npj | digital medicine

Perspective

Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-025-01809-6

Design specifications for biomedical
virtual twins in engineered adoptive
cellular i mmunotherapies

M| Check for updates

Ulrike Weirauch', Markus Kreuz', Colin Birkenbihl?, Miriam Alb3, Maria Quaranta®, Laurence Calzone®®,
Sophia Orozco-Ruiz®®, Stefanie Binder’, Luise Fischer®, Soléne Clavreul®’, Morine Maguri®,

Maximilian Ferle"'*"", Michael Rade', Guillaume Azarias'?, Jay R. Hydren'?, Jakub Jamarik',

Daniel Schwarz', Zsolt Sebestyen'®, Jurgen Kuball'*'®, Georg Popp', Chloé Antoine'’,

Manon Knockaert', Clara T. Schoeder"'"'8, David Fandrei'?, Carmen Sanges?®, Vaclovas Radvilas®,
Nico Gagelmann®?', Markus Riickert'?, Olaf Penack?®, Stephan Fricke'*, Andreas Schmidt*,

Carol Ward®, Carl Steinbeisser®®, Jean-Marc Van Gyseghem'’, Anna Niarakis®?, Laurent Garderet®,
Michael Hudecek®**°, Thomas Neumuth'"', Uwe Platzbecker®, Ulrike Kéhl""'', Regina Demlova",

Andreas Kremer*, Stefan Franke'®, Holger Fréhlich?®', Maximilian Merz'%2 & Kristin Reiche"""

behalf of the CERTAINTY Consortium*

On

In (immune)oncology, virtual twins (VTs) offer patient-individual decision support. Nevertheless, current
VTs do not incorporate the unique properties of engineered adoptive cellular immunotherapies (€ACIs).
Here, we outline the minimal design specifications for VTs for engineered ACIs (eACI-VTs) to model the
complex interplay between cell product and patient physiology. We motivate utilizing VTs in eACls to
provide decision support and reflect on how eACI-VTs can support the widespread use of eACls.

Adoptive cellular immunotherapy (ACI) is a novel therapy with the potential
to revolutionize the treatment of cancer and other diseases'. Prominent
examples include engineered ACIs (eAClIs), such as chimeric antigen receptor
(CAR) T cells and T cell receptor (TCR) engineered T cells, as well as non-
eACl-like tumor infiltrating lymphocytes’, with CAR T cells being the most
prevalent eACI in current clinical practice. CAR T cell therapy equips a
patient’s own (autologous) or a healthy donor’s (allogenic) T cells with CARs,
enabling them to recognize a defined target antigen on the surface of tumor
cells’. Upon encountering tumor cells, CAR T cells become activated and are
thereby enabled to kil the target cells. Six autologous CAR-based therapies are
approved by the European Medicines Agency (EMA), and seven by the United
States Food and Drug Administration (FDA), for hematological malignancies.
With CAR T cells, an unprecedented proportion of patients experience long-
lasting remission or even cure, with manageable adverse events”. However,
not all patients respond to treatment’. Predicting which patients will benefit
from eACI is crucial due to outcome uncertainty, high therapy costs, and
limited manufacturing capacities, because the cell product is manufactured
individually through a complex, multi-step process.

In healthcare, digital twins (DTs) and virtual twins (VTs) are computer-
based models that digitally represent interacting biological systems across
multiple scales. These models support monitoring disease prevention,

diagnosis, treatment decision-making, and follow-up care, while also
assisting both clinical and nonclinical research, thus accelerating the devel-
opment of new medicines and medical devices. Although DTs/VTs are still
in their early stages of development, their potential to transform precision
medicine through individualized care is increasingly recognized®”.
Definitions of the term DT vary in the literature and often lack a clear
distinction from VTs. Viceconti et al. define a DT in healthcare as an
application-specific virtual representation of a single organ of an individual
patient, intended to guide patient-specific decisions and requiring integra-
tion with the patient’s personal data at least once during its life cycle'.
Specifically, a digital representation of a real-world object qualifies as a DT if
it includes: (i) a computational model of the object, (ii) a dataset describing
changes in the object, and (iii) methods for continuously updating the
computational model with data derived from its real-world counterpart".
Importantly, a DT is expected to evolve in parallel with its real-world
counterpart. In healthcare, this real-world object may represent a patient, a
clinical study participant (e.g., from a control arm), or any biological system,
such as individual cells or organs. These definitions for DTs explicitly
exclude population-based models because they lack continuous updates
based on patient-specific data'*'"". Expanding upon this, we define a VT in
healthcare as an application-specific in silico system covering at least two
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single-organ DTs from the same patient to simulate multi-organ biomedical
interplay. As such, VTs offer the complexity of different biological scales,
dynamic adaptability, and different organs to guide treatment decisions.
This makes VTs particularly well-suited for use in patients eligible for eACIs.
Unlike conventional drugs, eACIs require modeling the medicinal product
not only as a dynamic biological system of living cells but also in terms of its
interplay with multiple organs of the patient. To motivate the development
of VTs for patients eligible for eACIs (eACI-VTs), we propose minimum
design specifications for such models. We use autologous CAR T cell
therapy as a representative example, given its status as the most widely
approved eACIL. The main principle, however, readily extends to all classes of
eAClIs, such as allogenic CAR T cells, CAR NK cells, CAR macrophages, and
TCR-engineered T cells, and can also be adapted to accommodate the
distinct features of non-eAClIs.

Engineered adoptive cellular immunotherapies

Current limitations for a broader application of engineered
adoptive cellular immunotherapies

In 2017, Tisagenlecleucel (Kymriah®) was approved by the FDA as a first-in-
class therapy, and in 2018 by the EMA, as a third-line treatment for acute
lymphoblastic leukemia (ALL), follicular lymphoma, and diffuse large B-cell
lymphoma (DLBCL). Since then, five additional products have entered the
market in the European Union (EU) and six in the United States. These
therapies target either Cluster of Differentiation 19 (CD19) in BCL and
B-cell precursor ALL, or B-cell maturation antigen (BCMA) in multiple
myeloma (MM).

Numerous studies aim to improve CAR T cell therapies (Box 1). Due to
the unprecedentedly high therapy response rates in heavily pre-treated patients
with hematological malignancies, efforts are underway to expand this therapy
to earlier lines of therapy and additional indications, including solid cancers
and beyond, particularly autoimmune and infectious diseases”. These
advances coincide with a substantial increase in the number of treatment-
eligible patients. Nevertheless, three main challenges already limit the avail-
ability of CAR immunotherapies: (i) the high cost of this treatment”, (ii)
limited manufacturing capacity’, and (iii) the need for optimal patient strati-
fication considering efficacy and safety'". It remains uncertain how sig-
nificantly treatment costs will actually decrease with manufacturing
automation, point-of-care production, or off-the-shelf allogenic cell products’,
especially given the complex reimbursement landscape. Nevertheless, over-
coming manufacturing limitations and standardizing production, along with
improving treatment success, will critically depend on the development of

individualized decision-support tools'*"*. Specifically, patient-specific pre-
dictive models can provide objective criteria for the optimal timing of eACI
therapy, helping to address critical manufacturing constraints through the
timely allocation of manufacturing resources.

Personalized medicine approaches for engineered adoptive
cellular immunotherapies

Current personalized medicine approaches for eACIs lack patient-specific
modeling approaches. Available predictive models that support clinicians to
assess individual risks and outcomes of CAR T cell patients are population-
based models, as they do not continuously update model parameters with each
patient’s individual data. For example, the CAR-HEMATOTOX Score enables
risk assessment for hematologic toxicity, severe infection, and disease pro-
gression following anti-CD19 CAR T cell therapy in refractory/relapsed large
B-cell lymphoma (R/R LBCL)"***,and also holds prognostic value for response
and toxicity in MM patients treated with BCMA-directed CAR T cells"”.
Additionally, the Endothelial Activation and Stress Index (EASIX) can be
applied to R/R LBCL patients receiving anti-CD19 CAR T cell therapy to
predict several CAR T-related toxicities”. In relapsed/refractory MM, the
Myeloma CAR T Relapse (MyCARe) model provides an outcome prediction
model for anti-BCMA CAR T cell therapy'®. As these models are trained and
validated for a population and lack periodic updates with individual patient
data, they do not qualify as VTs. Nevertheless, as autologous CAR T cell
therapies are patient-specific and biologically complex, an elaborate VT model
that represents an individual’s (patho)biology, the molecular and cellular
characteristics of the retrieved T cells, and the properties of the resulting CAR T
cell product would be a favorable solution for improving personalized treat-
ment planning.

Minimum design specification for virtual twins in
engineered adoptive cellular immunotherapies

Virtual twins for patients eligible for engineered adoptive
cellular immunotherapies

While the first DTs dedicated to CAR T cell manufacturing processes are
under development™, no VT currently encompasses decision-making
tasks across the entire patient journey. Tang et al. propose a five-level
roadmap for human body DTs”. However, from level three onward, the
design specifications only consider perturbations of the human system by
conventional drugs, making them too simplistic for eAClIs (Fig. 1). With the
increasing application of eAClIs, their fundamental differences from con-
ventional drugs, and the requirement that VTs should be deliberately

Box 1—Advances | in engineered adoptive cellular immunotherapies

CART cell therapy has shown unprecedented effects in hematological
malignancies with overall manageable side effects. Nonetheless, cases
of limited efficacy, severe toxicities, timely relapse, and therapy resis-
tance persist, which require further product development. Sparked by
their overall success, CAR-based therapies are also evaluated for other
indications. Clinical studies treating solid cancer'®'%, autoimmune
disease'®'®, and infectious disease'""'®® show encouraging results.
Here, similar but also indication-specific challenges are faced, necessi-
tating indication-individual adjustments of eACls. Major strategies to
advance CAR-based therapies include:

Improving CAR-design: The CAR-design can be modularly adapted
by adding or removing domains to improve the signaling after CAR
activation for the anticipated functionality'®. Furthermore, adjusting the
affinity of the CAR to its antigen can increase specificity and safety''°.
Universal CAR platforms allow for a swift adaptation of the CAR targeting
domain to varying target antigens'""'"2,

Adjustments on the immune cell level: Current approved CAR-
based therapies use autologous T cells. To increase the efficacy of these

products, there are approaches to select only those CAR T cell popula-
tions for re-infusion that show the best efficacy for the intended
purpose''*""°, Additionally to T cells, other immune cells are utilized,
predominantly natural killer (NK) cells'"® and macrophages'"’. To tackle
limitations of autologous products, there are pre-clinical and clinical
studies employing allogeneic immune effector cells from healthy
donors'™®.

Combinatorial approaches allow for recognizing two or more different
epitopes. Logical gating strategies with various degrees of complexity
increase specificity and safety, protect healthy cells, and /or avoid ther-
apy resistance''%"?'.

Progressing manufacturing: Alternatively to virus-based gene
delivery, non-viral strategies and transient CAR expression'?~'%° are
examined. Clinical trials with e.g., Sleeping Beauty transposon technol-
ogy have been conducted or are on their way'?’. Also, strategies for in vivo
transduction/transfection are explored'?*'?°. Automation, Al-assistance,
shorter manufacturing, and point-of-care production can improve the
manufacturing process®.
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interactions along various biological scales and tar-
geted cells. This warrants that approaches towards
virtual twins (VTs) for eACI-eligible patients com-
prise in silico models of multiple biological scales
reflecting (CAR) immune cells before and after
manufacturing, as well as models of the immune
system and targeted cells throughout therapy. The
underlying principle applies to all eACI classes and
not only to chimeric antigen receptor (CAR) T cell
therapies. The figure was created by the authors
using Canva.com.

Box 2—Data | models relevant for eACI-VTs

30,138 5 H H
For observational healthcare data as reported in electronic health records develc?ped - iy are e for‘ )
(EHRs), the Observational Medical Outcomes Partnership (OMOP) updating the computational models of an eACI-VT and thus uncertainty in
eACI-VT predictions. Approaching standards for harmonized single-cell

atlases'® is an essential resource for modeling single-cell biology in
eACI-VTs, exemplified by standardizing cell-type annotation through a
describing observations on organ, tissue, intercellular, and intracellular ~ centralized and community-driven platform of the Human Cell Atlas for
biological scales derived from an individual is challenging, but essential el annotations (h.ttps.//clelltype.lnfo/)_ The exchange of data recorq§
for credible €ACI-VTs. OMOP oncology'®>'®, genomic CDM'®, the ISO/ between systems is possible by using Fast Healthcare Interoperability

TS 20428:2024 data standard'®, complement the OMOP CDM to Resources (FHIR) implementation guides, which also account for patient-
and sample-individual specificities of genomic data and data

Common Data Model (CDM) enables large-scale population-based stu-
dies and patient-level predictions'®. While implementations exist for
eACI-VT-relevant observational data'"'*?, integration of data types

structured clinical genomic sequence data for describing genomic var- e ! . .
iants in EHRs. The Global Alliance for Genomics and Health (GA4GH) descriptions'. Integration of genomic data into EHRs allows access for
Phenopacket 2.0, approved as the ISO4454:2022 standard, enables eACI-VTs to data at different biological scales'“’. Software components
description and exchange of records for individual patients and bio- usedin federat.ed Iearnl'ng nﬁfworks R (2 9” privacy-preserving .
samples through different phenotypic features, including molecular federated learning solutions™' and on community standards for ensuring
data'® ¥, making it particularly interesting for patient-specific modelsin ~ model accessibility, reusability, interoperability, and reproducibility®'2.
6ACI-VTs. While these data models provide standards for clinical geno- The first implementation enabling federated learning for single-cell mul-
n A R 70
mics data’’, standards for single-cell multiomics data models needtobe ~ fiomics data was recently published".

designed for specific contexts of use, it is vital to establish the minimally  longitudinal high-level laboratory and clinical values, as is done for con-
required design specifications for eACI-VTs. Following the definition of VT ventional drugs, but also longitudinal data on multiscale processes in (CAR)

components™, we outline these specifications for eACIs. T cells and patient organs.

Therefore, we postulate three minimal required observation categories
Minimum data categories required in observations of the real- for an eACI-VT. First, longitudinal multiomics at the single-cell level are
world instance needed to measure intra- and intercellular processes influencing, for

The efficacy and toxicity of engineered T cells are influenced by factors  example, T cell activation, expansion, exhaustion, genotoxicity, on-target/
spanning multiple biological scales'*"”. To accurately model eACI- off-tumor binding, immunosuppressive environment, or imbalances in
introduced changes in patient biology, it is essential to collect not only ~(CAR) T cell clones™”. In this context, the rapid advancement and growing
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adoption of (single-cell) multiomics technologies are highly promising”*”.
Without such molecular and cellular data, eACI-VTs cannot infer decisions
related to (CAR) T cells and their target cells. Second, longitudinal obser-
vations along the organ and body scale, such as CAR T cell expansion and
persistence, response to treatment, comorbidities, and side effects, are
required. They can be assessed through laboratory data, electronic health

‘@‘ Mechanistic cell models

Sy
D pea ODE, PDE
@“"‘ Wearables S§x ?

Computational
structural biology

SL/ML/AI
Knowledge driven models

@ Systems biology models

Context of use
Interaction: cell
product - target cells

Interaction: cell
product - patient

Characterization:
cells in leukapheresis,
manufacturing, cell
product

Characterization:
patient

Tissue

records (EHRs), imaging technologies, and sensors. For example, flow
cytometry is routinely used to track CAR T cell numbers in peripheral blood,
while medical imaging is valuable for monitoring tumor volume during
CARTT cell therapy”, including extramedullary and minimal residual dis-
ease in MM”. Third, integration of patient-reported outcomes in combi-
nation with socio-economic factors like gender, income, education, and
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Fig. 2 | Minimal set of in silico model categories and their context of uses required
for the virtual representation of an eACI-VT. CAR T cells are complex, patient-
specific (autologous) or donor-specific (allogeneic) therapies. Therefore, it is ben-
eficial to model a patient’s unique (patho)biology alongside the molecular and cel-
lular characteristics of the retrieved T cells and the resulting CAR T cell product.
There are four levels of context of uses of an eACI-VT (outer layer): (i) characterizing
the patients’/donors’ status prior, the patients’ status during and after therapy, (ii)
characterizing the cells during leukapheresis, manufacturing, and in the final cell
product, (iii) characterizing the changes of the cell product due the interaction with
the patient, and (iv) characterizing the changes of the target cells due to interaction
with the CAR T cells. Therefore, the minimal set of in silico models required in an
eACI-VT encompass multiple biological scales (middle layer): models for the whole
body and for organs reflecting the system-wide status prior to treatment and the
impact of treatment, tissue scale, and intercellular scale models for CAR T cell
interaction with target cells and the target cells’ tissue during therapy, and cellular

scale models that represent intracellular signaling of T cells at time of leukapheresis,
(CAR) T cells during manufacturing, the CAR T cells in the medicinal cell product
and their target cells. Appropriate in silico model categories that can be used to
model events at the different biological scales include (inner layer) system biology
models, knowledge-driven models, mechanistic cell models, stochastic models,
statistical models (SL), machine learning (ML), and artificial intelligence (AI),
ordinary or partial differential equations (ODEs, PDEs), as well as computational
structural biology (3D protein structure and 3D/2D RNA structure models). These
in silico models receive data generated on different devices and from various systems
throughout patient care (central circle). In inpatient care, data from hospital
information systems like the electronic health record, as well as lab data and
molecular data, fuel the models. Outpatient care provides data via wearables, digital
health devices, and the Internet of Things (IoT). During manufacturing, data are
supplied via IoT and Cyber-Physical Systems (CPS). The figure was created by the
authors using Canva.com.

geographic location enhances eACI-VT simulations and validation, pre-
vents bias, and increases predictive accuracy. This results in better-informed
decisions and personalized treatment plans that reflect real-world diversity
and individual health complexities.

As VTs are patient-specific in silico models aiming to accurately
represent the patient under real-world conditions, they benefit from inte-
grating these data categories as real-world data (RWD). For this, interna-
tional standards for data models (Box 2) and data sharing across healthcare
and research, including genomic and single-cell multiomics data, must be
followed™”'. Importantly, clinical disease development is influenced not
only by biological mechanisms, but also by medical decisions (e.g., prior
lines of therapy, bridging therapy or follow-up treatment)’>*. Integrating
longitudinal data that reflects this complexity is crucial. International and
national patient registries for eACls-eligible individuals are valuable sources
of patient-specific RWD prior and during therapy. They allow the sys-
tematic connection of multiscale information, such as lab test results, patient
phenotype, treatment history, clinical decision, treatment efficacy and
safety, and (long-term) patient outcomes. Transparent access policies and
the ability to interact with one another are a prerequisite for seamless
integration of data from registries.

Minimum design specifications for patient-specific models of the
virtual representation

For a VT to support clinical decisions during eACI, it must provide patient-
specific model predictions or simulations for all treatment phases (Fig. 1).
This includes initial eligibility, leukapheresis, bridging therapy, CAR T cell
manufacturing, infusion, and long-term follow-up. Furthermore, the virtual
representation of an eACI-VT must combine in silico models across bio-
logical scales relevant to the specific context of use (Fig. 2). Below, we
highlight example models suitable for eACI-VTs.

Models for intracellular signaling in (CAR) T cells and their
target cells. Ma and Gurkan-Cavusoglu™ compare different computa-
tional methods to model intracellular signaling and provide guidance on
selecting the appropriate model for a specific task. Models of intracellular
signaling of (engineered) T cells typically rely on existing knowledge of
biochemical reaction mechanisms and are often built using continuous
and discrete approaches™ . Single-cell multiomics data supports the
inference of gene regulation networks™. Recently, the advancement of
large language models in natural language processing has led to their
application in genomics and single-cell studies. The first pre-trained
language models for intracellular biology are available. For instance,
scBERT” supports cell-type annotation, and scGPT" is the first foun-
dation model covering diverse tasks like cell-type annotation, multi-
batch/multiomic integration, perturbation response prediction, and gene
network inference. Modeling intracellular biomolecular networks in the
context of CAR T cell therapy supports simulation of subcellular pro-
cesses related to treatment responses by linking a patient’s genotype to

their phenotype. A favorable functional status of immune cells is crucial
for successful eACI response*’. Models of this kind could thereby help to
use the patient’s individual immune cell status and the status of individual
subcellular factors responsible for long-term remission*’. These simula-
tions could support predictions of manufacturing success” or therapeutic
response’™" (Fig. 2). Generative single-cell Al models are also emerging,
enabling the creation of patient-specific in silico cells** that may facilitate
modeling of immune cell status in in silico clinical trials. Lastly, cellular
modeling plays a growing role in DT technologies applications to
enhance CAR T cell manufacturing processes™.

Models forintercellular signaling of CART cells and their target cells.
Numerous models focus on cell-cell interactions without the details of
molecular interactions, investigating the conditions for optimal CAR T
treatment responses’****’. A more recent approach proposes using agent-
based models (ABMs) to describe cell-cell interactions within a virtual
environment via defined rules*. Each agent represents an individual cell,
moving and interacting with other cells according to specified rules. Since
the interaction of two cells may result in intercellular signaling events,
each agent may also contain a mechanistic model, resulting in a hybrid
modeling scheme” for which predictions can be made. Integration of
patient-specific bulk or single-cell data allows for individual
predictions™. Furthermore, deep learning models from the AlphaFold
family’' can predict 3D protein structure. An individual’s genomic
sequence data may be used to map genetically observed patient-specific
differences to antigensSz. In turn, these models can be used to predict
changes in tumor-associated antigen binding of therapeutics, including
the CAR antigen interaction. However, this modeling task remains an
area that still needs further improvement in the future™. Besides
protein-protein interaction models, cell-cell communication networks
inferred from patient-derived single-cell multiomics™>, spatially
resolved, if available, also inform intercellular signaling models.

In CAR T cell therapy, intercellular models simulate the dynamics of
the interactions between tumor and CAR T cells”” or on-target/off-tumor
binding effects™, allowing predictions of treatment responses or adverse
effects. Deep learning models for protein structure prediction can help
identify treatment failures due to individual differences in antigens™. In the
future, cell-specific DTs combined with a multicellular VT parameterized
with data from in vitro or in vivo experiments may support model-informed
drug development by simulating treatment success for different CAR T cell
designs alongside well-defined experiments. A first variant of this concept
systematically explores the multidimensional CAR T cell engineering design
space, allowing only the most promising CAR T cell designs to be tested
in vitro or in vivo, which reduces the number of experiments conducted and
makes the process more cost-effective and ethically favorable™.

Models for CAR T cell therapy beyond the intra- and
intercellular scale. CAR T cell therapy, as a treatment with living cells,
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Fig. 3 | Dynamic and bidirectional interaction between real-world paths through
autologous eACI therapy and their virtual representation to generate a

virtual twin. A VT differs from population-based models by the bidirectional flow of
data between the real-world instance and its virtual representation. Data from the
observations of the real-world instance (upper panel) must be collected, processed,
and prepared to update the parameters of the virtual representation. This comprises
data from the path of the patient, the path of the product, as well as their interaction
upon treatment. As different factors on multiple biological scales (patients’ and the
cell products’ scales) influence patient trajectory, a virtual representation of

cell models

ODEs / PDEs

driven models models all models

interconnected models spanning the whole process of eACI is required (lower
panel). This leads to a high need for digitalization and ensuring interoperability. In
the virtual representation, parameters dynamically derived from harmonized real-
world data covering multiple biological scales are fed into a carefully curated set of
models. The updated virtual representation can thus in turn derive decisions with an
impact in the real world. Al artificial intelligence, eACI engineered adoptive cellular
immunotherapy, ML machine learning, ODEs ordinary differential equations, PDEs
partial differential equations, SL statistical learning. The figure was created by the
authors using Canva.com.

affects not only the target cells but also the target’s tissues, organs, and
ultimately impacts the whole body'*"”. For example, cytokine release
syndrome, although manageable, is a serious side effect of CAR T cell
treatment that leads to systemic inflammation. As such, an ACI-VT must
comprise models that go beyond the intra- and intercellular scales.
Knowledge-driven modeling methods, such as systems biology maps of
immune-related adverse outcome pathways, help assess toxicity
profiles”*. As CAR T cells interact with the patients’ immune sys-
tem, integrating a DT of the human immune system is valuable.
Community-driven efforts that build immune system DTs for dif-
ferent human pathologies™*’ must therefore be integral to eACI-VTs
development. Whole-body models are typically built using multi-
modal artificial intelligence/machine learning (AI/ML) and are data-
driven®. Ferle et al. proposed a patient-specific model combining a
long short-term memory network with a conditional restricted
Boltzmann machine to predict individual blood values over patient
trajectories’’. Maura et al. recently published the first multi-state
model for MM that combines genomic and clinical data for indivi-
dualized prognosis®.

Applications of whole-body eACI-VTs include clinical decision-
support software that combines guideline-based reasoning with probabil-
istic assessments of therapy-associated success factors based on real-world
evidence®. These tools can guide optimal treatment sequences for patients.
Additional applications include monitoring during critical and acute
medical care shortly after CAR T cell therapy™. At later time points, remote
monitoring of patients by combining VTs with wearables”’ could improve
outpatient care. First applications detect late cytokine release syndrome® or
predict patient-individual blood values®'. Furthermore, eACI-VTs may also
serve as educational platforms for clinicians and nurses, offering realistic
and safe environments for learning about CAR T cell eligibility and patient
care, as modeled in the digital pathology field*”.

Towards credible virtual twins in engineered adoptive cellular
immunotherapies

A VT collects data from observations of its real-world counterpart and
processes the data to update the parameters of the virtual representation,
which in turn derives decision support for a specific context of use in the
real-world (Fig. 3). However, bidirectional interchange is subject to uncer-
tainties in both directions, impacting the credibility, i.e., the trust in “the
predictive capability”®®, of a VT. Below, we discuss the main hurdles that
likely lead to low eACI-VT credibility and must be addressed during eACI-
VT implementation to quantify and control uncertainty arising from model
design choices, imprecise parameter fitting, missing information, or biolo-
gical variance.

First, VT parameters derived from a patient population must build on a
representative number of high-quality data entries stemming from the real-
world instances. Challenges for eACI-VTs lie in the different data types
required to parameterize the virtual representation. These range from
electronic health records (EHRs) for patient-level data, patient-reported
outcomes, and clinical lab test data—including clinical genomic data—to
data derived from single-cell multiomics. While methods exist for inte-
grating clinical genomic data into EHRs, thereby enabling eACI-VTs to
seamlessly access data from different biological scales, such approaches have
yet to be developed for single-cell multiomics data (Box 2). The systematic
collection of data can be addressed by utilizing a decentralized, cloud-based
federated learning network, allowing to incorporate datasets from multiple
sources while maintaining controlled access to patient data. Initial solutions
for integrating clinically derived single-cell multiomics data into a federated
learning network have been developed”’. Organizations participating in
such cloud-based platforms should adhere to common data models to allow
seamless data integration”' (Box 2).

Second, trust in model predictions diminishes when the uncertainty in
the observations used for model training/parametrization is high. Single-cell
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Box 3—Technical | requirements for eACI-VTs

A challenge of integrating data into the eACI-VT is that different decision
tasks require updates to the virtual representation at different fre-
quencies. While more extended update frequencies are appropriate for
data flow concerning most eACI-VT decisions, some decisions demand
more frequent updates. E.g., the occurrence of cytokine release syn-
drome, a side effect often observed for eACls, requires instant integration
of vital signs. Similarly, decisions during CAR T cell manufacturing require
real-time updates of model parameters. Therefore, an eACI-VT must
support a technical infrastructure to update model parameters at varying
frequencies, ranging from seconds to days and weeks, to ensure efficient
model building as well as verification, validation, and uncertainty quan-
tification. A dedicated fine-tuned technical infrastructure builds the basis
for integrating model parameters at different biological scales during
eACl treatment paths (Figs. 2 and 4). Evolving technologies like smart
manufacturing hospitals', Internet of Things (loT) for healthcare
applications'*, and cyber-physical systems (CPS)'** may define the

multiomics data is pivotal for informing (multi-)cellular in silico models™”,

but using (single-cell) multiomics-derived observations poses a funda-
mental challenge in model training. Multiomics data is multimodal, often
sparse, noisy, and expensive to generate, thus only available in a small
number of biological replicates, and has a large signal-to-noise ratio”.
Moreover, tracking changes of the molecular state of the same cell over time
or spatially resolved is only now becoming feasible’*”. Therefore, datasets
are often unpaired in terms of cell organization and time scale. Observations
from “similar” cells need to be integrated to obtain a comprehensive view of
a class of comparable cells. This uncertainty in defining a cell’s true ground
state presents a significant challenge for data derived in silico models for
individual cells or cell-cell interactions. This can be addressed by tailored
solutions accounting for the uncertainty in single-cell clustering
approaches’, expression quantification”””*, or cell-type annotation’. The
problem of missing data can be managed through imputation methods
using transfer learning with external reference data™”, underpinning the
need for external single-cell reference atlases of engineered immune cells.
Additionally, variance in the dimension of the patients’ socio-cultural,
economic, and ethical background, as well as sex and gender, influence data
quality on all biological scales and should be documented in bioinformatic
analyses.

Third, for cell models that are built on general biochemical rules, the
causality of input-output relationships is at least approximately understood.
In such cases, a mechanistic cell model can be considered trustworthy if
intermediate steps and outputs can be inferred from a given input with a
reasonably small error margin, e.g., not greater than negligible biological
noise or measurement error. Parameter calibration and validation for
mechanistic models can be supported by patient-specific in vitro models like
patient-derived xenograft (PDX) models, allowing high-throughput
analyses”**"'. In cases where patient-specific data is sparse, parameter
ranges could be defined and iteratively refined by repeated observations of
the readout parameters of PDX models under different conditions. How-
ever, the impact on uncertainty quantification of such a nested approach is
unknown and must be addressed.

Fourth, given that different factors on multiple biological scales
influence the trajectory of patients eligible for CAR T cell therapy, a
single model DT is insufficient. Instead, interconnected models are
needed to span the whole process in eACIs (Fig. 3), including inte-
gration with DTs for the manufacturing process™”'. Interactions
between models must be thoroughly investigated and validated.
Consequently, interoperability across all four levels—technical, syn-
tactic, semantic, and organizational—is essential®* but is often not
seamlessly addressed by model developers®™.

technical infrastructure for eACI-VT software components during eACI
manufacturing. Inpatient care for patients treated with eACls takes
advantage of an infrastructure relying on digital health applications in
EHRs and devices that capture (genomic) lab test data, including single-
cell multiomics. Outpatient care after eACI treatment may build on smart
devices like wearables and medical mobile health apps that can be
connected with the EHR via loT solutions. For example, there are first
wearable sensors that detect cytokine release syndrome, remotely'*.

Designing a VT that accounts for minute details ultimately leads to
higher fidelity when simulating the real-world scenario®. Nevertheless,
this simultaneously increases requirements on data storage and com-
putational power to update, verify, and validate the model as well as to
estimate uncertainty. Therefore, international computational infra-
structures, like the one defined by the European Virtual Human Twin
Initiative'®, are paramount.

Fifth, biomarkers at multiple biological scales represented in the eACI-
VT are an essential component for driving meaningful decision-making. In
the case of new and innovative therapies like eAClIs, validated biomarkers
predicting patient outcome remain scarce. Also, due to the complex inter-
action between drug and host determining outcome on a single patient level,
likely composite biomarker signatures allow a more trustworthy
prediction®. Sensibly, biomarker development can be implemented and
advanced in the process of building a VT. Structurally gathering multimodal
data across various biological scales from many patients to train and validate
the VT enables simultaneously identifying and confirming biomarker sig-
natures from available multiomics data. These biomarkers can then, in turn,
be applied in the VT to drive transparent decision-making.

Lastly, AI/ML models need to consider the temporal development of
diseases over months and years, which is in contrast to the millisecond-scale
of intercellular signaling. Integrating data-driven AI/ML models operating
on clinical data with mechanistic models of intracellular signaling and
cell-cell interactions remains an open challenge. Potentially, it is possible to
extract features of ABM-based simulations, which could be employed as
part of the data to train AI/ML models. Solutions to this challenge place high
demands on hardware, data storage, and IT infrastructure for emerging
digital healthcare technologies (Box 3).

The development of software as medical devices is a detailed process
that, if stringently followed, can address some of the above-mentioned
uncertainties”. Following the life cycle for medical software (IEC 62304),
developers can begin with a comprehensive analysis of the technical,
medical, ethical, legal, and societal requirements, which can then be refined
throughout the development cycles. An incremental, iterative development
process allows for the early release of a first prototype that can be tested in
selected, relevant environments, enabling co-creation with stakeholders.
This approach sets the basis for successfully translating an eACI-VT into a
practical and impactful tool for use in both clinical and nonclinical settings.
However, challenges that emerge in a hospital setting and with a larger
patient population compared to academia, where the eACI-VT was devel-
oped, must be addressed during the co-creational process. This includes
adhering to legal requirements and ethical considerations with regard to
processing sensitive personal data and using AI (Boxes 4 and 5).

How virtual twins improve patient management prior
and during treatment with engineered adoptive cellular
immunotherapies

EACI-VTs are powerful tools designed to model the complex and unique
interactions between administered cells and the patient. They support and
educate clinicians and patients throughout the decision-making process,
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Box 4—Regulations | crucial for eACI-VTs

EACI-VTs operate within an international data protection framework (e.g.,
European Convention on Human Rights, Convention for the Protection of
Individuals regarding the automatic processing of personal data, EU
Charter of Fundamental Rights). The General Data Protection Regulation
(GDPR) and the European Data Protection Board (EDPB) provide robust
structures for safeguarding data privacy and security for utilizing VTs for
scientific and medical purposes. Sensitive data, like genetic data,
receives increased protection by the GDPR, requiring minimization and
security measures, e.g., pseudonymization. Achieving anonymized data
as defined by the GDPR is challenging in healthcare, especially for
genetic data, as the risk of re-identification is significant'*"'“¢, For mul-
tiomics data integration, a broad patient-explicit informed consent must,
in principle, be used'*. However, the GDPR allows processing of sen-
sitive personal data for scientific research without consent if based on EU
or Member State law and if subject to appropriate safeguards. When
processing personal data transnationally, compliance challenges arise
due to varying national laws and conditions. Effective communication

between national legal experts assists stakeholders in developing an
appropriate compliance strategy.

In silico models used in virtual representations of VTs must follow
recommendations for design, development, and usage of computational
models in personalized medicine'®. Additionally, recent EU instruments
such as the Al Act shape the landscape for the application of VTs. While
compliance with these regulations is obligatory, adhering to explainable
and trustworthy models can also build trust in using VTs for scientific and
medical purposes.

Al/ML methods are adaptive, making their use as software/in medical
devices (SaMD/SiMD) particularly challenging. The FDA recommends
using change management processes that can be reviewed to receive
approval on the entire product life cycle''. Regulatory sandboxes intro-
duced by the EU monitor approval of Al/ML systems under controlled
conditions'*?. Hybrid models should logically adhere to standards for Al/
ML-driven and mechanistic models.

Box 5—Ethical | and societal implications of eACI-VTs

Using VTs to assist clinicians and patients in treatment decision-making
offers a chance for developing personalized and highly individual treat-
ment strategies. However, a widespread use of VTs as treatment
decision-support tools comes with distinct ethical and societal risks that
need to be considered. In part, these risks can be addressed by adhering
to ethical and legal requirements for eACI-VTs, e.g., regarding security
and protection of the patients’ data or trustworthiness and transparency
of dynamic Al-based SaMD/SiMD, as described in Box 4. Other potential
ethical and societal implications of regular VT use need to be addressed
at different levels. Systems like eACI-VTs are prone to bias, presenting a
risk to groups that were under- or unrepresented in the training and
validation cohorts. Here, thoughtfully curated and diverse datasets for
the various relevant biological and socio-economic features of real-world
patients in the setup of the VT are the basis for avoiding bias, improving

ultimately improving patient outcome and well-being over the entire CAR T
cell therapy life cycle (use case of CAR T cell treatment of MM patients: Fig.
4). Of particular importance is the ability of eACI-VTs to integrate patient-
specific longitudinal, real-world multimodal data on multiple biological
scales. For instance, CD4+ CAR T cells can persist for years, keeping the
patient in remission and potentially offering life-long therapeutic benefit".
EACI-VTs can anticipate and support future developments in the rapidly
evolving field of eAClIs, while accounting for time-dependent and dynamic
variance in clinical care and diverse patient populations. EACI-VTs enhance
knowledge about the mode and mechanism of action underlying these novel
treatment options, also supporting the identification of biomarkers, espe-
cially those specific to eACI biology®, and enhancing post-authorization
monitoring. In the development phase, eACI-VTs can simulate treatment
response prior to first-in-human studies or aid in clinical trial planning, for
example, by sampling synthetic patient populations”. Additionally, cases of
off-label use and application of out-of-specification CAR T cell products can
sensibly be monitored over longer periods of time. This is particularly
relevant given recent reports on secondary T cell malignancies following
CAR T cell therapy®”. Currently, these cases are investigated by the FDA
and the EMA for a possible link between the malignant transformation to
insertion site mutagenesis during CAR T cell manufacturing. The FDA

trustworthy decision-making of the eACI-VT. This can be reached by
ensuring co-creation of the eACI-VT with all relevant stakeholders (clin-
icians, resident doctors, and patients of diverse backgrounds (sex,
gender-diversity, etc.)). Furthermore, with the widespread use of VTs in
healthcare supporting decision-making, there is a risk of becoming
dependent on these Al-based systems rather than seeing them as only a
part of a multifactorial process. This could possibly lead to being unable
to choose a beneficial therapy without Al, and also raises issues of the
liability of treatment choice, putting patients at risk of impaired care.
Awareness and training of medical personnel on the chances and risks
connected with Al, enabling them to also educate the patients, are crucial
fortaking VTs as what they are: one tool in a complex toolbox that leads to
treatment decision-making in the best interest of the patient.

recommends life-long monitoring of treated patients™. Considering the
high costs associated with eACI therapies, which currently limit access, the
use of eACI-VTs for accurate patient stratification could have a significant
impact on healthcare systems. Applications include cost-effectiveness
analysis, which supports performance-based reimbursement models and
strategies to reduce long-term costs of eACI treatment, ultimately achieving
a more widespread use of this innovative therapy. Overall, VTs”, including
eACI-VTs, are emerging as a key concept for advancing personalized, risk-
adapted decision support in next-generation immunotherapy.

How virtual twins improve model-informed drug
development for engineered adoptive cellular
immunotherapies

In addition to supporting clinical decision-making for treating patients,
eACI-VTs used in model-informed drug development offer the potential to
make eACI development and clinical trials more cost-effective and ethically
responsible””. Clinical trials for regulatory approval of eAClIs are typically
lengthy”. One challenge lies in clinical trial design and recruitment, as access
to eAClIs is limited, often resulting in underrepresentation of patient
diversity in clinical trials compared to post-approval product phases. In
silico (clinical) trials could expedite eACIs’ availability by improving
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Fig. 4| An eACI-VT supports decision-making throughout the path of a multiple
myeloma patient eligible for CAR T cell therapy. Throughout the journey of a

multiple myeloma patient who is eligible for treatment with CAR T cells, an eACI-
VT can support the decisions regarding optimal patient care for each step along the
journey. This is facilitated by the frequent update of the eACI-VT with the relevant
data on the patient, the product, and their interaction. These data are collected with
various devices and systems in the monitoring periods of the patient journey. CAR
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predictive accuracy of trials, reducing required sample size, and helping to
predict the risk of side effects. These trials rely on synthetic patient popu-
lations simulated using computational models parametrized with retro-
spective RWD. A VT parametrized with RWD can serve as a prior to
strengthen the control arm of a clinical trial”*”. Patient-specific pharma-
cokinetic/pharmacodynamic (PK/PD) models reveal dose-exposure-
relationships™. Ordinary equations can simulate the dynamics of the
interactions between tumor and CAR T cells”’, helping to the reduction of
trial sample sizes”. Mechanistic models may be used to refine trial designs
by avoiding the inclusion of individuals at risk for side effects or by testing
efficacy in patient subgroups with characteristics that are not available in the
clinical trial population”””. Initial approaches that help to reduce the risk of
side effects in first-in-human studies of eACIs combine disease maps,
immune-related adverse outcome pathways, and advanced nonclinical
in vitro models®***”. Furthermore, generative Al approaches are expected to
play a pivotal role in in silico clinical trials'*’, including models on multiple
biological scales. An eACI-VT utilizing generative models can simulate
potential clinically relevant outcomes in a study population, hence pro-
viding insights about eACI efficacy and safety'”'. Generative AI models for
biological cells allow the generation of patient-individual in silico cells***,
which is an essential biological scale for eACI-VTs to model, for example,
immune-response upon ACI treatment. Before integrating eACI-VTs into
clinical trial workflows, the credibility of each individual in silico model
must be rigorously validated. Only after establishing confidence in indivi-
dual components can the credibility of the overall VT be adequately
demonstrated'”.

Conclusion and outlook
VTs in healthcare aim to guide biomedical researchers and clinicians in
optimizing therapies and treatment regimens tailored to individual patients.

Additionally, they empower patients to better understand their unique
disease trajectories.

EACIs are “living drugs” comprising individual cells that have complex
and dynamic interactions with the host over time, which fundamentally
distinguishes them from conventional drugs. Although currently described
VT frameworks in healthcare incorporate multimodal data on all relevant
biological scales to create single-organ DTs or complex whole-body VTs,
they all lack the integration of virtual representations that model the drug
and its interaction with target cells that evolve over the course of treatment,
spanning decades. Here, we outline the minimum design specifications
necessary to adapt VTs for use with “living drugs,” such as CAR T cell
therapy. With these minimum specifications, we are pioneering the estab-
lishment of a foundational framework for developing eACI-VTs that can
accurately simulate the individual pathophysiology of patients eligible for or
undergoing eACIL As this complex and potentially revolutionary therapy
option expands into earlier lines of therapy and other indications, possibly
impacting a broader patient population, we envision a parallel development
of eACI-VTs as a tool to support the implementation of true precision
health.
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