Table 3 Results of comparison models on Kvasir-SEG dataset

From: GH-UNet: group-wise hybrid convolution-VIT for robust medical image segmentation

Type

Method

MAE ↓

Acc(%) ↑

Dice(%) ↑

IoU(%) ↑

CNN

UNet

4.21

95.62

87.96

82.34

 

UNet++

4.56

95.51

87.01

78.84

 

Att-UNet

4.42

95.49

87.14

82.06

 

PSPNet

4.14

95.68

87.95

82.62

 

DeepLabv3+

4.16

95.71

87.07

82.05

 

SFA

7.50

-

72.30

61.10

 

PraNet

3.00

-

89.80

84.00

 

ACSNet

3.00

-

85.15

78.67

 

nnUNet

3.96

96.03

89.75

83.59

 

Rolling-UNet

5.66

92.76

86.32

76.67

Trans

Swin-UNet

6.63

93.31

70.71

60.96

 

nnFormer

4.12

95.98

89.15

83.06

 

MISSFormer

7.11

92.98

71.56

61.17

RWKV

Zig-RiR

4.51

95.67

87.02

78.12

Hybrid

ResT

6.45

92.79

86.21

79.54

 

BoTNet

4.39

95.23

87.59

82.61

 

TransUNet

3.52

96.40

89.21

83.73

 

CvT

4.03

95.73

88.13

82.04

 

MixFormer

-

-

92.47

86.15

 

FSCA-Net

6.32

89.68

85.22

74.34

 

EMCAD

4.14

95.86

87.11

78.23

 

H2Former

2.52

97.49

91.80

86.29

 

GH-UNet

2.20

97.90

92.68

87.19

P-values: <5e-2 (Dice), <5e-2 (IoU)

  1. Bold values indicate the best performance.