where traditional
clinical risk scores (e.g., PESI) and single-modality predictors demonstrated
limited utility.

Kaplan-Meier survival analysis27 based on the predicted risk scores
from themultimodalmodel are shown in Fig. 8c. These curves demonstrate
significant differences in survival probabilities over time between high-risk
and low-risk groups in both cohorts (log-rank test: p< 0.00001 for BUH, p<
0.00008 for JHU), underscoring the model’s effectiveness in patient risk
stratification.

Discussion
In this study, we introduced a novel framework for CTPA image report
generation, leveraging a large-scale, retrospective dataset. The results
demonstrate that incorporating abnormality detection into the reporting
pipeline enables strong performance acrossmultiple clinical tasks, including

BUH

Number at risk (Number censored)

Risk-High

Risk-Low

Number at risk (Number censored)

123 (0) 60 (30) 50 (37) 33 (53) 12 (75) 1 (85)

124 (4) 99 (27) 88 (35) 61 (62) 29 (94) 5 (118)

Risk-High

Risk-Low

JHUa

46 (0) 26 (6) 11 (16) 5 (16) 5 (16) 2 (17) 1 (18) 1 (18)

49 (0) 43 (0) 29 (6) 24 (12) 14 (21) 7 (27) 4 (30) 4 (30)

Threshold ProbabilityThreshold Probability

N
et

 B
en

ef
it

N
et

 B
en

ef
it

b

C
-i

n
d
ex

C
-i

n
d
ex

Time in DaysTime in Days

c
Risk-High

Risk-Low

ALL

None

Fig. 8 | Performance comparison of multimodal survival prediction modules.
a Concordance index (C-index) for different combinations of modality inputs,
including PESI scores, imaging (Img), clinical variables (Clin), diagnosis (Dia), and
generated report text (Text), across the BUH and JHU testing cohorts. Multimodal
fusion models consistently outperform unimodal baselines. b Decision Curve

Analysis (DCA) of multimodal survival prediction modules illustrates the net
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structured radiology reporting and multimodal survival prediction. These
findings also highlight key limitations, providing direction for future
improvements in automated radiology reporting systems.

Despite the potential of medical VLMs in 3D imaging, current
approaches struggle to produce fully comprehensive, structured reports that
synthesize findings across multiple anatomical regions. Our experiments
showed that these models frequently miss or inadequately describe a wide
rangeof abnormalities, leading to incompleteor insufficientlydetailed reports
that limit clinical utility. Furthermore, medical VLMs demonstrate limited
ability to construct coherent and generalized narratives from complex
prompts,particularlywhensummarizingdiagnostic impressions.Their lower
responsiveness compared to LLMs highlights the need for new strategies that
more effectively link diagnostic reasoning with generative capabilities.

To address these limitations, we developed a region-based generation
approach embedded within a structured, clinically grounded diagnostic
framework tailored for CTPA interpretation. The framework mimics
radiologists’ diagnostic workflow by organizing analysis around seven
anatomically defined regions and 32 clinically significant abnormalities.
This hierarchical structure supports improved diagnostic accuracy,
enhances report clarity, andalignswith established clinical guidelines.At the
core of the framework is amulti-label abnormality classificationmodule that
detects findings across anatomical regions, serving both as a diagnostic
endpoint and as input for region-level report generation. A CTPA reading
agent utilizes abnormality-specific prompts to extract targeted diagnostic
content, which is then synthesized by a report-writing agent into structured
output. This includes a “Study Findings” section summarizing region-wise
observations and an “Impression” section highlighting key diagnostic
conclusions. Additionally, a multimodal survival prediction module inte-
grates imaging, clinical variables, diagnostic outputs, and generated reports
to estimate patient risk, thereby extending the utility of the framework to
support outcome prediction and pulmonary embolism (PE) management.

We evaluated the proposed framework across three core tasks:
abnormality classification, radiology report generation, and survival pre-
diction. Each task was benchmarked against SOTA medical VLMs for 3D
imaging, including CT-CHAT11, RadFM12, and M3D13. Evaluation proto-
cols were aligned with the specific objectives of each task to ensure fair and
relevant comparisons.

For abnormality classification, our multi-label classifier achieved
higher accuracy in detecting 32 co-occurring CTPA abnormalities com-
pared to prompt-based visual question answering strategies used in VLMs.
This performance advantage stems from the classifier’s ability to capture
region-specific visual features and model label co-occurrence, which
enhances both sensitivity and precision across diverse anatomical regions.

For the report generation task, we compared organ-based and
abnormality-based structured prompting methods against strong holistic
captioning baselines (e.g., “Caption+Organ List+One-shot”). Across the
BUH, INSPECT, and JHU datasets, abnormality-guided prompting con-
sistently outperformed both holistic and organ-basedmethods on BLEU-4,
ROUGE-L,METEOR, BERT-F1, andCIDErmetrics. These results indicate
that incorporating diagnosis-aware input enhances the generation of
semantically relevant and clinically aligned content. Abnormality-guided
reports were alsomore concise and better conformed to radiology reporting
standards.

Expert evaluation supported these findings. Three board-certified
radiologists compared reports generated by structured prompting and
holistic caption-based methods, consistently preferring the abnormality-
guided reports. They cited better diagnostic alignment, clearer articulation
of PE-related findings, and higher clinical relevance in both findings and
impression sections. In addition to higher lexical and semantic scores,
radiologists emphasized several qualitative advantages of the abnormality-
based framework. Specifically, these reports demonstrated improved clinical
clarity, reduced redundancy, and sharper diagnostic focus. The structured
format enabled amore systematic presentation of abnormalfindings, which
better mirrored radiologists’ reasoning processes during image interpreta-
tion. The report-writing agent behind these outputs prioritized clinically

significant content and emphasizedPE-related conclusions, leading tomore
actionable impressions and a closer match to expert-level reporting
expectations. These qualitative insights were consistently cited during eva-
luation andunderscore the utility of abnormality-guidedpromptingbeyond
mere performance metrics.

For survival prediction, our four-modal fusionmodel, which integrates
imaging, predicted abnormalities, structured reports, and clinical variables,
achieved the highestC-index inbothBUHand JHUcohorts, outperforming
unimodal models and the conventional PESI score. Decision curve analysis
confirmed themodel’s clinical utility, demonstrating consistently higher net
benefits across a range of decision thresholds. These findings highlight the
advantageof incorporating structured textual outputs alongsidemultimodal
data for personalized risk stratification.

Our framework builds upon recent advancements such as CT-RATE11

and INSPECT14, integrating the strengths into aunified,multi-agent system.
This design addresses the limitations of single-model VLMs by introducing
a structured, diagnosis-aware generation strategy that reduces redundancy,
emphasizes clinically significant findings, and enables robust survival pre-
diction. The generated reports are more consistent with clinical reporting
standards, supporting improved diagnostic accuracy and downstream
decision-making. Additionally, the framework provides a scalable solution
that minimizes false positives and missed abnormalities, reduces reporting
variability, and facilitates clinicallymeaningful risk stratification for patients
with pulmonary embolism.

Despite its strengths, this study has several important limitations that
warrant consideration. First, the structured reporting framework relies on a
predefined set of 32 PE-related abnormalities. While this promotes diag-
nostic standardization, it limits the system’s capacity to identify incidental or
atypical findings-such as cardiovascular anomalies, extracardiac pathology,
or subtle parenchymal changes-thatmay carry clinical significance. Second,
the retrospective study design, though leveraging large-scale multimodal
data, introduces potential biases related to data quality, documentation
variability, and institutional heterogeneity. These factors may affect model
generalizability to prospective use, alternative imaging protocols, and
underrepresented populations or rare conditions.

Nevertheless, the framework is inherently extensible. The abnormality
hierarchy can be customized to reflect different institutional standards or
expanded to cover broader disease domains. Additionally, the classifier can
be retrained with new labeled data, supporting scalable adaptation and
deployment.Although our primary focuswas evaluating region-level report
generation using a state-of-the-art I3D backbone from Merlin28, we
acknowledge that ablation studies on backbone architectures and pre-
training strategies are needed to optimize performance. Exploring alter-
native visual encoders and domain-specific pretraining remains an
important direction for future work.

In the survival prediction task, the low event rate in the external JHU
cohort may have reduced the statistical power of the Cox regressionmodel,
potentially limiting the reliability of risk estimates. This challenge is espe-
cially pertinent to real-world deployment, where accurately predicting rare
but clinically critical outcomes is essential. Furthermore, while combining
VLMs and LLMs improves report coherence and interpretability, current
LLMs still struggle to synthesize nuanced hierarchical content and may
overlook clinically prioritized findings.

Limitations also exist in our evaluation methodology. Traditional
natural language generationmetrics such as BLEU and ROUGE emphasize
lexical overlap rather than clinical accuracy, potentially underestimating the
true utility of generated reports. Emerging domain-specific metrics like
RadGraph29 offer more diagnostic relevance but require further validation
and broader adoption. Expert evaluation, while clinically informative, also
has constraints. Our study lacks a direct comparison against board-certified
radiologists in abnormality detection and survival prediction tasks, making
it difficult to gauge whether the AI system achieves expert-level perfor-
mance. Additionally, while radiologists preferred abnormality-based
reports over organ-based ones, our analysis did not fully elucidate the
rationale behind this preference. A more comprehensive framework that
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incorporates both quantitative benchmarking and structured qualitative
feedback would enhance understanding of clinical impact.

To support clinical translation, futurework should include prospective
validation studies to assess real-time diagnostic and prognostic perfor-
mance, interpretability, and safety of the framework. In particular, bench-
marking against board-certified radiologists in real-world workflows-
especially in cases with incidental findings or atypical presentations, is
crucial to establish clinical credibility and adoption.

Methods
In this section, we present the proposed multi-class abnormality classifi-
cationmodule and the abnormality-guided, region-based report generation
framework, developed to enable comprehensive evaluation of pulmonary
embolism (PE) across key clinical tasks. The model was validated on two
internal datasets and one publicly available dataset, ensuring diverse and
representative cohort coverage for robust performance assessment.

Patient cohorts
This retrospective study included patients who underwent CTPA scans at
two major academic medical centers: Brown University Health (BUH) and
Johns Hopkins University (JHU). The BUH dataset comprises 59,754
paired CTPA image-report studies from 19,565 patients who received scans
between 2015 and2019 atRhode IslandHospital, TheMiriamHospital, and
NewportHospital. This datasetwas used for both abnormality identification
and radiology report generation tasks, with data split into training, valida-
tion, and testing sets in a 7:1:2 ratio. For prognosis evaluation, we selected a
subset of 917 patients with confirmed PE from a previously published
study30, including corresponding CTPA images, radiology reports, 11 PESI
variables derived from electronic health record (EHR), and outcome data
(mortality status and follow-up duration days).

For external validationon threeclinical tasks,we curated adataset from
Johns Hopkins Hospital comprising 5759 CTPA scans from 1077 patients
collected between 2016 and 2020. Among these, 95 patients with confirmed
PE and complete outcome records were included for multimodal survival
analysis using the same inclusion criteria as the BUH cohort.

The study protocols were reviewed and approved by the Lifespan
Institutional Review Board 3 (covering Rhode Island Hospital, TheMiriam
Hospital, Newport Hospital, and affiliated institutions; reference number:
1791856-20, project code: 214421) and the Johns Hopkins Medicine
Institutional Review Board (reference number IRB00424745). The
requirement for informedconsentwaswaived by both ethics committees, as
the study involved retrospective analysis of de-identified imaging and
clinical data that were either publicly available or recorded in amanner that
precluded identification of individual subjects. All patients included in the
analysis were over 18 years of age.

The INSPECT dataset14 serves as the largest publicly available CTPA
dataset to date. It contains 23,248 CTPA scans from 19,402 patients col-
lected at Stanford Medicine between 2000 and 2021. Notably, it includes
only the “Impression” sections of radiology reports-brief, unstructured
summarieswrittenby expert radiologists-rather than full structured reports.
Thismay inherently limit the evaluationof report completeness anddetailed
findings. We randomly sampled one-fifth of the data to construct an
external validation dataset for abnormality diagnosis and report generation
validation. Figure 1a illustrates the study design and patient inclusion cri-
teria. Table 1 summarizes the demographic and clinical characteristics
across BUH and JHUdatasets. Data collection and analysis were performed
locally at each center, with strict measures to maintain patient anonymity.

Multi-class abnormality diagnosis
We propose a multi-label classification module to detect 32 clinically
significant abnormalities in CTPA scans, employing a 3D inflated
ResNet-152 (I3D) as the backbone. The 2D convolutional structureare
of ResNet-152 inflated into 3D, enabling effective volumetric feature
extraction through 3D convolutional kernels tailored for 3D medical
imaging. To enhance feature representation, the model is initialized

with pretrained weights from Merlin28, a vision-language foundation
model tailored for 3D CT analysis and pretrained on structured EHR
data and unstructured radiology reports. This initialization enables
the model to capture spatially and semantically enriched pathological
features. The network begins with a 7 × 7 in-plane convolution fol-
lowed by a 3 × 3 max-pooling layer, reducing the input resolution by a
factor of four. Subsequent features are aggregated via average pooling
and a 1 × 1 × 1 Conv3D layer to produce probability estimates for the
32 PE-related abnormalities. The diagnosis module supports multi-
label predictions per region and distinguishes between co-occurring
and visually subtle abnormalities.

We compared our classifier against leading 3D medical VLMs: CT-
CHAT11, RadFM12, and M3D13. These models operate under a visual
question answering (VQA) paradigm. Each VLM was queried per
abnormality using the prompt:

“Is there any indication of <Abnormality > in this image? (This is a
true or false question, please answer ‘Yes’ or ‘No’).”

This setup enabled direct comparison between structured classification
and prompt-based querying.

Region-based report generation
To generate structured radiology reports, we implemented a region-based
report generation framework guided by anatomical and abnormality
prompts. As illustrated in Fig. 2B, the pipeline includes a CTPA reading
agent, powered by a 3D medical VLM, which is prompted to generate
region-wise findings based on two prompting strategies:
• The organ-based finding captioning strategy follows clinical reporting

conventions by prompting findings by organ region, as illustrat Fig. 2a.
For each of the seven predefined anatomical regions including
pulmonary arteries, lungs and airways, pleura, heart, mediastinum
andhila, chest wall and lower neck, and chest bones, theCTPA reading
agent was queried with:

“What findings of <Organ > do you observe in this medical image?”

This method captures both normal and abnormal findings and
maintains spatial coherence. However, without explicit diagnostic cues, it
can produce generic descriptions or miss subtle but important
abnormalities.
• The abnormality-based findings captioning strategy enhances diag-

nostic precision by leveraging 32 predefined abnormalities to guide the
prompting process, as illustrated in Fig. 2b. This method leverages the
outputs from the abnormality classifier to guide CTPA reading agent
with targeted VQA queries:

“What findings of < Abnormality > do you observe in this medi-
cal image?”

Only abnormalities predicted as present are queried, focusing gen-
erationon clinically relevant contentwhile suppressing irrelevant responses.
This strategy improves specificity and enables themodel todescribe imaging
features such as acute PE, lymphadenopathy, or parenchymal changes in a
concise and interpretable format.

Structured regional outputs from either the organ-based or
abnormality-based methods are aggregated into full radiology reports, fol-
lowing a standardized CTPA reporting framework. As a baseline, we also
implementedholistic captioningusingdirect imageprompts (e.g., “Describe
the abnormal findings in this image.”). Variants include organ list guidance
and one-shot examples (Supplementary Fig. 1).

Study-level report generation
To standardize the variable response formats of CTPA reading models, we
employed a report-writing agent based on the Llama 3 model22, guided by
structured prompts (Supplementary Fig. 2). The agent synthesized
paragraph-level image findings into concise, anatomically organized study-
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level reports by aggregating information across images, eliminating
redundancy, and resolving contradictions.

The output was structured into seven anatomical categories, including
Pulmonary Arteries, Lungs and Airways, Pleura, Heart, Mediastinum and
Hila, Chest Wall and Lower Neck, and Chest Bones. Only relevant
abnormalities were retained per region, and normal regions were explicitly
labeled. This approach ensured semantic consistency and localization of
findings, producing high-quality reports for downstream tasks such as
impression summarization and survival prediction.

To generate the Study Impression section, we employed the report
writing agent22, guided by writing prompts to summarize clinically sig-
nificant content from the Study Findings (Supplementary Fig. 3). The
prompt instructed the model to begin with a definitive conclusion on PE
status-for example, explicitly stating “No pulmonary embolism is iden-
tified" when applicable-ensuring consistent prioritization of PE-related
findings.

The model then distilled the most acute and clinically relevant
abnormalities, particularly those related to PE, such as cardiopulmonary,
vascular, or parenchymal changes. Normal or less critical findings (e.g., “no
acute abnormality") were excluded to enhance focus. The impressions were
output in a structured, numbered format with professional, precise lan-
guage, supporting clarity, clinical prioritization, and downstream decision-
making.

Multimodal survival prediction
The Survival Prediction (SP) model estimates patient prognosis by inte-
grating four modalities: CTPA images, generated radiology reports,
abnormality identification, and PESI clinical variables. Each modality is
processed by a dedicated SP module to estimate modality-specific survival
risks, as illustrated in Fig. 2D.

CTPA features are extracted from themulti-abnormality classifier after
average pooling. The study findings reports generated by CT-CHAT with
‘Abn-Pred’ are encoded using a pretrained BERTmodel31. Each SPmodule
comprises a survival encoder (Em

s ) and a risk predictor (C
m
s ), which together

compute the survival risk for modalitym as:

Rm ¼ Cm
s ðEm

s ðFmÞÞ; m 2 Img;Text;Dia;Var
� � ð1Þ

For image and text modalities, the survival encoder is a 3-layer MLP with
input sizes of 2048 and 4096, and hidden layers of 1024, 512, and 128 nodes
with ReLU activations. Diagnosis and clinical features are processed using a
2-layer MLP with 512 and 128 hidden units. Each SP module is optimized
using the Cox proportional hazards (CoxPH) loss32, which is suitable for
censored survival data:
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where ri is the predicted risk score for the i-th patient, yit is the observed
survival duration, and yie is the mortality event indicator. This loss function
promotes concordancebetweenpredicted risk and survival time.Models are
trained using the AdamW optimizer with a learning rate of 0.001 for up to
15 epochs, and batch normalization is applied to stabilize training. The final
survival prediction is derived by fusing the fourmodality-specific risk scores
using a CoxPH regression model23:

hiðtÞ ¼ h0ðtÞ exp
X

m

βmRm

 !

ð3Þ

where hi(t) is the hazard function for patient i at time t, h0(t) is the baseline
hazard, and βm are the learnable modality-specific coefficients. This fusion
strategy allows for effective weighting of each modality’s contribution,
yielding a robust and accurate survival prediction.

Multimodal data preprocessing
Each CTPA exam was preprocessed by extracting pixel data from DICOM
files, standardizing spatial coordinates, and Hounsfield Units (HU). All
scans from a single patient session were combined into a unified CTPA
image stack, with lung areas segmented and cropped with a 20mmmargin
to focus on the chest33. These reformatted images were then prepared for
abnormality classification and report generation. Axial images were
resampled to 1.5mm in-plane resolution and 3mm out-of-plane, then
padded, and cropped to 224 × 224 × 160 for the abnormality classifier. HU
values were normalized to a 0–1 range by clipping values outside the−1000
to 1000 range.

We extracted the “Findings” and “Impression” sections from the ori-
ginal radiology reports as the primary content for our study. We employed
theLlama322modelwithLLM’smedical capabilities to automatically extract
32 anomaly labels from the Findings section, specifying the presence or
absence of specific conditions (Supplementary Fig. 4). This automated
extraction process improved efficiency over manual annotation and
enhanced consistency and accuracy for identifying abnormal findings. The
extracted anomaly labels served as reference standards for training and
evaluation. The population distributions in two datasets are shown in
Fig. 1b.

From the EHR data of the prognosis cohorts, we extracted time-to-
event labels for survival analysis, alongwith 11PESI variables gathered from
clinical data during the retrospective chart reviews. The PESI variables
included age, sex, comorbidities (cancer, heart failure, and chronic lung
disease), pulse rate, blood pressure, respiratory rate, temperature, mental
status, andarterial oxygen saturation atdiagnosis 9. Thedemographics of the
study population with extracted 11 PESI variables are presented in Table 1.

Abnormality identification training
For diagnosis training, the classifier uses amulti-label binary Cross Entropy
Loss function. The target labels for the abnormalities are extracted from the
findings of CTPA reports. The training process incorporates several data
augmentation techniques, includingCenter SpatialCrop for cropping,Rand
Rotate 90 degrees and Rand Flip for rotations and flips, and intensity
adjustments through Rand Scale Intensity and Rand Shift Intensity. The
training is conducted with a learning rate of 1e-5 with AdamWoptimizer, a
batch size of 20, and a maximum of 15 epochs.

Report generation metrics
To assess the quality of generated radiology reports, we used standard NLG
metrics that evaluate both lexical and semantic alignment with reference
texts. BLEU (Bilingual Evaluation Understudy)34 quantifies fluency and
adequacy based on n-gram precision; ROUGE (Recall-Oriented Under-
study for Gisting Evaluation)35 measures content overlap to evaluate sum-
marization quality. METEOR (Metric for Evaluation of Translation with
Explicit ORdering)36 integrates unigram alignment, stemming, synonymy,
and word order to assess alignment with ground truth. BERTScore37

compares contextualized embeddings derived from pre-trained language
models to capture semantic similarity beyond surface-level matching.
Together, these metrics provide a comprehensive evaluation of linguistic
accuracy and clinical relevance.

Statistical analysis
Statistical analysis was performed to assess the significance and robustness
of model performance. For classification metrics such as AUROC and
sensitivity, statistical comparisons were conducted across each abnormality
and regions to evaluate model performance differences.38 For report gen-
eration, we applied bootstrap resampling to estimate 95% confidence
intervals for each evaluation metric (BLEU34, ROUGE35, METEOR36,
BERTScore37), andpaired t-tests orWilcoxon signed-rank testswere used to
determine statistical differences between prompting strategies. In survival
prediction, C-index comparisons across models were evaluated using
bootstrapped intervals, and stratified risk groups were analyzed via
Kaplan–Meier survival curves27 with log-rank testing. These statistical
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procedures ensured that observed improvements were both reliable and
clinically meaningful.

Data availability
The BUH and JHUdatasets used in this study are not publicly available due
to institutional privacy agreements. The INSPECT dataset is publicly
accessible for non-commercial use under a data use agreement, and avail-
able at the following URL: https://som-shahlab.github.io/inspect-website.

Code availability
The source code is publicly available on GitHub at: https://github.com/
zzs95/CTPA-Agent. SupplementaryTable 1details the configurationsof the
pretrained VLMs and LLMs utilized as agent models during inference.
These models were employed without additional fine-tuning to perform
disease diagnosis and radiology report generation. All experiments were
implemented using PyTorch (v2.5) andTransformers (v4.44), and executed
on a workstation equipped with two NVIDIA A6000 GPUs (48 GB each).
Survival analysiswas performedusing thepycoxpackage andHuggingface
libraries.
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