Table 5 Results of comparison models on ACDC dataset(%)

From: GH-UNet: group-wise hybrid convolution-VIT for robust medical image segmentation

Type

Method

Average↑

RV↑

MYO↑

LV↑

CNN

UNet

89.41

87.77

85.88

94.67

 

UNet++

89.58

87.23

87.13

94.37

 

Att-UNet

89.01

87.30

85.07

94.66

 

PSPNet

88.75

85.99

86.39

93.87

 

DeepLabv3+

88.25

85.41

85.44

93.90

 

SFA

89.24

86.42

87.83

93.49

 

PraNet

90.16

87.21

88.73

94.54

 

ACSNet

89.39

86.94

87.04

94.21

 

nnUNet

91.61

90.24

89.24

95.36

 

Rolling-UNet

90.12

88.00

89.00

93.36

Trans

nnFormer

92.06

90.94

89.58

95.65

 

Swin-UNet

90.00

88.55

85.62

95.83

 

MISSFormer

84.53

81.07

81.21

91.29

 

UNETR

88.61

85.29

86.52

94.02

RWKV

Zig-RiR

92.48

91.35

90.33

95.77

Hybrid

LeViT-UNet

90.32

89.55

87.64

93.76

 

BoTNet

88.75

85.99

86.39

93.87

 

TransUNet

89.71

88.86

84.54

95.73

 

CvT

89.01

87.30

85.07

94.66

 

MixFormer

91.01

89.02

88.46

95.55

 

FSCA-Net

91.44

89.32

90.15

94.87

 

EMCAD

92.12

90.65

89.68

96.02

 

H2Former

92.40

91.31

90.12

95.76

 

GH-UNet

92.61

91.45

90.51

95.86

P-values: <5e-2 (Dice)

  1. Bold values indicate the best performance.