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Heart rate (HR) estimation is crucial for early cardiovascular diagnosis, continuous monitoring, and
various health applications. While electrocardiography (ECG) remains the gold standard, its
discomfort and impracticality for continuous use have spurred the development of non-contact
methods like remote photoplethysmography (rPPG). This systematic review (PROSPERO: CRD
42024592157) examines 70 studies to assess the impact of Region of Interest (ROI) selection on HR
estimation accuracy. Most methods (36.8%) use the holistic face, while forehead and cheek areas
(24.5% and 21.7%) show superior accuracy. Machine learning-based approaches outperform
traditional methods under motion artifacts and poor lighting, achieving Mean Absolute Error and Root
Mean Square Error below 1.0 for some datasets. Combining multiple patches improves performance,
though increasing ROIs beyond 60 patches results in diminishing returns and higher computational
complexity. These findings highlight the significance of ROI optimization for robust rPPG-based HR

estimation.

Heart rate (HR) and blood pressure (BP) estimation are essential for early
detection of cardiovascular diseases, continuous health monitoring, emo-
tion detection, and assessing other vital parameters. Although electro-
cardiography (ECG) is the gold standard for HR detection due to its high
accuracy, it has notable drawbacks, including high equipment costs, user
discomfort, and challenges with continuous, everyday monitoring. To
address these limitations, photoplethysmography (PPG) was developed,
which accurately measures HR by detecting light reflected from a wearable
device, such as an oximeter. Traditional PPG still relies on contact-based
devices, such as finger sensors and wearables, which, while effective in
controlled environments, present significant limitations in real-world
applications. These devices can cause discomfort during prolonged use and
may fail in scenarios involving delicate or compromised skin conditions,
such as burns, eczema, or post-surgical recovery. Furthermore, populations
such as neonates, elderly patients, and individuals in intensive care units
often face additional risks or challenges with contact-based monitoring. In
neonates, especially those in intensive care, traditional contact-based heart
rate monitoring can be problematic due to their delicate skin and the risk of
injury. Studies have explored alternative methods, such as forehead mon-
itoring of heart rate in neonatal intensive care, to address these challengesl.
In these contexts, remote photoplethysmography (rPPG) offers a

transformative solution, enabling non-invasive and continuous heart rate
monitoring using standard cameras, which could significantly enhance
healthcare delivery in both clinical and at-home settings.

The rPPG was introduced to overcome these challenges. Unlike tra-
ditional PPG, rPPG estimates HR using standard RGB cameras by detecting
subtle light changes on a subject’s face, eliminating the need for direct
physical contact, however bringing comparable results’. The most effective
regions for capturing these skin color changes are areas with lower skin
density, such as the cheeks and forehead™. Despite its advantages, rPPG
faces several challenges, including sensitivity to varying lighting conditions,
movement artifacts, false face detection, and obstructions caused by masks,
hair, or clothing. To filter noisy signals, a Signal Quality Index (SQI) was
introduced, with a threshold value Ngqr < 0.293°. Achieving optimal accu-
racy in rPPG also requires maintaining a stable position, an appropriate
distance from the camera, and minimizing motion.

Early traditional rPPG methods, such as Principal Component Ana-
lysis (PCA)°, Independent Component Analysis (ICA)’, the chrominance-
based CHROM® method, the GREEN channel’ approach, and the Plane-
Orthogonal-to-Skin (POS)"” algorithm, focused primarily on noise reduc-
tion. These methods typically began by detecting the face and defining a
Region of Interest (ROI) based on empirical knowledge, followed by
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Fig. 1 | Flow diagram of rPPG estimation steps. a Face Detection algorithms with
Color Channel Enhancement and Photometric Normalization (Illumination
Equalization, Color Normalization)—the light-blue area with a dashed border;
followed by ROI Selection methods and Pre-Processing (Bandpass Filter, Baseline
Correction, Signal Filtering Gaussian/Median) for (b) rPPG Signal detection and

filtering—the light-purple area with a dashed border. Next, (c) HR detection—the
light-yellow area with a dashed border. Either using ML-based methods(Option 1:
the light-red area with a dashed border) with labeled data to estimate HR, or using
traditional methods (Option 2: the light-brown area with dashed border) without
training data for HR prediction, e.g., via PSD or FFT.

extracting pulse signals from the RGB channels within the ROIs. HR was
then derived from the signals using techniques like Discrete Fourier
Transform (DFT) and peak detection.

With the rise of machine learning (ML), new approaches' have
emerged that utilize neural network models, particularly convolutional
neural networks (CNNs), to extract spatiotemporal features from facial
videos. Examples include Dual-Gan"?, TranPulse'’, and MAR-rPPG'. These
methods aim to develop robust end-to-end network structures capable of
accurately estimating physiological parameters under real-world conditions
by enhancing temporal correlations and minimizing redundant informa-
tion. Unlike traditional approaches, which rely on handcrafted features
derived from skin texture, rPPG signals, and manually defined ROIs, ML
methods improve HR estimation quality and significantly reduce reliance on
clean input data. On the other hand, ML-based methods require labeled data
for training and are more computationally difficult, when the traditional
methods could be efficient and low-complexity". Apart from HR and BP'®
an estimation of HRV (Heart Rate Variability), SpO2 (Blood Oxygen
Saturation) and anxiety detection'” are possible. In this paper, we conduct a
systematic review of 70 studies from the past decade, assessing different
algorithms for HR estimation. We examine 20 commonly used datasets and
evaluate the impact of ROI selection on HR estimation through rPPG.

Figures 1 and 2 provide a synthesized flow diagram of the typical
remote photoplethysmography processing pipeline, based on our literature

review. This chart presents a high-level overview of commonly employed
rPPG-based physiological monitoring stages. While this is a generalized
representation that may not capture every method in its entirety, it high-
lights critical steps within the rPPG pipeline. The flow diagram emphasizes
the importance of ROI segmentation, a critical step in rPPG, as it sig-
nificantly impacts the quality and reliability of the extracted signal. ROIs
typically include facial areas with high blood perfusion, such as the forehead
and cheeks regions, to provide more stable rPPG signals. Common tech-
niques such as superpixel segmentation, skin segmentation, and triangu-
lation help isolate relevant skin areas and enhance spatial smoothness
during data processing.

After ROI segmentation, the flow chart illustrates several pre-
processing steps commonly used to enhance signal quality, including
color channel selection, photometric normalization, and signal filtering.
These steps help mitigate noise from environmental factors (e.g., lighting
changes) and movement artifacts. The flow diagram also differentiates
between traditional methods (e.g., CHROM, ICA, PCA, GREEN) and ML-
based approaches, providing a snapshot of the variety of available techni-
ques for physiological signal extraction.

Traditional methods, such as Principal Component Analysis (PCA),
Independent Component Analysis (ICA), and Fast Fourier Transform
(FFT), rely on predefined algorithms and handcrafted features, making them
computationally efficient and cost-effective for consumer devices. However,
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Fig. 2 | Example of ROI Generation algorithms. a Using whole (holistic) face,
separate facial patches (regions), and superpixel techniques (segmentation of the
image into smaller, meaningful regions based on pixel similarity). Later, (b) single,
multiple or set of combinations of sub-ROIs can be used.
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these methods often struggle with noise and variability in real-world con-
ditions. ML-based methods, such as convolutional neural networks (CNNs),
automatically learn complex spatiotemporal patterns from data, excelling in
challenging scenarios involving motion artifacts or varying lighting. Despite
their accuracy, ML approaches are computationally intensive, requiring
substantial resources for training and deployment, which may increase costs
for healthcare systems and limit their scalability in consumer-grade devices.
Hybrid approaches that blend the efficiency of traditional methods with
ML’s adaptability could offer a promising middle ground.

Furthermore, contact-based PPG devices, while effective in controlled
settings, often show reduced performance across diverse skin tones due to
varying melanin levels that affect light absorption and reflection. Addi-
tionally, conditions that induce peripheral vasoconstriction, such as hypo-
thermia or cardiovascular diseases, can impair signal quality by reducing
blood flow in extremities'*. In contrast, remote PPG (rPPG) leverages facial
regions with relatively stable blood perfusion, such as the forehead and
cheeks, making it less affected by these limitations and better suited for
diverse populations and clinical conditions.

Overall, this flow diagram does not represent a comprehensive, step-
by-step process but rather serves as a conceptual overview of the rPPG
processing pipeline, with an emphasis on ROI selection, pre-processing
techniques, and physiological parameter estimation.

Results

Publications

This literature review identified a total of 70 studies evaluating various
algorithms for heart rate estimation using remote photoplethysmography
(rPPQG), as illustrated in Fig. 3. The search yielded 39 articles from PubMed,
80 from IEEE Xplore, and 14 from Embase. After an initial screening, 11
duplicate studies and 3 articles that were inaccessible or incompatible were
excluded. Of the remaining articles, 49 were deemed ineligible: 32 did not
focus on HR or BP detection, 8 utilized additional technologies such as
infrared or near-infrared (NIR) imaging or employed contact-based devices,
5 were theoretical papers, and 4 did not primarily collect data from facial
regions. This selection process identified a notable trend: an increasing focus
on ROI selection, with studies reporting optimal results for algorithms that
incorporate multiple ROIs.

A notable trend observed in these studies is the increasing focus on ROI
selection, with studies reporting optimal results for algorithms that incor-
porate multiple ROIs" as shown in Fig. 4 with a total of 33 values for MAE
and 29 values for RMSE. Table 1 highlights key variables influencing ROI

performance, such as the predominance of participants with lighter skin
tones and the geographic concentration of datasets. This lack of diversity
underscores the need for future studies to incorporate participants with
varied ethnicities and skin tones, particularly from underrepresented
regions, to better generalize ROI-based HR estimation techniques. Another
key observation is the shift towards machine learning (ML) techniques in
HR estimation algorithms. ML-based approaches have shown enhanced
accuracy, especially for challenging cases involving motion, using publicly
available datasets. Recent top-performing methods'****' commonly employ
combinations of multiple facial ROIs, in contrast to earlier studies, which
predominantly relied on single-region analysis.

Characteristics of participants in datasets

Most of the reviewed studies utilize publicly available datasets, with 20
studies™' relying exclusively on in-house datasets for testing, and
8 studies”™ combining both public and in-house datasets. Two studies™"
do not specify details about the testing subjects. The datasets predominantly
feature healthy male and female participants, typically aged 18 to 60. Most
videos in these datasets are 5 minutes or shorter, though the BIDMC dataset™
includes videos up to 8 minutes. Video resolutions range from 1920 x 1080 to
640 x 480 pixels, and filming conditions vary widely in terms of subject
movement, head rotations, physical activities, and lighting conditions.

The most frequently used datasets are UBFC-rPPG”, PURE”,
COHFACE?, VIPL-HR*, and MAHNOB-HCI”, with 27, 24, 13, 11,and 6
mentions, respectively. UBFC-rPPG demonstrates relatively low error rates
due to its steady setup, with controlled indoor illumination and variable
sunlight exposure, as subjects engage in a quiz. The PURE dataset incor-
porates six different scenarios: steady, talking, slow translation, fast trans-
lation, slow rotation, and medium rotation. VIPL-HR generally reports
higher error rates, likely due to its nine distinct conditions that include
various head movements and lighting conditions, making it a valuable
benchmark for assessing algorithm stability. It is important to note that most
datasets, whether publicly available or in-house, contain a larger proportion
of male subjects compared to female subjects. This gender imbalance may
introduce biases and reduce accuracy in real-world applications.

Types of camera devices and reference systems

All dataset videos are recorded using standard RGB cameras (non-IR/NIR),
with ground-truth HR measurements provided by finger pulse oximeters or
wrist-worn devices. Table 1 includes detailed information on the specific
filming settings and reference devices used across studies. It highlights cri-
tical variables relevant to ROI selection, including skin color, ethnicity, and
geographic distribution of participants. Notably, most datasets either lack
explicit reporting of participants’ skin tones or primarily include lighter-
skinned individuals. This limitation can bias the effectiveness of ROI-based
HR estimation, as skin color significantly impacts light absorption and
reflection, which are critical for rPPG signal quality. Expanding datasets to
include participants from diverse ethnic backgrounds and geographic
locations is essential to better understand how ROI performance varies
across skin tones, lighting conditions, and cultural contexts. Such efforts
would ensure the development of rPPG technologies that are robust and
equitable across global populations.

ROIs used for HR estimation

Multiple studies emphasize the critical role of Region of Interest (ROI)
selection in the accuracy of heart rate (HR) estimation, noting that inap-
propriate ROI choices can introduce significant errors. Kwon et al.” divided
the face into seven regions to evaluate each for signal quality, while Poh
et al.” recommended an ROI that spans 60% of the full face’s width and its
entire height. Later, Zhao et al.*’ focused on an ROI below the eye line,
covering skin areas around the nose, mouth, and cheeks.

According to Dae-Yeol Kim et al.’, facial areas with larger surface areas
and thinner skin, such as the cheeks and forehead, tend to yield more reliable
results and are less affected by light reflections. In contrast, the nose area is
considered less reliable for capturing skin color changes. Kim et al. proposed
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Fig. 3 | Search workflow with the identification, screening, eligibility, and inclusion phases in the review according to PRISMA guidelines. Out of 133 initially identified

papers, 70 were finally included in the systematic literature review.

five specific facial regions (TOP-5) characterized by lower variability and
noise, with an average skin thickness of 1191.11 ym and a pixel count of
2431. Detailed information regarding ROIs, their size, skin thickness and
visual representation is shown in Table 2. According to Kim et al.*, using
those facial patches improves the MAE on the UBFC dataset for POS and
CHROM methods from 1,87 to 1,85 and from 2.67 to 1.5 accordingly.
Similarly, MAE for PPGI dataset is improved from 4.04 to 3.61 for POS and
from 4.04 to 2.93 for CHROM methods.

Similarly, Li et al.” analyzed 28 facial regions defined anatomically and
identified the most effective ROIs: the glabella, medial forehead, left and
right lateral forehead, left and right malar regions, and upper nasal dorsum.
Among these, the glabella demonstrated the best overall performance across
both motion and cognitive datasets.

Furthermore, due to the symmetry of cheek areas, it might be more
robust to the noise and can enable dynamic substitution of ROIs if some part
of the face is obscured due to the head rotation®. Furthermore, the forehead

and cheeks have a larger flat area, which has a positive impact on the Signal-
to-noise ratio (SNR). Apart from that, there could be benefits of using those
areas, as they are mostly free of facial hair, accessories and facial expression
change.

In real-world applications, certain facial regions may be obscured by
facial hair, accessories, shadows, or masks, necessitating more precise ROI
selection techniques. Some studies’”**** have adopted superpixel segmen-
tation to isolate facial ROIs, excluding non-skin regions such as the mouth
and eyes. This technique allows for the segmentation of skin areas with
irregular shapes, unlike block-based segmentation. As shown in Fig. 5, the
forehead and cheeks are the most frequently selected regions, used 26 and 23
times, respectively. The nose and chin appear less frequently, in 7 and 5
articles, respectively. However, a majority of studies (39) utilize the entire
holistic face. Yaran Duan et al.” introduced a self-adaptive ROI pre-tracking
and signal selection method to mitigate motion artifacts using 18 facial
patches. The ROIs are continuously tracked, with their visibility
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and 63 ROIs (also marked with vertical lines). A total of 33 values for MAE and 29 values for RMSE were used.

dynamically assessed based on the motion state. Similarly,” implemented a
symmetry substitution approach, where data from visible areas of the left
and right cheeks are symmetrically replicated when facial rotation (30-45
degrees) obscures certain regions.

Haoyuan Gao et al.”’ recommend an optimal range of 30 to 40 trian-
gular ROIs on the face, cautioning that an excessive number of ROIs may
lead the model to behave more as a face detection system than as an HR
estimation tool. In their study, they utilized Delaunay triangulation to create
898 triangular ROIs. Recent works'*™"** favor using multiple ROI combi-
nations rather than averaging values from facial patches. Figure 6 illustrates
the increasing trend in the number of ROIs used per study, which correlates
with improved performance evaluations. This suggests that employing a
larger number of facial ROI combinations can enhance algorithmic accu-
racy, though further data is needed for more robust statistics.

Because this work is a systematic literature review rather than an
experimental study, we did not implement a common rPPG-to-HR
extraction pipeline across datasets. Instead, we summarized the published
performance that each primary study achieved with its own signal proces-
sing chain and then isolated the variable of interest, the number, and
arrangement of ROIs, when comparing results. Consequently, absolute
error values still reflect the underlying algorithmic diversity (e.g., CHROME,
POS, Dual-GAN, etc.), but the review keeps the discussion centered on how
ROI granularity modulates those outcomes. Future benchmark work in
which identical extraction code is reapplied to every ROI configuration
would be valuable, yet it lies beyond the scope of the present survey, whose
aim is to map current practice rather than reimplement it.

Performance evaluation

Figure 4 shows a trend toward an increasing number of ROIs across studies,
along with improved Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) values on datasets such as PURE**, COHFACE”, and UBFC-
rPPG”. To capture non-linear data trends, we included a LOESS (Locally
Estimated Scatterplot Smoothing) function. Unlike linear regression,
LOESS fits a series of localized regressions across subsets of the data, gen-
erating a smooth curve that adapts to pattern changes, thus providing a
more accurate visualization of the relationship between ROI quantity and
error metrics (MAE and RMSE). The Pearson Correlation Coefficient
(PCC) between the number of ROIs and error shows a moderate negative

linear relationship, calculated as follows:

o= Z?:l(xi -0 -
’ \/Z?:l (x; — x)’ \/Z?:l O — )7)2

M

where x; and y; are points at lag i of the rPPG and PPG signals, respectively. x
and y represent their means. N is the number of points of the discrete signals.

Equations (2) Mean Absolute Error (MAE) and (3) Root Mean Square
Error (RMSE) are commonly used metrics for evaluating error in models.
are expressed as follows:

1 N
MAE =N;|yi—xi| )

RMSE = 1/ %ZN: =) (3)

where N is the number of points and x;, y; are the points at lag i of the rPPG
and contact PPG signals, respectively.

From Figs. 4 and 6, it is evident that more recent, high-accuracy studies
often use a larger number of smaller facial patches or combinations thereof.
Taking more patches (e.g. more than 60) could slightly increase or even have
the same performance but with much more computational effort. However,
establishing a strong correlation between ROI quantity and error metrics
(MAE/RMSE) remains challenging due to the limited number of studies
with clearly documented ROI selection on public datasets. Additionally, as
noted by Gao et al.”, an excessive number of ROIs can reduce accuracy.
However, their analysis focused on the entire face rather than specific
regions like the forehead and cheeks, which recent research has frequently
emphasized.

As of October 2024, the best results on publicly available datasets, in
terms of Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE), have been achieved by the following studies:
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+ Qian et al.”’, utilized up to 64 distinct ROI patches (ROI combinations
for noise reduction), distributed symmetrically across the face to ensure
spatial diversity and enhance rPPG prediction. Introduced Spatial
TokenLearner for identifying the most informative ROIs while sup-
pressing noisy regions, and Temporal TokenLearner to mitigate dis-
turbances such as motion artifacts and illumination changes.

Table 2 | Details of ROIs, including sampled pixels, thickness,
image representation, and common co-included regions

ROI Name Pixels Thickness ROI Image Common Co-
Sampled (um) Included
ROIs
Upper 504 1245.63 Whole
Medial Forehead
Forehead (Forehead
Lower 454 1221.88 and Glabella)
Medial
Forehead
Glabella 775 1386.11 H Whole
Forehead
(Forehead
and Glabella)
Right Malar 794 1086.20 Left
Malar (Cheek)
Left Malar 955 1086.20 Right
Malar (Cheek)

The TOP-5 regions were taken, according to Li et al.*" and Kim et al.”.

Forehead
(24.5%)

Whole face
(36.8%)

+ Zhao et al.", Focused on precise ROI localization using attention
regularization techniques. Improved robustness to motion artifacts
and inconsistencies in ROI localization by utilizing MediaPipe, Masked
Attention Regularization (MAR) and Enhanced rPPG Expert Aggre-
gation (EREA).

+ Hao Lu et al.”, proposed a Dual-GAN architecture to jointly model
BVP predictors and noise distributions. Designed an ROI Alignment
and Fusion (ROI-AF) block to align features across ROIs and address
inconsistencies in noise distributions and used adversarial learning to
disentangle BVP and noise components, enhancing robustness to
environmental and physiological noise.

* Si-Qi Liu et al.”, introduced a lightweight spatiotemporal convolu-
tional network (STConv) for rPPG estimation with a noise-
disentangling module to separate environmental noise from physio-
logical signals, guided by background features. Also, applied adaptive
ROI selection for robustness across datasets and scenarios.

¢ Yaran Duan etal.”, divided the facial region into 18 small circular sub-
ROIs, and grouped symmetrically into 9 main ROTs for robust tracking.
Introduced a self-adaptive tracking system to discard occluded or noisy
ROIs and retain their visible counterparts and applied spectral analysis
to select the best-quality signal from available ROIs dynamically.

Table 3 provides specific MAE and RMSE values for the top five
datasets. Overall, there is a clear trend toward employing a growing number
of ROI combinations to improve heart rate estimation accuracy, particularly
through machine learning-based techniques.

It is important to note that these approaches have been tested on a
variety of datasets with differing levels of complexity. This variability can
result in lower performance on datasets containing motion artifacts, parti-
cularly in terms of MAE and RMSE. Nonetheless, the findings consistently
show that recent machine learning methods with multiple ROIs outperform
earlier techniques across all publicly available datasets.

Influence of light and motions to accuracy

Several well-known challenges complicate heart rate estimation via remote
photoplethysmography (rPPG). Light reflections on the subject’s facial skin
can cause inaccurate signal readings, leading to errors in heart rate pre-
dictions. Additionally, poor video quality-resulting from factors such as the
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Fig. 5 | Most commonly analyzed regions of interest (ROIs) in reviewed studies
and their pixel intensity characteristics. The top row illustrates the percentage of
studies utilizing specific ROIs, including the whole face (36.8%), forehead (24.5%),
cheeks (21.7%), nose (6.6%), chin (4.7%), and other regions (5.7%). Gaussian
probability density plots show the normalized intensity distributions within each
ROI across studies. The bottom row depicts the spatial intensity maps (viridis
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colormap) of pixels within each ROL, highlighting areas of high and low intensity.
Asymmetric ROIs, such as those from the nose and eyes, are shaped by the Med-

iapipe algorithm, which uses triangular regions that may reduce accuracy. Envir-

onmental factors, such as lighting, reflections, and head rotation, also impact ROI
selection algorithms.
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Table 3 | Overview of best-performed algorithms on 5 most-popular public datasets

UBFC-rPPG* PURE* COHFACE* VIPL-HR*® MAHNOB-HCI*
Article MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Qian W et al.”° 0.17 0.41 0.37 0.68 4.36 6.92
Zhao P. et al." 0.12 0.35 0.08 0.29
Hao Lu etal.” 0.44 0.67 0.82 1.31 4.93 7.68
Si-Qi Liu et al.*® 0.31 0.98 0.18 0.41 0.64 1.89 3.13 3.97
Yaran Duan et al.” 2.78 3.35 2.76 4.15 2.77 3.87 3.45 417

Performance metrics: MAE, RMSE. Datasets: UBFC-rPPG, PURE, COHFACE, VIPL-HR, MAHNOB-HCI.

subject’s distance from the camera, insufficient lighting, improper face
detection, occluded facial regions, and excessive movement-can sig-
nificantly impact precision.

Many datasets used in rPPG research were collected in controlled
environments’>*, predominantly featuring young to middle-aged
white male subjects. As a result, models trained on these datasets
often struggle to accurately predict heart rates across diverse popula-
tions or under real-world conditions. In contrast, the VIPL dataset®®
presents a more challenging scenario by incorporating various condi-
tions, including head movements, rotations, speech, facial expressions,
and both low and high lighting levels. These factors contribute to the
dataset’s complexity and are evident in performance analyses, under-
scoring the need for models capable of handling diverse environmental
and demographic variables.

Across the reviewed studies, commonalities in data exclusion practices
were observed, particularly in frames where face-detection algorithms (e.g.,
Dlib, MediaPipe, Viola-Jones) failed to accurately capture the face. Addition-
ally, most studies excluded regions such as the eyes, mouth, and areas with facial
hair from analysis. When certain facial patches became obscured due to head
rotation or other factors, they were often excluded from rPPG estimation or
substituted with their symmetrical counterparts to maintain data integrity.

Discussion
The objective of this review was to assess the existing literature on challenges
associated with region of interest (ROI) selection for heart rate estimation in

remote photoplethysmography (rPPG) algorithms. We conducted a com-
prehensive search to identify relevant studies, focusing on how the choice
and quantity of facial patches influence the performance of rPPG-based
heart rate estimation.

This review identifies several limitations that warrant consideration.
First, despite conducting an extensive search across PubMed, IEEE Xplore,
and Embase, some relevant studies may have been inadvertently missed.
Second, certain studies included in this review did not specify details such as
the exact number of ROISs analyzed, the datasets used, or the performance
evaluation methods applied. These gaps may affect the completeness of the
presented data and could influence the interpretation of results. Although
these limitations do not detract from the overall value of this review, they
highlight the need for future research to provide more comprehensive
reporting to deepen insights into this field.

As illustrated in Fig. 4, using a greater number of ROIs generally
improves estimation quality, although it remains unclear whether addi-
tional patches reduce error or simply add noise. While the diversity of
algorithms and ROI selection strategies complicates establishing a defi-
nitive trend, our findings suggest a potential negative correlation between
the number of ROIs and error metrics, such as Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). However, we recommend
conducting further studies with a larger number of ROIs and across
diverse datasets to validate or refute the presence of a linear relationship.
Nevertheless, findings suggest that using more than four ROIs often
enhances accuracy by mitigating noise. Conversely, an excessive number
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of patches (e.g., more than 100) may introduce additional noise, poten-
tially diminishing accuracy. So, the error for 6 ROIs and 60 ROIs is
relatively the same, however, for a second case we require more timing
and computational resources. For optimal results, multiple sub-ROIs
from areas like the forehead and cheeks, or combinations thereof, may
provide the most reliable outcomes.

Based on this review, we recommend the following directions for future
research:

* A key research priority for future studies is to investigate whether
dividing the face into additional sub-ROIs enhances rPPG signal
quality or inadvertently introduces more noise. Addressing this
question could provide critical insights into optimizing ROI
segmentation strategies for improved accuracy in heart rate estimation.
We suggest performing research on diverse datasets by consistently
dividing facial ROIs into sub-ROIs to find an optimal distribution
threshold, based on the work of Li et al.®'.

* Prioritize the selection and segmentation of facial ROIs, with a specific
focus on the forehead and cheeks. These areas, particularly the forehead
and cheeks, can be further divided into smaller sub-ROls, as studies
have shown that increasing the number of well-defined patches
improves signal quality and enhances HR estimation accuracy,
particularly under challenging conditions like motion artifacts or poor
lighting. For instance, recent research utilizing more than three ROIs"
or employing up to 2" — 1 ROI combinations***' has consistently
reported lower error rates on benchmark datasets. This highlights the
potential of sub-ROI segmentation to improve robustness in real-
world applications, though further validation is needed to confirm
these findings across diverse datasets.

o Improve rPPG signal quality by dynamic ROIs selection and
enhancement based on SQI, SNR, histogram and find an optimal
threshold value to all those parameters, similar to 0.293 value for SQT".
Additionally, resample shared datasets to overcome limited sample
sizes and model overfitting.

¢ Increase the diversity of testing and validation datasets by including
more female subjects from varied age groups and racial backgrounds.
Additionally, incorporating factors, such as motion, make-up, sweat,
facial accessories, distance from camera and light source, multiple
subjects and partial facial occlusion, and diverse lighting conditions
would contribute to more robust and realistic outcomes in real-world
applications.

 Adaptive ROI Orchestration: a promising extension of this review is to
quantify and optimize the robustness-versus-flexibility trade-off that
arises as the number of ROIs grows. We propose evaluating dynamic
ROI-selection frameworks in which the analysis engine continuously
ranks each patch by objective quality indicators (e.g., SQI, SNR, or
PCC) and, at run time, activates only the subset that exceeds a reliability
threshold. Such an adaptive scheduler would:

1. Fallback for occlusions. Seamlessly switch to alternative patches
dynamically when a region is covered by hair, glasses, or head motion.
Noise suppression. Exclude low-quality ROIs (based on a single or
multiple quality indicators) on a frame-by-frame basis, preventing the
dilution of the composite rPPG signal.

2. Resource awareness. Limit the active ROI set when computational or
energy budgets are tight, then re-expand it when resources allow.

3. Exploring these mechanisms, ideally across datasets with controlled
occlusion and motion scenarios, will help establish principled guide-
lines on when to favor holistic, sparse, or dense ROI configurations and
how to transition between them automatically.

Methods

Registration and protocol

This review was registered in the PROSPERO database (ID:
CRD42024592157) before its initiation. During the preparation of this work,
we used ChatGPT (version GPT-40, OpenAl) to optimize the readability.
After using this tool, authors reviewed and edited the content of the

manuscript as required and took full responsibility for the publication and
its content.

Literature search and selection criteria

Following PRISMA guidelines for systematic reviews, we conducted a
comprehensive literature search across IEEE Xplore, PubMed, and Embase,
focusing on studies published from January 2014 to October 2024 to capture
recent advancements in heart rate (HR) estimation via remote photo-
plethysmography (rPPG). The search terms included ‘ROIL’ ‘region of
interest, ‘patch,” ‘video,” ‘image,’ ‘camera,” ‘smartphone,” ‘TPPG,’ ‘remote
photoplethysmogram,” ‘transdermal optical imaging, ‘TOI,’ ‘heart rate,
‘HR, ‘blood pressure,” ‘face,” and ‘facial,” with Boolean operators applied to
expand the scope of relevant studies. The initial search was conducted by
one author (M.B.), with a second author (M.E.) independently verifying the
results to ensure accuracy. Studies were included if they reported on HR or
BP estimation using facial regions captured by a standard RGB camera.
Exclusion criteria encompassed duplicate publications, inaccessible articles
(ie., those without full-text availability), studies irrelevant to HR or BP
prediction, review articles, theoretical papers, studies using non-RGB
cameras (e.g., NIR cameras), and studies employing non-contactless devices
or analyzing non-facial regions.

Data analysis and statistical approach

In this review, we systematically analyzed the impact of ROI selection on
heart rate estimation accuracy by assessing algorithmic errors, specifically
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), across
publicly available datasets. Given the variety of datasets used for training and
testing, establishing a definitive optimal approach is challenging. However,
statistical evidence indicates that recent machine learning-based methods
utilizing combinations of multiple ROIs generally achieve superior
performance.

To enhance the selection of ROIs beyond statistical data, we recom-
mend incorporating a Signal Quality Index (SQI) analysis for each ROI's
rPPG signal. By applying a threshold value of 0.293, ROIs and corresponding
signals with excessive noise can be excluded. This approach ensures that only
high-quality signals contribute to heart rate (HR) detection, thereby
improving the overall accuracy and robustness of the measurements.

Data availability

No datasets were generated or analyzed during the current study.

Code availability

No custom code or software was developed for this study. All analyses were
conducted using publicly available tools and standard computational
methods.
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