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Several open-source oral-maxillofacial imaging datasets have been created but their characteristics,
ethical clearance, and licensing for reuse remain unclear. This study aimed to systematically identify
these datasets and investigate their characteristics, ethical approvals, and licensing requirements for
reuse. Open-source oral-maxillofacial imaging datasets were identified through electronic databases
anddataset platforms. 105datasetswith 437538 imagesand100 intraoral videos frompatients across
twenty-one countries were included. The datasets comprise imaging modalities, including
photographs, periapical, panoramic, and cephalometric radiographs, CBCT, MRI, surface scans,
videos, and histopathological images. Nearly 80% of them provide annotations, but only 25.7%
specified the annotators’ qualification. Themajority (83.8%) did not disclose whether ethical approval
was obtained, while 61.9% specified terms or licenses for dataset reuse. There is an urgent need to
develop standardized guidelines for reusing image datasets and to establish AI-specific consents to
fully inform patients about potential uses of their data in AI projects.

Dentistry has progressed swiftly towards digitalization in the last two dec-
ades, largely attributed to its significant dependency on advanced imaging
techniques with computer-aided design and manufacturing. These tech-
nologies play a crucial role in various stages of dental practice, such as
diagnosis, treatment planning, guided surgery, post-surgical evaluation,
prosthodonticworkflows includingCAD/CAMapplications, and follow-up
assessment, and have even expanded to facilitate remote consultations
through tele-dentistry1. The image data, generated during daily practices
and easily accessible from dental clinic database systems, forms the back-
bone of most artificial intelligence (AI) models proposed in the field of
dentistry2–4. Currently, many innovative dental AI models have been
developed using images to automatically perform complex tasks, such as
multimodal image registration3, segmentation of anatomical structures and
pathologies in the oral andmaxillofacial region5,6, detectionof various dental

diseases7, generation of 3D dental models8,9, and interpretation of dental
radiographs10. Such AI tools have the potential to push the progression of
digitalization in oral healthcare.

While certain dental AI models have demonstrated performance on
par with or exceeding dental professionals with internal images, most of
these models have not been externally validated due to a lack of external
image data. This deficiency has been reported in previous studies high-
lighting a significant performance drop in dental AI models when tested
with external images, likely a result of the absence of diverse image data used
during model training11. The lack of large datasets, comprising images with
varying conditions, greatly limits the development and validation of robust
and widely applicable dental AI models. One potential solution to enhance
the robustness and generalizability of AImodels is to integrate images from
multiple sources into the training and validation stages12.
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In recent years, a growing number of publicly accessible datasets, such
as TED36, Ctooth13, IO150K14, have been introduced. A previous study has
identified 16 publicly available dental imaging datasets and summarized
their characteristics to facilitate the use of dental imaging data in AI
research15. More recently, an increasing number of AI studies have been
published along with open-access oral-maxillofacial imaging datasets.
However, the sources and characteristics of these recent public datasets for
oral-maxillofacial imaging including annotation details, have not yet been
systematically investigated. Without a thorough understanding of these
datasets prior to their use in AI model training and testing, there is an
increased risk of unintended biases, such as data leakage. This can occur
when training and test sets contain duplicate images from various repack-
ageddatasets, potentially leading tooverly optimistic performance estimates
as the model could learn from identical data in both phases. Moreover, the
significance of understanding ethical considerations, specific terms, and
licensing requirements for reusing these datasets is becoming more widely
recognized16–18. Using these datasets without clear understanding of ethical
and licensing informationmay incur substantial ethical and legal risks. The
issue ofwhetherAImodels trainedondatasets that prohibit commercial use
can be licensed for commercial purposes remains controversial. Currently,
the ethical clearance and specific terms regulating their reuse in AI projects
are unclear. Therefore, the primary objective of this systematic review,
reported in accordance with the PRISMA guideline19, was to provide a
comprehensive summary of openly accessible datasets containing images
from the oral-maxillofacial region, including details such as the year and
purpose of dataset creation, creators, country and institution of origin,
imagingmodality, image type and format, patient and image count, imaging
device manufacturer, image annotation details, annotators’ qualifications,
and dataset access. The secondary objective was to investigate the ethical
approvals, specific terms, and licenses for the reuse of these datasets.

Results
Image datasets included in this systematic review
The initial search conducted through PubMed andGoogle scholar yielded a
total of 181 articles. After removing duplicates, 176 datasets remained.
Following the screening of titles and abstracts, thirty-six studies were
deemed eligible for full-text reading. Among these thirty-six studies, twelve
were excluded due to the use of a blocking technique obscuring the oral
cavity region (n = 5), issues with accessibility (n = 5), and unclear descrip-
tions (n = 2). Consequently, twenty-four studies14,20–42 providing informa-
tion on the eligible datasets were included.

A total of 786 datasets were identified through Google Dataset Search,
Kaggle, and Hugging Face. After removing duplicates, 614 datasets
remained. Upon initial screening, 86 datasets were deemed eligible. How-
ever, seven of these datasets were subsequently excluded due to inaccessi-
bility (n = 4), incorrect descriptions (n = 2), and degraded image quality
(n = 1), resulting in 79 datasets included. Additionally, three datasets, which
were recommended by experts in the field and met the inclusion criteria,
were further included in this systematic review43–47.

A single duplicate was identified upon cross-checking between the
literature and platform searches, resulting in a total of 105 datasets included
in this systematic review. Figure 1 illustrates the flowchart of the study and
dataset selection process. The two reviewers exhibited high inter reviewer
agreement for the selectionprocesswithCohen’s kappa values ranging from
0.83 to 0.92.

General information on the datasets
The 105 datasets were created between 2018 and 2024, comprising a total of
437,538 images and 100 intraoral videos (Table 1; Fig. 2). The number of
images per dataset ranged from 17 to 150,000 with 52 (49.5%) datasets

Fig. 1 | The flowchart of the study and dataset selection process. The flowchart
illustrates the systematic process for selecting datasets relevant to the oral and
maxillofacial region. Initially, records were identified fromPubMed, Google scholar,
Google Dataset Search, Kaggle, and Hugging Face, with duplicates removed. During

screening, records were excluded for irrelevance, non-human subjects, or images
outside the target region. The eligibility assessment further excluded datasets with
obscured regions, unclear descriptions, or inaccessibility. Final inclusion involved
expert recommendations and removal of duplicates, resulting in 105 records.
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containingover 1000 images.Only 13 (12.4%)datasets provideddetails about
the imaging device manufacturer.

Regarding the imaging modality, 45 (43.2%) of the datasets contained
panoramic radiographs, 24 (23.1%) photographs, 12 (11.5%) periapical
radiographs, 8 (7.7%) histopathological images, 6 (5.8%) intra-oral/facial/
model scans or images, 4 (3.9%) CBCT, with the remaining datasets
including othermodalities such as cephalometric radiographs,MRI, micro-

CT, intraoral videos (Fig. 3). Notably, one dataset included both panoramic
radiographs and CBCTs.

The image types across all datasets included 228,993 photographs,
125,975 panoramic radiographs, 29,390 histopathological images, 28,199
periapical radiographs, 12,860 intra-oral scans, 7990 head and face scans/
images, 1097model scans/images, 1031micro-CT images, 709CBCTscans,
392 MRI, 200 mid-sagittal CBCT, 702 cephalometric radiographs, and 100

Fig. 2 | The number of datasets and images released over years. The bar chart
illustrates the annual publication of datasets and images from 2018 to 2024. The left
y-axis indicates the number of datasets, while the right y-axis indicates the number of
images. Blue and red bars represent datasets and images, respectively. The chart

reveals a notable upward trend, with significant increases in both datasets and
images, particularly in 2023 and 2024, highlighting the growing interest and
expansion in dataset and image publication during this period.

Fig. 3 | Representative examples of image types included in the datasets.
a Intraoral photograph of a patient missing two maxillary central incisors.
b Periapical radiograph of the maxillary right posterior teeth and surrounding
alveolar bone, displaying moderate horizontal bone loss and severe dental caries.
c Panoramic radiograph providing a comprehensive view of the maxillary and

mandibular teeth and jaw structure. d Lateral cephalometric radiograph illustrating
a lateral perspective of the skull, teeth, and soft tissue profile. e Axial cone-beam
computed tomography (CBCT) scan presenting detailed cross-sectional imaging.
f Sagittal magnetic resonance imaging (MRI) scan presenting a sagittal view of
craniofacial structures.
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intraoral videos (Table 2). All the access links to the datasets are provided in
Supplementary Table S1.

Geographical contribution and institution of origin
Out of the 105 datasets, 66 (62.9%) did not report their origin. Of the
remaining, 20 originated from Asia (10 from South Asia, 7 from East Asia,
and 3 from Southeast Asia), seven from Europe, six from South America,
four fromNorth Africa and theMiddle East, and two fromNorth America.
The geographical distribution of the datasets with known origin is
demonstrated in Fig. 4. Only 38 (36.2%) of the datasets disclosed their
institutional origin, with24 originating fromuniversity research centres and
14 from local dental clinics (Table 1).

Purpose of dataset creation
The datasets included were created mainly for classification, segmentation,
detection, and other specific tasks. For classification tasks, the datasets were
designed to identify a wide range of oral conditions, including but not

limited to oral cancer, oral mucosal lesions, gingivitis, calculus, ulcers, tooth
discoloration, caries, missing teeth, as well as endodontic and periodontal
diseases. For segmentation tasks, these datasets were used to develop AI
models capable of delineating anatomical structures and pathologies, such
as caries, teeth, maxilla, mandible, tongue, dental plaque, periapical lesions,
mandibular canal, and oral epithelial dysplasia. Detection tasks involved the
development of models to identify entities, such as dental implants, peria-
pical lesions, alveolar bone loss, discoloured teeth, and carious lesions. The
remaining datasets were created for specific tasks, such as anatomical
landmark localization, volumetricmesh generation, cephalometric analysis,
report generation, motion estimation, video stabilization, and the auto-
mated design of a complete denture metal base.

Annotations and annotators
Out of the 105 datasets, 83 (79.0%) included annotations, such as the
delineation of teeth, caries, and dental restorations on periapical and
panoramic radiographs, the delineation of teeth, tongue,mucosal lesions on

Table 2 | Description of the number of different image modalities in the included datasets and their corresponding purpose of
dataset creation

Imaging modality Number of
images

Purposes of dataset creation

Photographs 228,993 Diagnosis of gingivitis, detection of multiple oral hard and soft tissue conditions,
segmentation of the tongue, classification of oral cancer, segmentation of dental
plaque, segmentation of teeth, etc.

Panoramic radiographs 125,975 Segmentation of teeth, detection of multiple dental conditions, detection of
alveolar bone loss, segmentation of caries, segmentation of the mandible,
detection of dental implants, etc.

Histopathological images 29,390 Assessment of lingual papillae patterns, classification of oral cancer cells,
differentiation between oral squamous cell carcinoma and leukoplakia,
classification of variousnucleus, segmentation andclassification of oral epithelial
dysplasia, etc.

Periapical radiographs 28,199 Classification of endodontic and periodontal diseases, segmentation of caries,
detection and segmentation of periapical lesions, etc.

Intraoral, head and face scan/images 20,850 Classification of the severity of craniosynostosis, automated design of complete
denture metal base, localization of anatomical landmarks, localization and
labelling of teeth, etc.

CBCT 709 Segmentation of teeth, dental radiology education, generation of volumetric
meshes, segmentation of the mandibular canal, etc.

Others including model scans/images, micro-CT, MRI, mid-
sagittal CBCT views, cephalometric radiographs, and intraoral
videos

3522 Segmentation of speech MR images, detection of cephalometric landmarks,
enhancement and segmentation of intraoral videos, etc.

Fig. 4 | The geographical contribution of the publicly accessible datasets included
in this study. The visual map illustrates the number of datasets sourced from dif-
ferent countries and regions, with darker shades representing higher contributions.

Notably, countries such asChina and India are highlighted in darker blue, suggesting
significant dataset contributions.
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Table 3 | Characteristics of the annotations and the qualifications of the annotators

Dataset No. Imaging modality Image annotation details Qualification of the annotators

Dataset No. Panoramic radiographs Not reported Not reported

2. Panoramic radiographs Two classes: mandible and background University dentists

3. Panoramic radiographs Five annotations: a) labelled masks, b) eye tracker generated
maps (grey and quantized), c) text information describing each
radiograph, d) teethmask for each radiographwith labels, and e)
maxillomandibular region-of-interest mask

An expert with unknown qualification and a
fourth-year dental student

4. Panoramic radiographs Four implant classes: BEGO, Bicon, Straumann, and others Not reported

5. Panoramic radiographs Thirty-two classes: one to thirty-two tooth numbering following
the FDI tooth numbering system

Two dentists

6. Panoramic radiographs Two classes: implant or not Not reported

7. Panoramic radiographs Two classes: caries or not Not reported

8. Panoramic radiographs Two classes: normal and abnormal (the presence or absence of
periapical radiolucency/widening of periodontal
ligament space)

Not reported

9. Panoramic radiographs Not reported Not reported

10. Panoramic radiographs Not reported Not reported

11. Panoramic radiographs Thirty-five classes: crown, implant, root canal, and one to thirty-
two tooth numbering following the FDI tooth numbering system

Not reported

12. Panoramic radiographs Thirty-two classes: one to thirty-five tooth numbering following
the FDI tooth numbering system

Not reported

13. Panoramic radiographs Four classes: mild and severe caries, impacted tooth, and
periapical lesions

Not reported

14. Panoramic radiographs Multiple dental conditions Not reported

15. Panoramic radiographs Two classes: root canal treatment in the past (class 0) or is
considered in need of surgery by endodontist (class 1)

Endodontist

16. Panoramic radiographs Not reported Not reported

17. Panoramic radiographs Three classes: normal, tooth fillings/restoration, and caries Not reported

18. Panoramic radiographs Two classes: tooth and background Not reported

19. Panoramic radiographs Nine classes: hyper chromaticism, loss of cohesion, mitotic
figures, multiple nucleoli, pleomorphic cells, altered nuclear
cytoplasmic ratio, individual cell keratinization, keratin pearl,
nucleo-cytoplasmic ratio

Not reported

20. Panoramic radiographs Six classes: caries, periapical infection, pulpitis, deep sulcus,
dental developmental abnormalities, and others.

Three dentists

21. Panoramic radiographs (a) 693 x-rays labelled for quadrant detection and quadrant
classes only, (b) 634 x-rays labelled for tooth detection with
quadrant and tooth enumeration classes, (c) 1005 x-rays fully
labelled for abnormal tooth. The diagnosis class includes four
specific categories: caries, deep caries, periapical lesions, and
impacted teeth. An additional 1571 unlabelled x-rays are
provided for pre-training. Detection with quadrant, tooth
enumeration, and diagnosis classes.

Annotations were done by a final-year dental
student and verified by three dentists with over
15 years of experience

22. Panoramic radiographs Ten classes: ‘amalgam filling’, ‘caries’, ‘composite filling’,
‘crown’, ‘filling’, ‘implant’, ‘periapical lesion’, ‘retained root’,
‘root canal filling’, ‘root canal obturation'

Not reported

23. Panoramic radiographs The presence of bone loss Not reported

24. Panoramic radiographs Not reported Not reported

25. Panoramic radiographs Five classes: single dental implant, two adjacent implants,
crown/bridge restorations, implant(s) with crown/bridge
restorations, and metallic reference spheres

Not reported

26. Panoramic radiographs Not reported Not reported

27. Panoramic radiographs Five classes:molar, premolar, canine, lateral incisor, and central
incisor

Not reported

28. Panoramic radiographs Six classes: healthy tooth, caries, impacted tooth, broken
crown/root, infection, fractured tooth

Not reported

29. Panoramic radiographs Not reported Not reported

30. Panoramic radiographs Four classes including incisors, canines, premolars, molars Not reported

31. Panoramic radiographs Seven classes: ‘tooth without anomalies’, ‘tooth with fillings’,
‘toothwithRCT’, ‘toothwith crown’, ‘toothwith caries’, ‘residual
root’, and ‘tooth with RCT and crown’

Two postgraduate students and two senior
clinicians
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Table 3 (continued) | Characteristics of the annotations and the qualifications of the annotators

Dataset No. Imaging modality Image annotation details Qualification of the annotators

32. Panoramic radiographs Three dental issues namely, broken root, periodontally
compromised tooth, and kennedy classification of partially
edentulous arches

Not reported

33. Panoramic radiographs Dental fillings, restorations, implants, and impacted teeth Not reported

34. Panoramic radiographs Not reported Not reported

35. Panoramic radiographs Two classes: male and female Not reported

36. Panoramic radiographs Five classes: cavity, implant, fillings, impacted tooth, and
normal teeth

Not reported

37. Panoramic radiographs Thirty-eight classes: ‘amalgam filling’, ‘bone loss’, ‘caries’,
‘composite filling’, ‘crown’, ‘cyst’, ‘filling’, ‘fracture teeth’,
‘implant’, ‘misaligned’, ‘missing teeth’, ‘periapical lesion’,
‘permanent teeth’, ‘primary teeth’, ‘retained root’, ‘root piece’,
‘root canal filling’, ‘root canal obturation’, ‘root resorption’,
‘supra eruption’, ‘tad’, ‘unhealed socket’, ‘abutment’, ‘attrition’,
‘bone defect’, ‘cavity’, ‘decay’, ‘gingival former’, ‘impacted
tooth’, ‘metal band’, ‘orthodontic brackets’, ‘permanent
retainer’, ‘plating’, ‘post - core’, ‘rct’, ‘retaineddeciduous tooth’,
‘spacing’, ‘wire'

Not reported

38. Panoramic radiographs Fifteen classes: none, caries, crown, filling, implant, misaligned
tooth, mandibular canal, missing tooth, periapical lesion,
retained root, root canal treatment, impacted tooth, maxillary
sinus, ‘root piece”, and one unclear class.

Not reported

39. Panoramic radiographs Fourteen classes: ‘caries’, ‘crown’, ‘filling’, ‘implant’,
‘misaligned’, ‘mandibular canal’, ‘missing teeth’, ‘periapical
lesion’, ‘retained root’, ‘root canal treatment’, ‘root piece’,
‘croen’, ‘impacted tooth’, ‘maxillary sinus'

Not reported

40. Panoramic radiographs Twelve classes: ‘caries’, ‘crown’, ‘filling’, ‘implant’, ‘misaligned’,
‘mandibular canal’, ‘missing teeth’, ‘periapical lesion’, ‘retained
root’, ‘root canal treatment’, ‘root piece’, ‘impacted tooth'

Not reported

41. Panoramic radiographs Thirty-two classes: one to thirty-two tooth numbering following
the FDI tooth numbering system

Not reported

42. Panoramic radiographs Two classes: tooth and background Not reported

43. Panoramic radiographs Thirty-two classes: one to thirty-two tooth numbering following
the FDI tooth numbering system

Two dentists

44. Panoramic radiographs Not reported Not reported

45. Photographs (oral cavity) Seven classes: mouth open, mouth closed, tongue up, tongue
down, tongue middle, tongue left, tongue right

Not reported

46. Photographs (the mouth and oral
cavity)

Two classes: oral cancer and no oral cancer ENT doctors

47. Photographs (oral cavity) Two classes: benign lesions and malignant lesions Not reported

48. Photographs (the mouth and oral
cavity)

Five classes: dental caries, healthy, oral cancer, periodontal,
scurvy

Not reported

49. Photographs (the mouth) Annotation of the mouth Not reported

50. Photographs (oral cavity) Two classes: caries or not Not reported

51. Photographs (oral cavity) Two classes: oral cancer and no oral cancer Not reported

52. Photographs (oral cavity) Two classes: discoloration or not Not reported

53. Photographs (oral cavity) The collection includes class labels for seven mouth and oral
cavity diseases, includinggingivostomatitis (gum), canker sores
(cas), cold sores (cos), oral lichen planus (olp), oral thrush (ot),
mouth cancer (mc), and oral cancer (oc).

Not reported

54. Photographs (oral cavity) Seven classes: 1st molar, 1st premolar, 2nd molar, 2nd
premolar, canine, central incisor, lateral incisor

Not reported

55. Photographs (oral cavity) Not reported Not reported

56. Photographs (oral cavity) Three classes: grade-1, grade-2, grade-3 Not reported

57. Photographs (the tongue) Binary mask of the tongue region Dental practitioners

58. Photographs (oral cavity) Three classes: cancer, non-cancer, pre-cancer Not reported

59. Photographs (oral cavity) Two classes: cancer or not Not reported

60. Photographs (oral cavity) Diagnosis Periodontists

61. Photographs (the mouth and oral
cavity)

Two classes: cancer or not Not reported

62. Photographs (oral cavity) Seven classes: ‘calculus’, ‘cavities’, ‘maligned’, ‘missing’,
‘plaque’, ‘spacing’, ‘stains'

Not reported
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Table 3 (continued) | Characteristics of the annotations and the qualifications of the annotators

Dataset No. Imaging modality Image annotation details Qualification of the annotators

63. Photographs (the mouth and oral
cavity)

Two classes: cancer or not Not reported

64. Photographs (oral cavity) Five classes including calculus, mouth ulcer, tooth
discoloration, caries, hypodontia

Not reported

65. Photographs (oral cavity) Four classes: caries-free, early decay, caries, decay cavity Not reported

66. Photographs (oral cavity) Six classes: caries, calculus, gingivitis, tooth discolouration,
ulcers, and hypodontia

Not reported

67. Photographs (oral cavity) Tooth masks Four orthodontists with over 6 years of
experience

68. Photographs (the tongue) Not reported Not reported

69. Periapical radiographs Not reported Not reported

70. Periapical radiographs Two classes: caries or not Not reported

71. Periapical radiographs Not reported Not reported

72. Periapical radiographs Not reported Not reported

73. Periapical radiographs Five classes: primary endodontic lesions, primary periodontal
lesions, primary endodontic lesionswith secondary periodontal
lesions, primary periodontal lesionswith secondary endodontic
lesions, and true combined lesions

Not reported

74. Periapical radiographs Not reported Not reported

75. Periapical radiographs Two classes: caries or not Not reported

76. Periapical radiographs Not reported Not reported

77. Periapical radiographs Not reported Not reported

78. Periapical radiographs Bounding box Not reported

79. Periapical radiographs Not reported Not reported

80. Periapical radiographs Seven classes: irreversible pulpitis, impacted tooth, improper
restoration, chronic apical periodontitis, unerupted tooth,
caries, and periodontitis

Not reported

81. micro-CT Not reported Not reported

82. CBCT The mandible, maxilla, their associated teeth, and pdl meshes,
as well as teeth principal axes

Not reported

83. CBCT Two classes: mandibular canal and background A team of surgeons with years of experience in
maxillofacial surgery

84. Panoramic radiographs and CBCT Two classes: tooth and background Hospital dentists

85. Face images Not reported Not reported

86. Intraoral scans Not reported Not reported

87. Intraoral scan images Ten classes: abutment, canine, crown, implant, implant minus,
implant plus, inlay, incisor, molar, premolar

Not reported

88. Intraoral scans 3D instance masks Clinicians withmore than 10 years of expertise in
orthodontics, dental surgery, and endodontics.

89. 3D scans of complete denture
boundaries on the edentulous jaws

Four classes: edentulous model, retentive mesh, tissue stop,
and finishing line

A dental specialist with at least 5 years of clinical
experience

90. Head and face scans Four classes: sagittal suture fusion (scaphocephaly), metopic
suture fusion (trigonocephaly), coronal suture fusion
(brachycephaly and anterior plagiocephaly), and the control
(normocephaly and positional plagiocephaly)

Two craniofacial surgeons

91. Histopathological images Two classes: cancer or not Not reported

92. Histopathological images Not reported Not reported

93. Histopathological images Seven classes: “background”, “abnormal epithelial nucleus”,
“healthy epithelial nucleus”, “out of focus nucleus”, “blood cell
nucleus”, “reactive cell nucleus”, and “dividing nucleus”

Five specialists in pathology

94. Histopathological images Oral squamous cell carcinoma and leukoplakia Two or three oral pathologists that reach a
histopathological diagnosis in consensus

95. Histopathological images Normal epithelium of the oral cavity and oral squamous cell
carcinoma (OSCC)

Medical doctors

96. Histopathological images Four classes: healthy tissues, mild, moderate and severe OED A trained specialist and validated by a
pathologist.

97. Histopathological images Three classes: cancer cells, chemoresistant cancer cells, and
normal cells

Not reported
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photographs, the segmentation of teeth on CBCT, and the categorical label
of the presenceor absence of cancer cells onhistopathological images (Table
3). However, only 27 (25.7%) datasets provided information about the
qualification of the annotators. The annotators involved dental students,
general dentists, and specialists such as endodontists, periodontists, ortho-
dontists, radiologists, pathologists, ENT, craniofacial, and maxillofacial
surgeons (Table 3).

Ethical approval, specific terms, and licenses of the included
datasets
Themajorityof the includeddatasets (n= 88; 83.8%)didnot indicatewhether
they had obtained ethical approval (Table 4). Out of the 105 datasets, 65
(61.9%) specified terms or licenses for their reuse (Table 4). The licenses
attached to the datasets included CC BY 4.0 (n= 34; 52.3%), Apache 2.0
(n = 12; 18.5%), CC0 1.0 (n= 7; 10.8%), CCBY-NC3.0/4.0 (n= 4; 6.2%), CC
BY-SA 3.0/4.0 (n = 2; 3.1%), CC BY-NC-ND (n= 2; 3.1%), CC BY-NC-SA
4.0 (n = 1; 1.5%), and MIT (n= 1; 1.5%). One dataset specified dual licenses
(CC0 1.0 and CC-BY), while another only provided the terms of reuse.

Applicability concerns of the included datasets and the risk of
bias in annotations
The evaluation of applicability concerns for the 105 datasets and the assess-
ment of the risk of bias in annotations are presented in Table 4. Out of these
datasets, only 12 (11.4%) were rated as having a “low” applicability concern
due to their documentation of ethical approval and licensing. Conversely, 36
(34.3%)datasetswere deemed tohave a ‘high’ applicability concerndue to the
absence of reported ethical approval and licensing. Regarding the risk of bias
in the ground truth annotations, out of the 83 annotated datasets, 59 (71.1%)
were rated as “high” risk due to the lack of information about the annotators.
Eighteen (21.7%) datasets were rated as “low” risk, attributed to the invol-
vement of more than one annotator with explicit medical/dental qualifica-
tions. Furthermore, six (7.2%) datasets were rated as “moderate” risk, either
because they were annotated by a single qualified annotator or by multiple
annotators who lacked explicit qualifications.

Discussion
This study aimed to provide a comprehensive overview of the openly
accessible oral-maxillofacial imaging datasets, their sources and character-
istics of both the images and annotations. In addition, this study also inves-
tigated the ethical clearance, specific terms, and licenses concerning the reuse
of these datasets. During full-text evaluation, three datasets21,31,48 required
registered access. Access to the Tufts Dental Database21 and the dataset by
Cipriano M was acquired by providing an email address, institutional
affiliation, and the intended use of the data or by creating an account.

However, no response was received from the owner of the dataset48 following
multiple attempts to fulfil the access requirements. The datasets by Ramak-
rishnanet al.49,Chilamkurthyet al.50, and Iosifidis et al.51 couldnotbeaccessed
as the specifieddownload siteswerenot available both at the timeof the initial
search and at the time of manuscript submission. Access to the dataset by
Ranjbar et al.52 can only be acquired by obtaining an affiliate appointment
with the institution for collaborative projects. Moreover, three datasets
identified on theKaggle platformwere not available and access to a dataset by
Jian53 requires a subscription payment. Eventually, a total of 105 openly
accessible datasets were identified fromboth electronic databases and dataset
management platforms. The findings reveal a significant increase in the
number of open-source datasets for oral-maxillofacial imaging since 2018.

Two previous review articles identified publicly available ophthalmo-
logical imaging datasets and skin cancer image datasets, both derived from
searches on MEDLINE, Google, and Google Dataset Search54,55. Another
study by Ni et al. identified publicly available datasets for health mis-
information detection from searches on theWeb of Science Core Collection
and arXiv56. Uribe et al. identified sixteen publicly accessible dental imaging
datasets, created from 2020 to 2023, containing intraoral photographs or
radiographs, panoramic radiographs, cephalometric radiographs, CBCT,
and intraoral 3D scans15. However, in contrast to their findings, this study
identified a significantly higher number of datasets created between 2018
and 2024. This study identified 105 datasets containing not only dental
images but also those from oral-maxillofacial regions, with a wider range of
imaging modalities including intraoral and extraoral photographs, peria-
pical radiographs, panoramic radiographs, cephalometric radiographs,
histopathological images, CBCT, intraoral/facial/model scans or images,
MRI, micro-CT, and intraoral videos. Moreover, this study included over
fifty datasets each providing more than 1000 images while Uribe et al.
reported only five datasets with over 1000 images.

Among all the datasets, panoramic radiography is the most prevalent
imaging modality. The second most common imaging modality is photo-
graphy, with 24 datasets consisting of images of the lips, oral cavity, teeth,
buccal mucosa, and tongue. The largest dataset among those included
comprised 150,000 photographic images, specifically created for tooth
instance segmentation, annotated by orthodontists with the aid of a human-
machine hybrid algorithm14.Compared to 2D images, datasets for 3D image
volumes, including CBCT, MRI, intraoral, facial, and model scans, are
limited and smaller probably due to the challenges associated with their
acquisition, annotation, and storage. In public datasets, original 3D images
are often converted into the NIfTI format to facilitate more straightforward
analysis due to its superior compatibility with computational tasks.

In the literature, dental AI models were developed mainly for segmen-
tation, detection, classification, and prediction tasks57. Segmentation tasks

Table 3 (continued) | Characteristics of the annotations and the qualifications of the annotators

Dataset No. Imaging modality Image annotation details Qualification of the annotators

98. Papanicolaou-stained images of
the oral mucosa cells

Individual cytoplasm (orange), squamous cell (green),
superficial cell nucleus (red), intermediate cell nucleus (cyan),
suspicious cell nucleus (yellow), binucleate nuclei (purple),
cytoplasms of cell cluster (blue). The remaining pixels were
considered background (grey).

Specialists in pathology

99. Histopathological images Normal epithelium of the oral cavity and oral squamous cell
carcinoma (OSCC)

Not reported

100 MRI Consisted of six classes, head, soft palate, jaw, tongue, vocal
tract, tooth space

An MRI physicist with four years of speech MRI
experience

101 Cephalometric radiographs Nineteen landmarks Two experienced medical doctors

102 Cephalometric radiographs Thirty-eight craniofacial landmarks Not reported

103 Dental model images Text description about the occlusal view of a dental model Not reported

104 Sagittal projection images from
CBCT scans

Cephalometric parameters Not reported

105 Video sequences of intra-oral
scenes

Multi-task pseudo labels Not reported
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Table 4 | Information regarding the ethical approvals, specific terms, licenses, applicability concerns, and the risk of bias in the
ground truth annotations of the included datasets

Dataset
No.

Ethical approval Specific terms and licenses Applicability
concern

Risk of bias in
the ground
truth
annotations

1. Not reported Not reported High –

2. Not reported CC BY NC 3.0 Moderate Low

3. Ethical approval was obtained from the Tufts University
Institutional Research Board (IRB ID MODCR-01-12631).

Extracts of Data Use Terms
• Researcher shall use the Database only for non-
commercial research and educational purposes

• Tufts University nor Panetta’s Vision and Sensing System
Labmakes no representations or warranties regarding the
Database

• Researcher accepts full responsibility for his or her use of
the Database

• The Panetta’s vision and sensing systems lab reserves the
right to revise, amend, alter or delete the information
provided herein at any time, but shall not be responsible for
or liable in respect of any such revisions, amendments,
alterations or deletions

• No permission is granted to reproduce the database or
post into any webpage or any other storage means

Low Moderate

4. Not reported CC BY 4.0 Moderate High

5. Not reported CC BY 4.0 Moderate Low

6. Not reported CC BY 4.0 Moderate High

7. Not reported Not reported High High

8. Not reported CC BY 4.0 Moderate High

9. Not reported CC BY 4.0 Moderate –

10. Not reported Not reported Moderate –

11. Not reported CC BY 4.0 Moderate High

12. Not reported CC0 1.0 Moderate High

13. Not reported CC BY 4.0 Moderate High

14. Not reported CC BY 4.0 Moderate High

15. Not reported CC BY 4.0 Moderate Moderate

16. Not reported CC BY-SA 4.0 Moderate –

17. Not reported CC BY 4.0 High High

18. Not reported Not reported High High

19. Not reported CC BY 4.0 Moderate High

20. Ethical approval and patients’ consent has been obtained. CC0 1.0 Low Low

21. All the necessary permissions have been obtained from the
ethics committee.

CC0 1.0 and CC-BY Low Low

22. Not reported Apache 2.0 Moderate High

23. Not reported Apache 2.0 Moderate High

24. Not reported Apache 2.0 Moderate –

25. Not reported CC BY 4.0 Moderate High

26. Not reported CC BY-SA 3.0 Moderate –

27. Not reported CC BY 4.0 Moderate High

28. Informed Consent: All patients provided their consent in
accordance with the dental ethical principles.

CC BY 4.0 Low High

29. Not reported Not reported High –

30. Not reported Not reported High High

31. Ethical approval was obtained from the Ethics Committee of
China-JapanUnionHospital of Jilin University [#2024011704].

Not reported Moderate Low

32. Not reported CC BY 4.0 Moderate High

33. Not reported Not reported High High

34. Not reported Not reported High –

35. Not reported MIT Moderate High

36. Not reported CC BY 4.0 Moderate High

37. Not reported Apache 2.0 Moderate High
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Table 4 (continued) | Information regarding the ethical approvals, specific terms, licenses, applicability concerns, and the risk of
bias in the ground truth annotations of the included datasets

Dataset
No.

Ethical approval Specific terms and licenses Applicability
concern

Risk of bias in
the ground
truth
annotations

38. Not reported Apache 2.0 Moderate High

39. Not reported Apache 2.0 Moderate High

40. Not reported Not reported High High

41. Not reported Not reported High High

42. Not reported Not reported High High

43. Ethical approval of the institution was obtained. CC BY 4.0 Low Low

44. Ethical review and approval for this studywerewaived due to it
being retrospective and the images were taken for reasons
unrelated to this study. Informed consent was obtained from
all individual participants.

CC BY 4.0 Low –

45. Not reported CC0 1.0 Moderate High

46. Not reported Not reported High Low

47. Not reported CC BY 4.0 Moderate High

48. Not reported CC0 1.0 Moderate High

49. Not reported Not reported High High

50. Not reported Not reported High High

51. Not reported Not reported High High

52. Not reported CC BY 4.0 Moderate High

53. Not reported Not reported High High

54. Not reported CC BY 4.0 Moderate High

55. Not reported Not reported High –

56. Not reported CC0 1.0 Moderate High

57. Not reported Not reported High Low

58. Not reported Not reported High High

59. Not reported Apache 2.0 Moderate High

60. Not reported CC BY 4.0 Moderate Low

61. Not reported CC0 1.0 Moderate High

62. Not reported Apache 2.0 Moderate High

63. Not reported CC0 1.0 Moderate High

64. Not reported Not reported High High

65. Not reported Apache 2.0 Moderate High

66. Not reported Not reported High High

67. Not reported Not reported High Low

68. Not reported Not reported High –

69. Not reported Not reported High –

70. Not reported CC BY 4.0 Moderate High

71. Not reported CC BY 4.0 Moderate –

72. Not reported Not reported High –

73. Not reported Not reported High High

74. Not reported Not reported High –

75. Not reported Not reported High High

76. Not reported Not reported High –

77. Not reported Apache 2.0 Moderate –

78. Not reported Apache 2.0 Moderate High

79. Not reported CC BY 4.0 Moderate –

80. Not reported CC BY-NC-SA 4.0 Moderate High

81. Ethical approval was obtained from the Institutional Review
Board of China Medical University Hospital. (CMUH 107-
REC3-092).

CC BY 4.0 Low –

82. Not reported Not reported High High
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involve dividing an image into distinct sections based on variations in pixel
intensity among different tissues. Detection tasks aim to localize objects
within an image using class-labelled bounding boxes. Classification tasks
assign a categorical label to an entire image, while prediction tasks estimate
the likelihood of a certain event based on existing risk factors. Obtaining
annotations for segmentationmodels is relatively straightforward as they can
be completed through visual inspection of images58. On the contrary,
obtaining annotations for the development of more clinically significant
diagnostic models, such as models for detecting the onset of specific diseases
or for diagnosing lesions that are indistinguishable from diagnostic images,
are challenging. These annotations often rely on particular clinical, labora-
tory, or biopsy examinations11. Our findings reveal that the most common
types of annotation from the included datasets are themask (29%), bounding

box (29%), and categorical label (20%). Notably, the annotations provided
across these datasets for similar tasks differ significantly due to different
labelling methods used. The diversity in annotation approaches can com-
plicate the integrationanduseof annotations fromdatasets created for similar
tasks. Moreover, the annotations for similar oral conditions differed across
datasets and often lacked detailed descriptions. Thus, such annotations
should be reused with caution to ensure their accuracy and precision.

While nearly 80% of the 105 datasets provided image annotations, only
one-fourth of these datasets specified the annotators’ qualifications. Notably,
evenwhenqualificationswerementioned, detailed information regarding the
annotators’ experience in dental specialties or annotation practiceswas rarely
disclosed. The lack of this information increases the uncertainty of the
annotation accuracy, affecting the reliability of open-access images and their

Table 4 (continued) | Information regarding the ethical approvals, specific terms, licenses, applicability concerns, and the risk of
bias in the ground truth annotations of the included datasets

Dataset
No.

Ethical approval Specific terms and licenses Applicability
concern

Risk of bias in
the ground
truth
annotations

83. Ethical approval was obtained from Comitato Etico dell’Area
Vasta Emilia Nord (Approval Number 1374/2020/OSS/ESTMO
SIRER ID 1275 - NAI-CBCT-D).

Not reported Moderate Low

84. Ethical approval of was obtained from the Medical Ethics
Committee of Sichuan Provincial People’s Hospital and the
University of Electronic Science and Technology Hospital
Research Ethics Committee (No. 2022YR014).

CC BY-NC-ND Low Low

85. Ethical approval was obtained from the Ethical Committee of
the Medical Faculty of the University of Heidelberg under
Application No. S-039/2016.

Not reported Moderate –

86. Not reported CC BY 4.0 Moderate –

87. Not reported Not reported High High

88. Not reported CC BY-NC-ND 4.0 Moderate Low

89. Not reported CC BY 4.0 Moderate Moderate

90. Not reported CC BY-NC 4.0 Moderate Low

91. Not reported Not reported High High

92. Not reported Not reported High –

93. Not reported CC BY NC 3.0 Moderate Low

94. Ethical approval was obtained from the Research Ethics
Committee of the Hospital Universitário Cassiano Antonio de
Moraes da Universidade Federal do Espírito Santo under
registration no. 5,022,438

CC BY 4.0 Low Low

95. Ethical approval was obtained from the Ethical Committee of
Human Studies of Institute of Advanced Study in Science and
Technology, Guwahati, Assam with registration number IEC
(HS)/IASST/1082/ 2014-15/2.

CC BY 4.0 Low Moderate

96. Ethics approval was obtained from the Ethics Committee on
the Use of Animals under protocol numbers 038/09 and A016/
21 at the Federal University of Uberlândia, Brazil.

Not reported Moderate Low

97. Not reported CC BY 4.0 Moderate High

98. Ethical approval was obtained from the Ethics Committee
(certificate number CAAE - 39212420.9.0000.5347).

Not reported Moderate Low

99. Not reported Apache 2.0 Moderate High

100 Ethical approval was obtained from the Health Research
Authority (HRA) and the Joint Research Management Ofce
(JRMO) (LREC 22/PR/0058).

CC BY 4.0 Low Moderate

101 Not reported CC BY 4.0 Moderate Moderate

102 Not reported Not reported High High

103 Not reported Not reported High High

104 Ethical approval was obtained from the Zgoda nr KB-14/22
wystawiona przez Bioethics Committee at the Regional
Medical Chamber in Gdańsk

CC BY 4.0 Low High

105 Not reported CC BY-NC Moderate High
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corresponding ground truth annotations. Even though some annotations
were carried out by specialists, the accuracy of these annotationsmight not be
guaranteed or suitable for direct use in specific AI projects. Manual adjust-
ments or re-annotations of these annotations may be necessary to meet the
requirements for certain projects. This study included nine histopathological
image datasets containing various cell types, including normal oral cavity
epithelium, oral cancer cells, epithelial dysplasia and Leukoplakia cells.
However, only four datasets explicitly stated that the annotations were per-
formed by pathologists or specialists in pathology. Therefore, caution is
advised when reusing these annotations, especially those with unknown
origins or uncertainties for the development or validation of AI models.

Unlabelled images can be effectively utilized in AI model training
through self-supervised learning techniques, such as contrastive learning,
mask imagemodelling59,60, and semi-supervised learning5,61. Self-supervised
learning enables models to learn data distribution without manual labels by
using pretext tasks that exploit the inherent structure of the data to generate
labels. This method uses large amounts of unlabelled data to learn useful
representations. Subsequently, a smaller set of labelled data is employed to
fine-tune the model for specific tasks. This approach minimizes the
dependence on extensive manual annotations and is beneficial for utilizing
large unlabelled datasets efficiently.

Themajority (83.8%) of the datasets did not disclose whether they had
obtained ethical approval. This finding indicates a critical area in data usage
and ethics that requires further attention. Some included studies have stated
that their open datasets were derived from projects with ethical approval.
However, this does not automatically grant permission for others to reuse
the image data. Ethical approval confirms that the initial study is in com-
pliancewithethical standards, but it doesnot extend to the subsequentuseof
the data by third parties62. Sharing patient data with either internal or
external teams is often essential for AI project development and validation,
which may not be explicitly covered in the original ethical approvals. The
Europe General Data Protection Regulation legislation highlights the
necessity of strict data processing regulations, which limit health data use
unless explicit consent is given, ensuring that data processing aligns with
protecting individuals’ vital interests63. However, details about patient
consent are oftenmissing inpublicly accessible datasets. This situation raises
serious ethical concerns about data sharing and patient consent, especially
when developing AI applications in healthcare.

Public accessibility of datasets does not automatically grant unlimited
usage rights, as licensing clearly defines the terms for data reuse. Dataset
licenses allow creators to specify rights they reserve and those they waive.
Without explicit licensing, even ethically approved datasets can still cause
legal and ethical issueswhen reused. Common licenses includeCC0-1.0 and
variousCreativeCommons (CC) licenses, such as CC-BY,CC-BY-NC,CC-
BY-SA, andCC-BY-ND64. TheCC0-1.0 license permits creators towaive all
their copyright and related rights in their works as much as legally possible.
Other CC licenses provide options that retain copyright while allowing
various levels of permission. For instance, CC-BY-NC allows non-
commercial reuse, CC-BY permits modifications and commercial use
with attribution, CC-BY-SA requires any adaptations to be shared under
identical terms, and CC-BY-ND allows only unchanged and whole redis-
tribution with proper credit. Of the datasets, 61.9% specified a license for
their reuse, with over 50% licensed with CC BY, followed by Apache 2.0
(18.5%). In cases where a single dataset carriesmultiple licenses, such as one
panoramic radiograph dataset with dual licenses (CC0 1.0 and CC-BY)65,
the strictest of the licenses is applied.

While 61.9% of the datasets specified a license for reuse, some of them
might have possibly mislabelled the license on dataset platforms. This con-
tributes to the uncertainty regarding whether the openly accessible oral-
maxillofacial imaging datasets were releasedwith valid reuse terms or license,
placing them in a legal grey area. Using copyrighted datasets for training AI
models can potentially lead to legal issues62. The commonpractice of creating
a training dataset by repackaging existing open-source datasets can be pro-
blematic. If a dataset is protected by NoDerivatives licenses, such as CC-BY-
ND, it cannot be included in a dataset to train an AImodel. In such case, the

trainedmodel could be considered a derivative of the training data, violating
the exclusive rights of the copyright holders. Similarly, if an AI model is
trainedusing a dataset protected by licenses permitting only non-commercial
reuse, future commercialization of the trained model might be restricted62.
These evolving legal issues regarding dataset reuse are gaining attention from
academic organizations, industry labs, and research institutions. Therefore,
reusing these datasets should be cautious due to potential legal issues.
Schwabe et al. introduced the METRIC-framework, which provides a sys-
tematic approach for assessing training datasets, establishing reference
datasets, and designing test datasets66. This framework proposes fifteen
awareness dimensions across five data management clusters, including
measurement process (device error, human-induced error, completeness,
and source credibility), timeliness (timeliness), representativeness (variety,
depth of data, target class balance), informativeness (understandability,
redundancy, informative missingness, feature importance), consistency
(rule-based consistency, logical consistency, and distribution consistency).
These dimensions could contribute to the development of clear, standardized
guidelines for the ethical reuseofpublicly accessiblemedical anddental image
datasets, while strictly complying with licensing requirements.

This systematic reviewhas limitations. First, due to the large number of
images from the included datasets, it is not practical to assess the quality of
all images. Since image quality is often assessed for specific clinical indica-
tions, the quality of images from the included datasets should be evaluated
by interested researchers basedon their intended tasks. Second, somecrucial
factors such as metadata completeness, identification of data reuse issues,
and data traceability were not included in the assessment of the risk-of-bias
for the included datasets, which might not be able to fully account for all
potential biases introduced into the datasets. Furthermore, this study
excluded certain large, high-quality image datasets48 as the access could not
be obtained due to a lack of response from the dataset owners, despite
following the requirements for registered access. Moreover, the datasets
released may be subject to continual updates without any official notifica-
tion. Therefore, the changes in the number and annotations of images from
the datasets should be confirmed with caution before reuse.

In conclusion, this study has systematically identified 105 public oral-
maxillofacial imaging datasets and investigated their sources, characteristics,
and ethical and licensing considerations. While the majority of the datasets
included annotations, only some specified the annotators’ qualifications.
Furthermore,more than half of the datasets specified the terms or licenses for
reuse, butmost did not disclosewhether ethical approvalwas obtained.These
findings highlight the need for careful consideration of ethical and legal
implications when reusing these datasets and suggest the need to establish
clear, standardized guidelines for reusing publicly accessible image datasets.

Methods
This systematic reviewwas conducted in accordancewith the guidance of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA)19. The PRISMA checklist used for this review is provided in
SupplementaryTable S2. The study protocol has been registered on theOpen
Science Framework (OSF) (Registration https://doi.org/10.17605/OSF.IO/
SFN5C). The focused question guiding the search was, “Which open-source
datasets related to images from the oral-maxillofacial region are available?”.

Search strategy and selection criteria
The search strategy consisted of two components, including the search of
two electronic scientific literature databases (PubMed and Google scholar)
and three widely-used dataset management platforms (Google Dataset
Search, Kaggle, and Hugging face) to identify as many publicly accessible
image datasets as possible. The search was conducted in September 2024.
The literature search combined free-text terms of (“dentistry” OR “dental”
OR “oral” OR “maxillofacial”) AND (“open source” OR “open access” OR
“publicly available” OR “publicly accessible”) AND (“data” OR “dataset”
OR “repository”) AND “images”. Vocabulary and syntax were adjusted
accordingly for each database. The search terms used on dataset manage-
ment platforms were “dentistry” OR “dental” OR “oral-maxillofacial” OR
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“dental image” OR “oral image”. The specific search strategies used for all
databases are provided in Supplementary Table S3.

The electronic literature database search was conducted without any
restrictions on the publication period. The criteria for inclusion were:
1. Original and review articles published in English;
2. Studies that report a dataset comprised of any type of imagemodalities

generating images from the oral-maxillofacial region, including scans
of dental models from patients; and

3. Studies providing the access to the dataset.

Studieswere excluded if oneof the following exclusion criteriawasmet.
1. Studies reporting a dataset consisting of images not from human

subjects;
2. Studies reporting a dataset consisting of images from cadavers or

extracted teeth;
3. Studies reporting a dataset consisting of images where the oral-

maxillofacial region was obscured using a blocking technique;
4. Studies reporting a dataset consisting of images that were included in

the most recently updated dataset from the same source; or
5. Studies where the full text is not available or accessible.

For the datasetmanagement platforms search, all open-source datasets
consisting of images from the oral-maxillofacial region were considered
eligible. The exclusion criteria were:
1. Datasets consisting of images not from human subjects;
2. Dataset consisting of images from cadavers or extracted teeth;
3. Datasets consisting of images where the oral-maxillofacial region was

obscured using a blocking technique;
4. Datasets consisting of images that were included in the most recently

updated datasets from the same source;
5. Datasets consisting of image files that were corrupted and could not be

opened; or
6. Datasets that require payment for access.

All records retrieved from the electronic literature database search were
compiled using the reference manager software (EndnoteTM Version 21,
Clarivate Analytics, New York, USA). The titles were automatically checked
for duplicates. Two independent reviewers (J.H. and K.F.H.) screened the
titles and abstracts of each record to select studies for further full-text eva-
luation. Reviewer K.F.H. is a professoriate faculty member in the subdivision
of Oral-Maxillofacial Radiology with over ten years of experience in con-
ducting diagnostic imaging studies. Reviewer J.H. is a PhD candidate at the
same institution with more than five years of research experience in the
development of artificial intelligence algorithms and is experienced in the
collection and evaluation of AI-related public datasets. Additional manual
searches on the reference lists of the included studies were conducted inde-
pendently by two reviewers (J.H. and K.F.H.) to further identify potentially
eligible studies thatmet the inclusion criteria. Subsequently, the two reviewers
(J.H. andK.F.H.) independently assessed the full-texts of the included studies.
The two reviewers compared the studies they identified as eligible, and then
discussed their reasons for considering certain studies tobe includedbasedon
the defined inclusion and exclusion criteria. Agreement was reached through
discussion. In cases where agreement could not be achieved, a third experi-
enced reviewer (Q.Y.H.A) was consulted to assist in reaching a consensus.
Inter-reviewer agreementwas evaluated by calculatingCohen’s kappa values.
Eligible datasets identified from the dataset management platforms were
organized using an Excel spreadsheet (Microsoft Corporation, Redmond,
Washington). Any duplicates from the electronic literature database search
and the dataset management platform search were eliminated.

Extraction of dataset characteristics and outcome of interest
Details regarding the year and purpose of dataset creation, creators, country
and institution of origin, imaging modality, image type and format, the
number of patients and images in the dataset, the manufacturer of the ima-
ging device, image annotation details, the qualification of the annotators, and

dataset access, were extracted by two reviewers (J.H. and K.F.H.) from the
included studies and the metadata of the datasets. In addition, information
pertaining to the acquisition of ethical approval for image collection aswell as
specific terms, conditions, and licensing requirements for reusing these
datasets were collected. Any discrepancies detected in the extracted datawere
resolved through discussion. In the case of a discrepancy between the
information provided in the included studies and the dataset repository, the
information from the repository was used in this study. All data were sys-
tematically tabulated using a standardized template created in an Excel
spreadsheet (Microsoft Corporation, Redmond, Washington).

Dataset accessibility
The accessibility of the datasets included in this study were divided into two
categories as follows:
1. Datasets that are readily accessible and can be directly downloaded

without any requirement.
2. Datasets that necessitate registered access, requiring submission of an

email request or the creation of an account. Upon fulfilling these
requirements, a download link for the dataset would be sent to the
applicant’s email. The accessibility status of these datasets was re-
confirmed at the time of manuscript submission.

Evaluation of applicability concerns of the included datasets and
the risk of bias in annotations
The applicability concerns of the included datasets and the risk of bias in
annotations were assessed independently by two reviewers (J.H. and
K.F.H.). Any discrepancies were resolved through discussion. A dataset was
deemed to have a “low” applicability concern if it reported both ethical
approval as well as the terms or licensing requirements for its reuse. If only
either ethical approval or terms or licenses were reported, the concern was
classified as “moderate”. If neither was reported, the concern was rated as
“high”. The assessment of the risk of bias in annotations focused on the
reliability of the reference standard (i.e., ground truth annotations), which is
one of the four domains proposed by the Revised Tool for the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2), a tool widely
used in diagnostic imaging studies67. According to the QUADAS-2, the risk
of bias in the reference standard should be assessed by the signalling
question “Is the reference standard likely to correctly classify the target
condition?”. Basedon theproposed signallingquestion, the riskof bias in the
ground truth annotations was assessed by evaluating the reliability of the
reference standard used for annotation. For datasets with annotations, the
“low” risk-of-bias rating was assigned to datasets where ground truth
annotations are confirmed by at least two annotators with explicit medical/
dental qualifications, or those supported by clinically or pathologically
confirmed results. Datasets with ground truth annotations determined by a
single qualified annotator, and those involving at least two annotators
identified as experts but without explicit qualifications, were given a
“moderate” risk-of-bias rating. All remaining datasets were categorized as
having a “high” risk of bias.

Data availability
Data sharing is not applicable to this article as no datasets were generated
during the current study. All the access links to the datasets analysed in this
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