Table 4 Results of comparison models on IDRiD dataset(%)

From: GH-UNet: group-wise hybrid convolution-VIT for robust medical image segmentation

Type

Method

Dice ↑

IoU ↑

AUC ↑

CNN

UNet

52.12

40.13

41.09

 

UNet++

53.26

41.32

39.14

 

Att-UNet

53.01

40.23

41.75

 

PSPNet

51.52

39.56

41.09

 

DeepLabv3+

53.22

41.14

56.53

 

SFA

52.04

40.79

43.29

 

PraNet

53.21

41.56

47.54

 

ACSNet

52.34

41.04

42.78

 

nnUNet

52.03

40.61

49.86

Trans

Swin-UNet

53.21

41.43

56.68

 

nnFormer

52.13

40.69

54.63

 

MISSFormer

51.79

39.86

58.37

Hybrid

ResT

45.23

34.20

55.67

 

BoTNet

53.61

41.06

57.74

 

TransUNet

52.21

39.86

53.74

 

CvT

51.35

39.79

54.45

 

H2Former

57.16

44.85

69.03

 

GH-UNet

67.01

51.16

81.06

P-values: <5e-2 (Dice), <5e-2 (IoU)

  1. Bold values indicate the best performance.