Table 6 Results of comparison models on Synapse dataset

From: GH-UNet: group-wise hybrid convolution-VIT for robust medical image segmentation

Type

Method

Dice(%) ↑

HD95 ↓

CNN

UNet

67.89

26.60

 

UNet++

68.50

42.39

 

Att-UNet

67.40

35.73

 

PSPnet

67.74

30.28

 

DeepLabv3+

66.53

29.58

 

SFA

67.43

26.94

 

PraNet

68.79

21.49

 

ACSNet

68.04

24.52

 

nnUNet

69.67

23.58

 

Rolling-UNet

68.21

23.67

Trans

nnFormer

69.76

20.55

 

Swin-UNet

67.74

20.28

 

MISSFormer

66.50

24.36

RWKV

Zig-RiR

74.39

13.10

Hybrid

BoTNet

65.98

36.92

 

TransUNet

68.04

27.21

 

CvT

67.11

21.77

 

MixFormer

-

-

 

FSCA-Net

71.74

15.01

 

EMCAD

72.55

14.30

 

H2Former

70.52

15.03

 

GH-UNet

77.68

12.46

P-values: <5e-2 (Dice)

  1. Bold values indicate the best performance.