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Diagnosing pathologic myopia by

identifying morphologic patterns using
ultra widefield images with deep learning
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Pathologic myopia is a leading cause of visual impairment and blindness. While deep learning-based
approaches aid in recognizing pathologic myopia using color fundus photography, they often rely on
implicit patterns that lack clinical interpretability. This study aims to diagnose pathologic myopia by
identifying clinically significant morphologic patterns, specifically posterior staphyloma and myopic
maculopathy, by leveraging ultra-widefield (UWF) images that provide a broad retinal field of view. We
curate a large-scale, multi-source UWF myopia dataset called PSMM and introduce RealMNet, an
end-to-end lightweight framework designed to identify these challenging patterns. Benefiting from the
fast pretraining distillation backbone, RealMNet comprises only 21 million parameters, which
facilitates deployment for medical devices. Extensive experiments conducted across three different
protocols demonstrate the robustness and generalizability of RealMNet. RealMNet achieves an F1
Score of 0.7970 (95% CI 0.7612-0.8328), mAP of 0.8497 (95% CI 0.8058-0.8937), and AUROC of

0.9745 (95% CI 0.9690-0.9801), showcasing promise in clinical applications.

The increasing prevalence of myopia worldwide is a significant public health
concern'. It is projected that by 2050, nearly 50% of the global population
will be affected. Myopia, defined by a spherical equivalent < —0.5 diopters,
can lead to visual impairments that greatly reduce patients’ quality of life and
impose substantial economic burdens’. All degrees of myopia pose potential
risks for adverse changes in ocular tissues, especially at high levels of myopia
(defined as spherical equivalent worse than —5.0 or —6.0 diopters) and
pathologic myopia (resulting in irreversible visual impairment or blindness
due to pathological retinal changes secondary to high myopia)’. Ophthalmic
examinations, typically involving fundus imaging, are necessary for
detecting and diagnosing relevant fundus lesions. While traditional color
fundus photography (CFP) captures the retina within 30-60 degrees, novel

imaging modalities such as ultra-widefield (UWF) imaging with a field of
view ranging from 100 to 200 degrees’, can capture retinal lesions missed by
CFP, leading to improved screening accuracy and early detection. Despite
the increasing use of advanced retinal imaging in ophthalmic practices,
publicly available UWF datasets remain scarce, hindering the development
of diagnostic and support systems necessary to help clinicians interpret
these advanced imaging modalities.

Advancements in deep learning have made it possible to automatically
process medical images for various tasks, achieving performance compar-
able to clinical experts™. In the case of retinal diseases, deep learning models
not only accurately diagnose and monitor conditions such as diabetic
retinopathy and age-related macular degeneration from retinal images'*™",

"Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China. ’Shenzhen Eye Hospital, Jinan
University, Shenzhen Eye Institute, Shenzhen, China. *Department of Automation, Tsinghua University, Beijing, China. “‘Southern University of Science and
Technology Hospital, Shenzhen, China. *Hangzhou Dianzi University, Hangzhou, Zhejiang, China. ®State Key Laboratory of Ophthalmology, Zhongshan Oph-
thalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangdong Provincial Clinical Research Center
for Ocular Diseases, Guangzhou, China. “Clinical Laboratory of Lishui People’s Hospital, First Affiliated Hospital of Lishui College, Wenzhou Medical College Lishui
Hospital, Lishui, Zhejiang, China. Zhejiang Key Laboratory of Imaging and Interventional Medicine, Department of Radiology, Lishui Central Hospital, The Fifth
Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China. 9School of Mechanical, Electrical & Information Engineering, Shandong University,
Weihai, China. "°Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China. "'These authors contributed equally: Yang

Liu, Keming Zhao.

e-mail: wangjiantao65@126.com; pwqin@sz.tsinghua.edu.cn; jijstcty@wmu.edu.cn

npj Digital Medicine | (2025)8:435


http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01849-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01849-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-01849-y&domain=pdf
mailto:wangjiantao65@126.com
mailto:pwqin@sz.tsinghua.edu.cn
mailto:jjstcty@wmu.edu.cn
www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01849-y

Article

but also assist in developing personalized treatment plans'”. In addition,
deep learning has been applied to myopia-related screening'*', assessing
the risk of myopia progression by analyzing retinal images and enabling
early intervention. Although these methods are robust, there is a need for
further investigation into sophisticated morphologic patterns. A system
called the Meta-Analysis of Pathologic Myopia (META-PM)'® categorizes
myopic atrophic components into five classes: no myopic retinal lesions
(Grade 0), tessellated fundus only (Grade 1), diffuse chorioretinal atrophy
(Grade 2), patchy chorioretinal atrophy (Grade 3), and macular atrophy
(Grade 4). Pathologic myopia is now defined as myopic maculopathy
(according to META-PM criteria: grade 2 or above) or posterior
staphyloma”. Posterior staphyloma appears as an outpouching of the ocular
wall, with a curvature radius smaller than that of the surrounding sclera.
Posterior staphyloma often leads to changes in the retina, choroid, and nerve
fiber layer, subsequently affecting the patient’s vision. Early identification of
posterior staphyloma is crucial because it can lead to severe complications,
such as retinal detachment, macular hemorrhage, and choroidal neo-
vascularization, all of which may cause irreversible vision loss. Myopic
maculopathy is one of the primary causes of vision deterioration in indi-
viduals with high myopia, as it directly affects the macula. Since the macula
is the area of the retina that provides the highest visual acuity, any damage to
this area can significantly affect vision quality. Early diagnosis and man-
agement of these conditions can help slow or prevent disease progression
and reduce the risk of vision loss. While the association between high
myopia and peripheral retinal lesions is well-established, automated iden-
tification of clinically relevant morphologic patterns using ultra-widefield
imaging remains a technical and practical challenge. This study bridges that
gap by developing and validating a dedicated deep learning model on a
large-scale and expert-annotated dataset. This advancement allows for
scalable screening and risk assessment in real-world settings where access to
retinal specialists and multimodal imaging may be limited.

Existing research has some limitations despite advancements. Firstly,
less attention is given to myopic maculopathy and posterior staphyloma.
This is possibly due to the difficulty in identifying their complete contour on
CFP accurately. In contrast, UWF imaging allows for precise diagnosis of
peripheral lesions and the edges of staphyloma, appearing as a dark gray
band-shaped ring with twisted retinal and choroidal vessels. However, the
high equipment cost, intricate operational procedures, and data acquisition
expenses make large-scale UWF data collection challenging for many stu-
dies. Additionally, existing research lacks UWF datasets that feature lesion-
wise labeling. This is largely due to the necessity for accurate localization and
identification of each lesion, which requires extensive clinical case support
and expert review. In imaging for pathologic myopia, the lesions are com-
plicated and widely distributed, particularly in the peripheral regions of the
retina, making it significantly challenging to label them accurately. The
scarcity of datasets with lesion-wise labels restricts the depth of research in
pathologic myopia and hinders the improvement of clinical diagnosis and
treatment. Secondly, previous studies often use balanced data, ignoring the
significant data imbalance in real-world scenarios'. Retinal lesions in
pathologic myopia are highly heterogeneous and often coexist with other
types of retinal lesions. This leads to imbalanced data, making it more
challenging to accurately distinguish posterior staphyloma from myopic
maculopathy. Thirdly, detecting posterior staphyloma and myopic macu-
lopathy involves complex multi-label learning tasks, which pose higher
demands on algorithm models. Many existing studies focus on identifying a
single lesion or simpler pathologies and cannot handle multiple complex
coexisting lesions. Thus, traditional imaging data and diagnostic tools may
not provide precise classifications, limiting the exploration of these specific
lesions. Lastly, there has been a strong focus on building large and complex
models”. Although these models are powerful, they lack flexibility and incur
high costs when applied to medical devices, particularly in resource-
constrained clinical environments. Reducing the number of trainable
parameters results in faster training times and lower computational costs,
which are crucial for rapidly adapting models to specific medical applica-
tions. Lightweight models that maintain high accuracy with fewer

parameters are particularly advantageous in medical settings, where com-
putational resources may be limited or where devices require constant
iteration.

In this work, we present a detailed and efficient workflow (Fig. 1)
tailored to meet the clinical need for early and large-scale identification of
pathologic myopia. We developed a specialized deep learning model aimed
at detecting its key morphologic features: posterior staphyloma and myopic
maculopathy. Our approach emphasizes the distinct structural abnormal-
ities observed in UWF images of patients with high myopia, offering a
focused diagnostic tool in this context. We compile a dataset containing
UWEF images of pathologic myopia with clinically significant lesions from
multiple medical sources. Experienced ophthalmologists label images
related to posterior staphyloma, myopic maculopathy, and peripheral
lesions under the guidance of META-PM and double-check annotations to
ensure accuracy. With the support of this curated dataset, we are able to
identify clinically significant morphologic patterns by developing an end-to-
end framework called RealMNet that embraces Real-world Myopia diag-
nosis. The name RealMNet is particularly chosen to reflect its focus on real-
world applications and its ability to handle complex, real-world data more
effectively than its predecessors. With the adoption of a compact and effi-
cient vision transformer” as our backbone, the framework is light enough to
be applied to medical devices. We approach this challenge as a multi-label
learning task for two reasons: first, posterior staphyloma may be present
with myopic maculopathy, jointly indicating pathologic myopia, and sec-
ond, peripheral lesions could coexist. We comprehensively evaluate
RealMNet’s performance using three distinct experimental protocols: cen-
tralized inference, main-source robustness, and cyclic-source general-
izability. Under the centralized inference protocol, we compare the
inference performance of RealMNet on the PSMM dataset against four
pretrained benchmark approaches (DeiT*', ConvNeXt”, EfficientNet™, and
Swin Transformer’) and two recent foundation models (DINOv2* and
VisionFM™). The other two protocols are used to assess the robustness and
generalizability of the model for lesion identification, which is crucial for
clinical use. We evaluate labeling efficiency using RealMNet with increasing
resolutions and interpret parameters at different stages of the backbone. We
demonstrate the effectiveness of regularization techniques used in the
proposed method with extensive evaluation experiments. We examine the
potential negative impact of physical device boundaries in images captured
by ultra-widefield imaging, as these boundaries may obstruct essential
information. We demonstrate the advantages of the UWF modality by
comparing them with fake CFP images. Finally, we investigate transfer
learning on identifying peripheral lesions (Supplementary Fig. 6): no per-
ipheral lesion (NoPL), lattice degeneration or cystic retinal tuft (LDoCRT),
holes or tears (HoT), rhegmatogenous retinal detachment (RRD), and
postoperative cases (PC), which can co-occur in high myopic eyes and lead
to significant visual impairment.

Results

Multi-source curated UWF myopia dataset provides a solid
foundation for multi-lesion identification

We gathered a specialized dataset called PSMM derived from five dis-
tinct hospital sources for identifying posterior staphyloma and myopic
maculopathy that could assist clinicians in diagnosing pathologic
myopia. The PSMM dataset comprised 43,371 ultra-widefield images of
4560 patients who sustained high myopia or pathologic myopia after
data filtering for quality assurance. We also separately managed the five
sub-sources that integrated the PSMM dataset to facilitate characteristic
research. Generally, the PSMM dataset provided a competitive scale
considering the expense of ultra-widefield imaging that captured a
broader retinal field of view compared to color fundus photography
(Supplementary Fig. 1a). Experienced ophthalmologists labeled pos-
terior staphyloma with binary annotations to indicate its presence
(NoPS or PS) and myopic maculopathy with five categories: no myopic
retinal lesions (NoMRL), tessellated fundus only (TFO), diffuse chor-
ioretinal atrophy (DCA), patchy chorioretinal atrophy (PCA), and

npj Digital Medicine | (2025)8:435


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01849-y

Article

a
Data acquisition Data labeling Data processing Data stratified partition Data reprocessing
[ ]
iﬁi* ‘Q %! Desensitization Training set N :
Main center PY PY b e Resampling
B - ) ‘ﬁ ‘ﬁ - > |z|| Image resizing - ) +
n Development set @ Simulated augmentation
Batch-wise augmentation
i E1,2,...,n Data filtering fo! Objective centralization ) o
Auxiliary centers LJ Testing set
b
. . o . . Posterior staphyloma
Feature extraction Cost-sensitive calibration Classifier adaptation
Myopic maculopathy
Q 8 (Qé'l Large-parametric mm———— ~xH ) .
o) ) ) 1\ 44 ' Multi-head attention No staphyloma
“O O teacher model f
Asymmetric focusing 1 [ X
8 Q70 g || T with temperature control Posterior staphyloma
O I 1 g;:::;agnostlc : 8 No myopic retinopathy lesions
- e 1
lﬁ\ Pretraining distillation ~ —  — — — ) .’ -, P N .I’ —)> Tessellated fundus only
h f 1 . N
o 8 % Smallparametric = ; .’ 1 Final logits Diffuse chorforet!nal atrophy
o o0 studen‘zmodel Feature vectors 1 lass-specific : Patchy chorioretinal atrophy
O O " scores ) Complete macular atrophy
[
Centralized inference Main-center robustness Cyclic-center generalization Bootstrapping
+
.......... . aKE. .1R
: 'S : ey 1
8 ]
+NE.+ 3N ' f g g
* — - —_—
'dNE-+ MK .. > R 3RE > iRE— aKE.
S .
l coe \\ini’ ’
ini n + n-1
d
Labeling efficiency Parameter efficiency Regularization efficiency Focusing efficiency Model interpretation
] ' '
° O
LS 144 0
— ) o o0 __ ) + _ ) 500
> & o 00
——— o Modified visualization of
Physical device gradient-weighted
Training label ratio Stage freezing Augmentation  Rrop neural path boundary segmentation class activation mapping
e

Strategy determination All-around evaluation metrics

~
——~A—

>< >«

&J

Resampling Resolution Regularization
Cost-sensitivity Classifier

Multi-label bipartitions
Multi-label rankings

Fig. 1 | General overview of the study. a Data machining: data are collected from
one main center and four auxiliary centers. After double-checking labeling, quality
filtering, and essential processing, a stratified partition is implemented to ensure that
the distribution of lesions remains similar across sets. Resampling and augmentation
techniques are then used to alleviate label imbalance. b Model training and inference:
the pretraining-distilled small parametric model is task-specifically fine-tuned with
asymmetric focusing and classifier adaptation, which complementarily mitigate
label imbalance. ¢ Experimental protocols: three protocols are designed to
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Broader impact

e
— |
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demonstrate precise inference, robustness, and generalizability of the proposed
method. All experiments are implemented by bootstrapping the testing set 1000
times. d Reasoned workflow: model efficiencies of dataset labeling, training para-
meters, regularization techniques, and focusing regions are extensively examined.
Visualizations of gradient-weighted class activation mapping are provided for
intuitive interpretations. e Model development and assessment: models are pro-
gressively developed through strategy determination, and their performance is
assessed on a unified deployment platform using all-around evaluation metrics.

npj Digital Medicine | (2025)8:435


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01849-y

Article

a
30000
25000
25000
2 20000
= 20000 - 4
= £ 15000 ~
9 15000 g
10000 & 10000
5000 5000
2070 785 1661 703
0 T T T T —‘-|-_ 0 T T T T —‘-|-_
NoPS PS NoMRLTFO DCA PCA MA NoPS PS NoMRLTFO DCA PCA MA
300
600 250
< 200
©
Z 400 [
5 2 150
3 s
N
200 100
50 37
17 11 15
0 T T T T — 1 0 T T T T
NoPS PS NoMRLTFO DCA PCA MA NoPS PS NoMRLTFO DCA PCA MA
b
=== NoMRL

NoPS-NoMRL [

NoPS-TFO |:|

mm—_:

l TFO

NoPS-TFO

2500 -

2000 -

1500

SUSTech

1000

500

12 15

100 +

80

Lishuiz

60
40

20

NoPS

PS NoMRLTFO DCA PCA MA

12

== NoMRL

[ s
[

T
NoPS

PS NoMRLTFO DCA PCA MA

NoPS-NoMRL ==

NoPS-TFO |:|

PS-TFO . [ oca ps7r0 [
-
Ps PS-TFO -
PS PS-DCA |:|
Ps-DCA D rs
[ oca ~ PS-DCA |:|
[ oca T
PS-PCA - PS-PCA
T rca . PS-PCA [eea
PS-MA
= vA L — A PSMA = = mA ps-vA I
PSMM ShenzhenEye SUSTech
[ NoMRL —— NoMRL NoPS-NoMRL == = NoMRL NoPS-NoMRL ==
NoPS-NoMRL [ |
NoPS |:| NoPsS NoPS-TFO |:| NoPS NoPS-TFO
NoPS-TFO
TFO NoPS-DCA —— TFO NoOPS-DCA ——
TFO
ps-TFo [ ps-TFo [
Ps NoPS-PCA—— - NoPS-PCA-——
s ps-TFo [ - ES
- PS-DCA - - PS-DCA
== DCA PS-DCA [ = pca — [ DeA N~ =
— pcA PEPEA—— = pcA PS-PCA I = PCA PS-PCA I
— MA PS-MA —— — A PS-MA == —MA PS-MA ——
LishuiR Zhongshan Lishuiz

Fig. 2 | Statistics and complications associated with lesions of posterior staphy-
loma and myopic maculopathy. a Statistical analysis of the seven categories in the
PSMM dataset and its subsets, with specific values assigned to the minimum two

categories of each dataset. b Illustrations of complications arising from posterior
staphyloma and myopic maculopathy. Sankey diagrams are plotted to illustrate the
distribution of these complications in the PSMM dataset and its subsets.

macular atrophy (MA). An intuitive illustration of these morphologic
patterns can be found in Supplementary Fig. 1b and 1c. Notably, pos-
terior staphyloma and myopic maculopathy may appear simulta-
neously (Fig. 2b), forming multi-label datasets. The PSMM dataset
exhibits an imbalanced distribution (Fig. 2a), posing a significant
challenge to method development. Overall, the PSMM dataset is well-
curated on fine-grained multi-lesion recognition and the diagnosis of
pathologic myopia, which also provides convenience for those devel-
oping deep learning models for recognizing retinal diseases, as well as

empowering large-parametric deep learning techniques like foundation
models to discern retinal diseases requiring ultra-widefield images.

End-to-end lightweight hybrid framework with optimization
mitigates multi-label imbalance issue

The imbalance present in multi-label datasets significantly impacts the
model’s performance, leading to biased learning and inadequate knowledge
acquisition. This study presented three techniques to address the imbalance
issue in the PSMM dataset (Supplementary Table 2): resampling methods,
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classifier adaptation, and cost-sensitive calibration. Cost-sensitive calibra-
tion addressed the multi-label imbalance by developing the loss function
based on Binary Cross-Entropy (BCE) Loss”. This approach recognizes that
multi-label learning decomposes the multi-label task into several binary
tasks, each aimed at distinguishing samples within a target class category.
We gradually introduced configurable parameters for BCE Loss to reduce
the imbalance issue on the PSMM dataset. To begin, we trained the model
using BCE Loss. We implemented a commonly used weighting factor « € [0,
1] to form an a-balanced BCE Loss for class imbalance. In our experiments,
we discovered that the model performed better when using an « value 0of 0.75
(Supplementary Table 5), which aligned with its original use in the dense
detection task. We introduced a focusing parameter, y, to adjust the loss
function and concentrate training on difficult negative samples by reducing
the impact of easy samples™. We tested different a values for each candidate
focusing parameter within the list of [0,0.1,0.2,0.5, 1,2, 5], as recom-
mended in the original literature. We found that increasing the focusing
parameter did not yield any benefits (Supplementary Table 6), possibly due
to the elimination of gradients from rare positive samples while devaluing
the contribution from easy negatives. To address this issue, we utilized y,
and yp_ to separate the focusing levels of positive and negative samples,
allowing the model to emphasize the positive samples while minimizing the
influence of easy negative samples™. The experimentally determined cost-
sensitive calibration helps the model learn from balanced samples (Sup-
plementary Fig. 4a), ultimately leading to optimal performance with y, =3
and y_ = 4. We introduced a probability-shifting mechanism to assess the
influence of very easy and mislabeled negative samples. The results showed
that adjusting the shifted probability did not improve the model’s perfor-
mance, indicating that our dataset was well-curated and had minimal errors.
We also studied a state-of-the-art approach called Two-way Loss™, which is
exclusively designed for multi-label learning. This method uses relative
comparison with the softmax function. We adjusted the margins between
positive and negative logits using positive temperature Tp and negative
temperature Ty. We evaluated different values for Tp and Ty within the list
of [0.5, 1, 2, 4]. The results (Supplementary Table 7) showed a similar trend
to the original study, but the best-performing choice still did not outperform
our implementation using asymmetric focusing. Classifier adaptation
involves residual attention, combining class-specific and class-agnostic
features during the inference stage’. We introduced a configurable para-
meter A to leverage these two types of features, searching within the range of
[0.2, 1.4] with a step of 0.2, as done in the original literature using Vision
Transformer as the backbone on the MS-COCO dataset. The residual
attention was extended in a multi-head (H) manner, initially set at H = 8.
The model with A = 1.2 and H = 2 achieved better mAP compared to other
settings while maintaining similar performance on other evaluation metrics
(Supplementary Fig. 4a).

Multi-protocol experiments demonstrate valued inference with
robustness and generalizability

We devised three distinct experimental protocols (Fig. 1c) to explore the
model’s inference capacity, robustness, and generalizability (see detailed
strategies in “Experimental protocols” section). The results (Fig. 3) under the
centralized inference protocol revealed that RealMNet-Max outperformed
(P < 0.001) four benchmark approaches on F1 Score with 0.7970 (95% CI
0.7612-0.8328), mAP with 0.8497 (95% CI 0.8058-0.8937), and AUROC
with 0.9745 (95% CI 0.9690-0.9801). Notably, RealMNet-Max out-
performed (P < 0.001) two foundation models, DINOv2” and VisionFM**
by (mean estimate) 5.73% and 8.02% on F1 Score, 5.94% and 7.95% on
mAP, 1.10% and 1.71% on AUROC, respectively. Unless otherwise noted,
these three metrics were considered the primary criteria for measuring the
model’s performance. We presented other evaluation metrics for compre-
hensive analysis (see “Evaluation metrics” section). Specifically, RealMNet-
Max achieved the lowest Coverage of 2.2522 (95% CI 2.2157-2.2888), sig-
nificantly surpassing (P < 0.001) other models, indicating that the proposed
model could better approximate the realistic situation. Precision and Recall
were two opposite measures, with one tending to be high and the other low.

In our case, we preferred a superior Recall for developing a discrimination
model that would identify as many potential positive samples as possible to
aid in screening. Guided by the main-source robustness protocol, we dis-
covered that the model trained exclusively on the main subset could reliably
identify posterior staphyloma and myopic maculopathy on auxiliary subsets
in general (Fig. 4a). On the other hand, it illustrated abundant task-specific
knowledge implied in the primary source data. RealMNet represented
robustness on the SUSTech subset, achieving an F1 Score of 0.7956 (95% CI
0.7187-0.8724), mAP of 0.8927 (95% CI 0.8211-0.9642), and AUROC of
0.9869 (95% CI 0.9830-0.9908). Even when tested on the Zhongshan subset
whose hard negative samples may hinder model inference, our model still
maintained acceptable performance (mean value) with an F1 score of over
70%, mAP over 80%, and AUROC over 95%. When examined under the
cyclic-source generalizability protocol, RealMNet exhibited similar perfor-
mance to that under the main-source robustness protocol (Fig. 4b),
reflecting its stable performance when additional information was intro-
duced. On the Zhongshan subset, the model displayed difficulty in correctly
distinguishing a small fraction of label pairs, as evidenced by a Hamming
Loss of 0.0985 (95% CI 0.0898-0.1072) and a Ranking Loss of 0.0530 (95%
0.0467-0.0593). This could be attributed to a relatively high Coverage value,
indicating that the model required more steps to infer all relevant labels for
the samples of posterior staphyloma and myopic maculopathy.

Reasoned workflow facilitates convincing diagnosis of patholo-
gic myopia in clinical application

Even though deep learning methods offer powerful capacities, they are
commonly known as black boxes due to their intricate inference
mechanisms™. To be useful in clinical applications, these methods need to
be not only efficient but explainable and trustworthy. Labeling efficiency
refers to the amount of training data and labels required to achieve a certain
level of performance for a given task, which shows the annotation workload
for medical experts'’. RealMNet achieves precise identification even with
only half of the training resources in data ablation studies (Fig. 5a),
demonstrating its capability to capture clinically significant morphologic
patterns at a low-level feature space. RealMNet-384 exemplified a remark-
able improvement (mean value) in F1 Score by 10%, mAP by 10%, and
AUROC by 1%, despite an increase in labeling from 20% to 50%. Although
the RealMNet-Min and the RealMNet performed similarly as more training
data was used, RealMNet-Max consistently achieved superior performance,
demonstrating the non-trivial benefits of abundant information involved in
higher resolution. The model could have gained even slightly higher per-
formance when using ninety percent of the training resources; we insisted
that the model trained on all available data eliminate the variability and
produce unbiased results. We aimed to assess the contribution of each stage
of the used backbone by measuring parameter efficiency (Fig. 5b). Freezing
the first one or two layers of the model did not decrease performance,
indicating that the model retained low-level general features from pre-
training distillation on large-scale natural image datasets (e.g., ImageNet-
21k). However, the performance of RealMNet dropped significantly when
the first three or four layers were frozen, indicating that the model still
required high-level features related to morphologic patterns. Furthermore,
we observed the efficacy of the regularization used in this study. Augmen-
tation is a crucial regularization technique widely adopted in deep learning-
based approaches to augment training data to avoid overfitting, especially
when the amount of training data is not large enough in many tasks of
medical fields. We explored the impact of the proposed simulated aug-
mentation and batch-wise augmentation (Fig. 5c) with ablation studies and
found that employing these two types of augmentation techniques brought a
gain of 3.5% on F1 Score, 6.7% on mAP, and 3.2% on AUROC, respectively
(w/o Augmentation vs. Augmentation). The simulated augmentation was
used to mirror real-world situations. The model’s performance decreased
significantly when the simulated augmentation was removed (w/o
S-Augmentation vs. Augmentation). This suggested that the model was
trained with overly optimistic and simplistic objectives because the training
data did not represent real-world scenarios. Batch-wise augmentation
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of the displayed metric. The estimates are computed by generating a bootstrap
distribution with 1000 bootstrap samples for corresponding testing sets with
n=1000 samples. All P-values are computed with a two-sided t-test between
RealMNet-Max and the most competitive comparison model to determine if there
are statistically significant differences.

involved enhancing synthetic samples by interweaving two samples.
Removing batch-wise augmentation did not cause a significant loss (w/o
B-Augmentation vs. Augmentation), indicating that the model had inher-
ently been adequate to build intra- and inter-affinities between morphologic
patterns. A slight decrease in Ranking Loss and Coverage suggested that
batch-wise augmentation helped the model learn more accurate label dis-
tributions. Drop path™ is another regularization technique that markedly
circumvents the overfitting issue by randomly dropping the neural path of
the network. We used the drop path because of the overfitting hazard caused
by a relatively small scale of training data (Supplementary Fig. 5c). To
interpret the panoramic focusing capacity of RealMNet, we considered the
potential negative impact of the physical device boundaries inevitably
imaged along with the imaging targets by ultra-widefield imaging, which
may occlude essential information. The comparative experimental results
(Fig. 6a) showed that there was no significant difference (mean estimate
0.15% on F1 Score, —0.21% on mAP, —0.02% on AUROC) between the
performance of models trained on data with and without boundary seg-
mentation, which suggested that the model distinguished instrumental

regions and focused on the field of view within the boundaries of the phy-
sical devices. We conducted experiments to specifically measure the benefits
of using UWF images over CFP images (Supplementary Fig. 7b) for iden-
tifying posterior staphyloma and myopic maculopathy. Experimental
results (Fig. 6b) indicated that the model trained with UWF images sig-
nificantly outperformed the model trained with fake CFP images by (mean
estimate) 6.03% on F1 Score, 4.84% on mAP, and 0.93% on AUROC,
respectively. This enhanced performance can be attributed to the higher
resolution, superior imaging quality, and broader retinal field of view
afforded by the UWF modality. Visual interpretability has been widely
recognized as an intuitive representation of the decision-making process in
deep learning techniques. We adopted an improved version of gradient-
weighted class activation mapping’* that mapped objects’ morphology
better and explained occurrences of multiple objects of a class in a single
image. We generated visualizations of random samples for each category
using RealMNet (Fig. 7). The outputs are in the exploratory phase and
require rigorous quantitative validation or assessment by experts to ensure
their reliability and effectiveness. These heatmaps qualitatively revealed
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Fig. 4 | Model performance under the main-source robustness protocol and
cyclic-source generalizability protocol. a Assessing model robustness by training
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main-source robustness protocol. b Assessing model generalizability by training on
the main source subset combined with three of the four auxiliary source subsets and
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testing on the remaining subset under the cyclic-source generalizability protocol.
The error bars represent the 95% confidence interval of the estimates, and the bar
center represents the mean estimate of the displayed metric. The estimates are
computed by generating a bootstrap distribution with 1000 bootstrap samples for
corresponding testing sets with n=1000 samples.

irregular attentive regions corresponding to diffused morphologic patterns
embodied in different lesion categories. We observed that the highlighted
regions often correspond to clinically relevant areas of the retina. For
example, the heatmaps for MA and PCA tended to focus on the macular
region, which aligns with the typical distribution of lesions seen in clinical
diagnoses. Likewise, in cases of DCA, the heatmaps commonly covered the
mid-peripheral retina, consistent with known patterns of atrophic pro-
gression. These spatial relationships suggested that the model implicitly
learns to concentrate on anatomically significant regions when predicting
different subtypes of myopic maculopathy, thereby enhancing both inter-
pretability and clinical relevance. We also visualized class-wise confusion
matrices for identifying morphologic patterns on the PSMM dataset
(Supplementary Fig. 10 and 11).

The inherent patterns of the model developed in this study make it easy
to use for tasks concerning concurrent lesion identification. In this study, we
emphasized the significance of identifying peripheral retinal lesions in
highly myopic eyes. We observed (Fig. 8b) that the fine-tuned model gen-
erally performed well, with an AUROC of 0.8642 (95% CI 0.8405-0.8880) in

discerning concurrent peripheral retinal regions with the proposed off-the-
shelf workflow without bells and whistles. We found that the fine-tuned
model could accurately perceive PC with an F1 Score of 0.8394 (95% CI
0.8033-0.8754), mAP of 0.8894 (95% CI 0.8580-0.9208), and AUROC of
0.9029 (95% CI 0.8721-0.9336). We inferred an inferior capacity to dis-
tinguish RRD and HoT, possibly due to the scarcity of real-world data.
Notably, we used consistent training settings for the intuitive perception of
transfer capacity, which signified the potential for improved performance
with further investigation. The success of our workflow in identifying per-
ipheral retinal lesions highlights its broader utility for enhancing the diag-
nosis of retinal diseases and other complex medical scenarios Tables 1-3.

Discussion

In this study, we introduced a novel perspective for assisting in diagnosing
pathologic myopia by means of identifying posterior staphyloma and
myopic maculopathy using ultra-widefield images with deep learning. We
found that there have been many studies dedicated to the application of deep
learning to assist myopia diagnosis™”. However, the majority of these
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Fig. 5 | Efficiency of RealMNet in identifying posterior staphyloma and myopic
maculopathy on the PSMM dataset. a Labeling efficiency: we progressively increase
the amount of training data and labels to achieve precise and stable performance.
b Parameter efficiency: we freeze training parameters from different stages to
observe the contribution of each stage. ¢ Augmentation efficiency: we ablate two
types of augmentation techniques, namely simulated augmentation (S-Augmenta-
tion) and batch-wise augmentation (B-Augmentation), to observe the performance
gains that RealMNet gets as a result of these techniques. The error bars represent 95%

CI of the estimates, and the bar center represents the mean estimate of the displayed
metric. The estimates are computed by generating a bootstrap distribution with 1000
bootstrap samples for corresponding testing sets with n=1000 samples. All P values
are computed with a two-sided t-test between the original model and its variants to
determine if there are statistically significant differences. The bars marked with *ns'
are not significant. The asterisks indicate statistically significant differences:

*P <0.05; ¥*P<0.01; ***P<0.001.
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estimates, and the bar center represents the mean estimate of the displayed metric.
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The estimates are computed by generating a bootstrap distribution with 1000
bootstrap samples for corresponding testing sets with n=1000 samples. All P values
are computed with a two-sided ¢-test between two comparison models to determine
if there are statistically significant differences.

Samples NoPS

NoMRL

Fig. 7 | We generated visualizations using an improved version of gradient-
weighted class activation mapping. These visualizations show the qualitative
predictions of RealMNet for presence of posterior staphyloma (NoPS or PS) and
myopic maculopathy with five categories: no myopic retinal lesions (NoMRL),
tessellated fundus only (TFO), diffuse chorioretinal atrophy (DCA), patchy

chorioretinal atrophy (PCA), and macular atrophy (MA). By merging the heatmaps
with the original images, we highlighted irregular attentive regions that correspond
to diverse morphologic patterns found in different lesion categories when the model
made decisions. These heatmaps provided a qualitative reference for clinicians when
making further diagnoses.

npj Digital Medicine | (2025)8:435


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01849-y

Article

0
& 40 700
N A0
N
S
) >
S ©
~N N %
)
o
a
o
o
~n
(=}
o
S
©
P
o OO
@ ISy
N
NoPL — 2547
N
By
% S C\v
30, 0 self-existent
0 200 0
47
b
Precision Recall F1 Score
NoPL NoPL NoPL
80 80 80
60 60 N
PC LDoCRT PC LDoCRT PC LDoCRT
RRD HoT RRD HoT RRD HoT
mAP AUROC Assembly
NoPL NoPL Precision
F1 Score
80 (micro) Recall
6Q 60
40
PC LDoCRT PC LDoCRT
20
Recall
(micro) F1 Score
Precision
RRD HoT RRD HoT (micro)

Fig. 8 | Identifying complicated peripheral lesions. a Concurrent distribution of
peripheral retinal lesions: no peripheral lesion (NoPL), lattice degeneration or cystic
retinal tuft (LDoCRT), holes or tears (HoT), rhegmatogenous retinal detachment
(RRD), and postoperative cases (PC). Peripheral lesions may have different con-
current relationships with each other, or they may occur separately. b Model

AUROC

performance on peripheral lesion identification. The blue facecolor represents the
mean of the results, and the green outer and red inner boundaries represent the
upper and lower bounds of the 95% confidence interval, respectively. All radar plots
display class-wise performance on specific metrics, with the last radar plot repre-
senting the average performance on all evaluated metrics.

studies overlooked exclusive discrimination mechanisms due to a lack of
specialized datasets built on ophthalmological expertise. Pathologic myopia
has been broadly recognized as myopic maculopathy with meticulously
defined categories or with the presence of posterior staphyloma”. None-
theless, to our knowledge, limited research has thoroughly examined these
lesions, and there are no publicly available datasets for this purpose. While
Pathologic myopia currently lacks curative treatment, timely detection is
still clinically significant. Early identification of complications like posterior
staphyloma and myopic maculopathy aids risk assessment and close

monitoring, allowing for interventions such as anti-VEGF therapy for
secondary choroidal neovascularization or refractive surgery consultations.
Our workflow identifies high-risk eyes for further evaluation and ongoing
surveillance, aligning with current clinical management strategies. Specifi-
cally, we gathered a large-scale dataset comprising ultra-widefield images
from five distinct hospital sources (Fig. 1a). We sought experienced oph-
thalmologists to label posterior staphyloma with binary annotations to
indicate its presence: NoPS and PS, and myopic maculopathy with five
categories: NoMRL, TFO, DCA, PCA, and MA. We built an end-to-end
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Table 1 | Model class-wise performance on the evaluation metric of F1 Score

Model NoPS PS NoMRL TFO DCA PCA MA

DeiT 92,9080 + 0.0220  84.9378 + 0.0465 65.8115+0.1929  93.1385+0.0216  64.9436 £ 0.1112  64.0049 + 0.1537  59.4071 + 0.3663
ConvNeXt 93.4954 + 0.0216  86.6145+ 0.0443  67.4836 +0.1821  93.3462 + 0.0205 69.4887 +0.1009  69.1593 + 0.1467  70.0695 + 0.3148
EfficientNet 93.3104 £+ 0.0220  86.3812 +0.0440 67.8674 +0.1824  93.4917 £ 0.0202  68.5025 + 0.1026  74.8105+0.1361  71.4768 + 0.3003
Swin Transformer ~ 93.2645 + 0.0213  85.9297 + 0.0436  64.8995 + 0.2008  93.6117 + 0.0207  69.4373 +0.1047  67.9535+0.1534  69.7311 + 0.3287
DINOv2 92.3681 +0.0231  83.9888 +0.0473  60.9115+0.2047 93.1201 £0.0207 66.1795+0.1114  62.1230+0.1636  59.0787 + 0.3724
VisionFM 92,5725+ 0.0224 84.3148 + 0.0471  58.5730 + 0.2083  92.4366 + 0.0227  62.4830 +0.1157  58.5566 + 0.1653  52.8073 + 0.4006
RealMNet(Ours) 93.7815 + 0.0208  86.6268 + 0.0427  68.8711 +0.1658  93.5031 + 0.0209  71.4770 + 0.0929  72.1523 + 0.1373  66.7895 + 0.3134
Real(l\gNet)- 93.8404 + 0.0204 86.2816 + 0.0427  70.5547 + 0.1658  93.5852 + 0.0206  71.8504 + 0.0909  72.2685 + 0.1367  69.5145 + 0.3117
Max(Ours]

Reported values are the mean estimate with the standard error of the targeted metric. The estimates are computed by generating a bootstrap distribution with 1000 bootstrap samples for corresponding
testing sets with n=1000 samples. The prominent results of the proposed methods are highlighted in bold.

Table 2 | Model class-wise performance on the evaluation metric of mAP

Model NoPS PS NoMRL TFO DCA PCA MA

DeiT 98.3357 + 0.0082  90.0271 + 0.0595  72.0752 + 0.2092  98.0086 + 0.0121  70.5901 + 0.1388  66.5143 + 0.1985  68.4258 + 0.3871
ConvNeXt 98.4937 + 0.0078  90.1852 + 0.0607  75.1091 £ 0.2010  98.5105 + 0.0105  73.1993 £ 0.1250  70.9387 + 0.1844  77.0458 + 0.3123
EfficientNet 98.5506 + 0.0080  92.6208 + 0.0424  74.7456 + 0.1943  98.2751 £ 0.0115  74.2411 £0.1148  74.2415+0.1849  65.8337 + 0.4204
Swin Transformer ~ 98.1808 £ 0.0108  89.8026 + 0.0575  69.9827 +0.2277  98.0135+0.0140 71.0696 +0.1376  70.6761 +0.1823  77.4035 = 0.3282
DINOv2 98.2004 + 0.0086  90.6269 + 0.0502  68.4695 + 0.2151  98.2794 +0.0097 68.9774 +0.1330  65.6704 + 0.1957  63.0445 + 0.4232
VisionFM 97.9320 + 0.0133  90.6120 + 0.0467  64.9242 + 0.2290  97.6936 + 0.0143  67.2612 £ 0.1374  61.0721 £ 0.2025  59.6629 + 0.4034
RealMNet(Ours) 98.7762 + 0.0063  93.3474 + 0.0390 76.8974 + 0.1809  98.7188 + 0.0071  76.2035 + 0.1202  74.0739 + 0.1749  69.8559 + 0.4057
RealMNet- 98.7822 + 0.0063  93.0462 + 0.0432  78.0920 + 0.1822  98.7352 + 0.0072  75.7264 + 0.1222  76.1924 + 0.1705  74.2466 + 0.3623
Max(Ours)

Reported values are the mean estimate with the standard error of the targeted metric. The estimates are computed by generating a bootstrap distribution with 1000 bootstrap samples for corresponding
testing sets with n=1000 samples. The prominent results of the proposed methods are highlighted in bold.

Table 3 | Model class-wise performance on the evaluation metric of AUROC

Model NoPS PS NoMRL TFO DCA PCA MA

DeiT 96.1189 £+ 0.0173  96.1254 + 0.0172  97.7149 + 0.0238  94.8871 + 0.0234  94.7713 £ 0.0240  95.2838 + 0.0433  99.3335 + 0.0096
ConvNeXt 96.4324 £+ 0.0170 96.4378 + 0.0170  98.1800 + 0.0227  96.0292 + 0.0188  95.3681 + 0.0220  96.3815 + 0.0382  99.3870 + 0.0102
EfficientNet 96.7455 + 0.0158  96.7423 + 0.0158  98.1674 +0.0185  95.5410 + 0.0209  94.8309 + 0.0247  94.1538 + 0.0759  97.6156 + 0.0868
Swin Transformer ~ 95.9789 £ 0.0188  95.9643 £ 0.0189  96.7591 £ 0.0371  95.1124 £ 0.0227  94.7008 + 0.0249  94.5249 + 0.0592  98.5647 + 0.0364
DINOv2 95.9202 + 0.0172  95.9195+0.0172  97.3954 £ 0.0228  95.2212 + 0.0201  94.9398 + 0.0228  96.3000 + 0.0246  98.7755 + 0.0243
VisionFM 95.6557 + 0.0190  95.6629 + 0.0190  96.4368 + 0.0292  94.0472 + 0.0254  94.2133 £ 0.0252  95.3203 + 0.0317  98.8797 + 0.0202
RealMNet(Ours) 97.1399 + 0.0139  97.1671 £+ 0.0139  98.3832 + 0.0145 96.3504 + 0.0170  95.8280 + 0.0194  97.5641 + 0.0199  99.1062 + 0.0160
RealMNet- 97.1369 + 0.0140  97.1838 + 0.0140  98.5153 + 0.0140  96.4073 + 0.0170  95.9304 + 0.0186  98.0075 + 0.0164  98.9830 + 0.0248
Max(Ours)

Reported values are the mean estimate with the standard error of the targeted metric. The estimates are computed by generating a bootstrap distribution with 1000 bootstrap samples for corresponding
testing sets with n=1000 samples. The prominent results of the proposed methods are highlighted in bold.

lightweight framework called RealMNet on the basis of the unified platform
to identify these concurrent lesions with multi-label learning (Fig. 1b). We
have provided detailed comparisons of model complexity, specifically
focusing on the number of parameters and FLOPs, benchmarked against
well-established architectures (Table 4). Our model has only 21 million
parameters and requires approximately 13.77G FLOPs per inference, which
has a smaller scale but is more efficient than other similarly lightweight
models. Notably, RealMNet outperforms two powerful foundation models
while containing four times fewer parameters (~21M compared to ~86M)
and up to three times fewer FLOPs (~27G compared to ~78G). We pro-
gressively determined resampling approaches (Supplementary Fig. 5a),
cost-sensitive calibration (Supplementary Fig. 4a), and classifier adaptation
(Supplementary Fig. 4b) with the development set for mitigating negative
impacts caused by imbalanced label distributions (Fig. 2). Hence, the

proposed model was functionally reliable by identifying these clinically
significant lesions and was objectively instrumental by alleviating multi-
label imbalance issues. We formulated a multi-faceted strategy (Supple-
mentary Note: Clinical practice deployment) that emphasizes clinician
engagement and seamless integration into daily clinical practice. While our
study did not directly examine disease pathogenesis or progression, it offers
a validated UWF imaging-based workflow for the early identification of
structural complications, thereby supporting surveillance and timely
referrals within myopia management frameworks Tables 5-7.

We devised three experimental protocols (Fig. 1c) to demonstrate the
model’s inference capacity, robustness, and generalizability. We observed
that the proposed model outperformed (P < 0.001) all benchmark approa-
ches (Fig. 3a). In particular, RealMNet demonstrated significantly better
performance compared to two recent foundation models designed for
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Table 4 | Information of model backbones

Model Architecture Implementation Version Image Size #Params(M) FLOPs(G)
DeiT?' Transformer Distillation Base 384 86.10 55.65
ConvNeXt* ConvNet Hierarchy Tiny 384 27.83 13.14
EfficientNet® ConvNet Scaling B4 380 17.56 4.51

Swin Transformer** Transformer Hierarchy Base 384 86.89 47.19
DINOv2* Transformer Foundation Model Base 384 86.14 78.46
VisionFM*® Transformer Foundation Model Base 384 86.46 55.54
RealMNet-Min (Ours) Hybrid Hierarchy Pretraining Distillation 21M 224 20.63 4.28
RealMNet (Ours) Hybrid Hierarchy Pretraining Distillation 21M 384 20.66 13.77
RealMNet-Max (Ours) Hybrid Hierarchy Pretraining Distillation 21M 512 20.70 27.02

Table 5 | Data overview of the centralized inference
protocol (CIP)

Protocol Training set Development set Testing set
Patients  Images Patients Images Patients Images
CIP 3192 30,420 684 6377 684 6574
(r. 3138) (r. 24,683)

The numbers with prefix r. mean resampling results.

natural and ophthalmic images (Fig. 3b). This improvement can be
attributed to the hierarchical design of our backbone and its effective
management of multi-label data imbalance. Traditional foundation models
typically focus on fundus images with a smaller field of view to identify
various retinal diseases. In contrast, our proposed model excels in the fine-
grained diagnosis of pathologic myopia, using lesion-wise labeling in UWF
images. Meanwhile, our model exhibited good robustness (Fig. 4a) and
generalizability (Fig. 4b), even when assessed on challenging subsets. To
verify that the developed model has a broader application impact, we carried
out a transfer learning on peripheral lesion discrimination, which could
simultaneously exist in high myopic eyes (Fig. 8a) and give rise to severe
visual impairment. The results (Fig. 8b) obtained from transfer learning for
RealMNet demonstrated promise in detecting peripheral lesions and dis-
tinguishing postoperative cases.

Our model exhibited good labeling efficiency, taking different ratios of
training data as input (Fig. 5a). As a transformer-based architecture with
hierarchical design™, each stage of RealMNet maintained helpful knowledge
for lesion identification (Fig. 5b). The simulated and batch-wise augmen-
tation jointly helped the model avoid over-fitting (Fig. 5¢). From the heat-
maps of the final results, we observed that the model’s attention presented a
diverse region of interest for different categories. We noticed that ultra-
widefield images contained boundaries of physical imaging devices, which
might hinder models from effectively capturing essential information. We
constructed the dataset based on the scale of the two imaging types in the
PSMM dataset (Supplementary Table 3). The processed data without
boundaries (Supplementary Fig. 7a) was then used to re-train RealMNet.
Experimental results (Fig. 6a) showed that our model was not affected by
these physical boundaries, demonstrating the model’s prominent capacity
to capture informative regions. We conducted experiments to specifically
measure the benefits of using UWF images over CFP images (Supple-
mentary Fig. 7b) for identifying posterior staphyloma and myopic macu-
lopathy. Experimental results (Fig. 6b) indicated that the model trained with
UWE images significantly outperformed the model trained with fake CFP
images. UWF imaging allows for improved visualization of structural
alterations in the posterior pole and peripheral retina, including chorior-
etinal atrophy and optic disc abnormalities. These benefits of the UWF
modality guarantee significance in the diagnosis of pathologic myopia.

Although this work starts from the essential and exclusive dis-
crimination mechanisms of diagnosing pathologic myopia based on the

workflow with deep learning, there are still some limitations and challenges
to address in the follow-up work. Our model cannot currently recognize
“plus” lesions”, namely, lacquer cracks, myopic choroidal neovasculariza-
tion, and fuchs spot, primarily due to insufficient high-quality data. We
acknowledge that the gold-standard diagnosis of posterior staphyloma
typically requires a multimodal assessment, including optical coherence
tomography (OCT), axial length measurement, and choroidal imaging. The
annotations in our study were derived from clinical diagnoses recorded in
the electronic medical records by experienced retinal specialists, who had
access to multimodal data during their evaluations. However, the absence of
strict prospective revalidation of the labeled data with OCT and biometric
measurements may have introduced some label noise. Hence, future efforts
in dataset construction will incorporate standardized multimodal con-
firmation to enhance label reliability and generalizability. Results on per-
ipheral lesion discrimination exposed limited performance on lesions with
very few training data (e.g., RRD and HoT). Similar to most deep learning
models, the model developed still lacks structural explainability, despite its
strong inference capabilities. In light of these challenges, we propose to
gather qualified data on “plus” lesions from additional medical sources and
integrate clinical textual data such as axial length to improve the model’s
identification performance and consider post hoc methods (e.g., attention
maps™) for approximating the attention to input tokens given attention
weights. Quantitative evaluations and structured clinician feedback should
be included to determine whether these visual outputs improve diagnostic
trust or decision-making. It is also essential to quantify and analyze the
clinical benefits of this lightweight design to ensure its feasibility for
deployment and reliable application in real-world scenarios. We are opti-
mistic that the model developed would receive excellent transfer ability
when pretrained on large-scale UWF images and other informative
modalities.

In summary, we offer a dataset comprising high-quality ultra-widefield
images and introduce a helpful and reliable workflow for identifying mor-
phologic patterns to aid in diagnosing pathologic myopia. Through com-
prehensive evaluation metrics on the hand-crafted PSMM dataset, we have
verified the efficiency of RealMNet relative to competitive benchmark
models. RealMNet has demonstrated superior robustness and general-
izability, offering novel perspectives for deep learning-based fine-grained
clinical diagnosis of pathologic myopia. In future work, we will further
expand the data on scarce lesions and investigate the performance of the
current model in multimodal situations.

Methods
Dataset construction
We show details about the course of data acquisition and labeling. We
perform essential data processing and stratified data partitioning to facilitate
model training.

The PSMM dataset consisted of five sub-sources: ShenzhenEye, SUS-
Tech, LishuiR, Zhongshan, and LishuiZ. The study followed the guidelines
of the World Medical Association Declaration of Helsinki 1964, updated in
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Table 6 | Data overview of the main-source robustness protocol (MRP)

Protocol Training set Testing set
Subset Patients Images Subset Patients Images
MRP ShenzhenEye 4003 (r. 3944) 38,922 (r. 31,575) SUSTech 226 2835
LishuiR 155 938
Zhongshan 85 456
Lishuiz 91 220
The numbers with prefix r. mean resampling results.
Table 7 | Data overview of the cyclic-source generalizability protocol (CGP)
Protocol Training set Testing set
Subset Patients Images Subset Patients Images
CGP PSMM (w/o SUSTech) 4334 (r. 4256) 40,536 (r. 32,888) SUSTech 226 2835
PSMM (w/o LishuiR) 4405 (r. 4330) 42,433 (r. 34,408) LishuiR 155 938
PSMM (w/o Zhongshan) 4475 (r. 4398) 42,915 (r. 34,871) Zhongshan 85 456
PSMM (w/o LishuiZ) 4469 (r. 4389) 43,151 (r. 35,009) Lishuiz 91 220

The numbers with prefix r. mean resampling results.

October 2013, and was conducted after approval by the Ethics Committees
of Shenzhen Eye Hospital (2023KYPJ087), the Ethics Committee of the
Zhongshan Ophthalmic Center (No0.2022KYPJ105-2), the Institutional
Review Board and Human Ethics Committee of the Fifth Affiliated Hospital
of Wenzhou Medical University, the Ethics Committee of the Southern
University of Science and Technology Hospital, and the Ethics Committee
of Lishui People’s Hospital. The review board waived the requirement for
informed consent based on the retrospective study design and de-
identification of the images. The ShenzhenEye subset contained 38,922
UWEF images of 4003 patients collected from Shenzhen Eye Hospital of
China between January 1%, 2019 and December 31%, 2023. The SUSTech
subset contained 2835 UWF images of 226 patients collected from the
Southern University of Science and Technology Hospital of China between
January 1%, 2023 and June 31%, 2023. The LishuiR subset contained 938
UWEF images of 155 patients collected from Lishui People’s Hospital of
China between January 1%, 2021 and December 31%, 2023. The Zhongshan
subset contained 456 UWF images of 85 patients collected from Zhongshan
Ophthalmic Center, Sun Yat-sen University of China. The LishuiZ subset
contained 220 UWF images of 91 patients collected from Lishui Central
Hospital of China between January 1%, 2021 and December 31%, 2023.
Ultimately, we integrated these resources to establish the PSMM dataset that
contained 43,371 UWF images of 4560 patients. Two UWF scanning laser
ophthalmoscopy imaging devices captured these images, Daytona (P200T)
and California (P200DTx). We retrieved these images by the keywords of
(HighMyopia, PathologicMyopia). We were prone to partially retrieve
severe samples from the hospital to form the Zhongshan subset as a chal-
lenging subset. Fewer samples were collected in the LishuiR and LishuiZ
subsets due to certain limitations in the medical record management of the
two hospitals, despite retrieving them over a long period. The ShenzhenEye
subset naturally served as the main subset in proportion, and the other fours
as auxiliary subsets. Two junior ophthalmologists labeled these UWF
images, and one senior specialist then double-checked the labeled images by
discarding distorted or damaged images for rigorous quality assurance.
Specifically, each UWF image was independently annotated by two board-
certified ophthalmologists with prior experience in retinal disease diagnosis.
The annotations covered both the presence of posterior staphyloma and the
identification of myopic maculopathy into five defined categories. To ensure
annotation reliability and reduce subjectivity, a senior retinal specialist
subsequently reviewed the annotations from both junior annotators. In
cases of disagreement, the senior specialist made the final determination
based on clinical judgment and established diagnostic criteria'®. Certain

retinal findings that may mimic or confound pathologic myopia diagnosis,
such as laser scars, paving stone degeneration, white-without-pressure, and
choroidal nevi, were retained in the dataset. These findings frequently occur
in highly myopic eyes and reflect the complexities found in real-world
clinical practice. These findings were not categorized as separate diagnostic
features since they do not meet the established clinical definitions of
pathologic myopia (e.g, META-PM'®). During the annotation process,
retinal specialists were specifically directed to focus on the hallmark lesions
associated with pathologic myopia, such as diffuse atrophy, patchy atrophy,
and myopic choroidal neovascularization. They were instructed to differ-
entiate these incidental or benign findings from true pathological changes.
We did not exclude images with various retinal findings, artifacts, comor-
bidities, or borderline cases to reflect more realistic conditions. We
acknowledge that this approach may introduce some label noise and
decrease specificity, while models designed for real-world applications
should be able to handle these complexities effectively. To evaluate inter-
rater reliability, Cohen’s kappa coefficients™ were calculated for each lesion
label between the two junior annotators before senior review. The kappa
values ranged from 0.78 to 0.86 across categories (Supplementary Table 9),
indicating substantial agreement. The composition of the hand-crafted
PSMM dataset and its integral subsets are presented in Supplementary
Table 1.

We desensitized all the data to prevent privacy exposure. We centralized
the objective (photographing area) by removing futile black outer boundaries
and then resized images beforehand to facilitate model training. For ease of
application and adaptation, we structured the dataset following the format of
the PASCAL Visual Object Classes Challenge (PASCAL VOC) 2007
dataset™, which is a well-known dataset in the computer vision field devel-
oped to recognize objects in realistic scenes. Due to a limited amount of data,
an increasing number of published methods are trained on the training set
and evaluated on the testing set directly to showcase optimal performance
presentation regardless of fair comparison. However, in real-world scenarios,
researchers need to develop reliable methods in various situations. This
means it is crucial to evaluate these methods on a separate development set for
convincing model validation. In order to support our claim, we divided the
PSMM dataset into three separate parts: training, development, and testing
sets with a distribution of 7:1.5:1.5. This allowed us to assess the research using
the development set and then finalize the method and evaluate it using the
unseen testing set. While dividing data into different sets is common in deep
learning tasks, it becomes more complex when dealing with the clinical
challenge presented in this study. Notably, each patient typically has multiple
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UWF images, which can occur in two scenarios: multiple images are taken in
a single examination to ensure an accurate diagnosis, or images are taken at
different times during multiple examinations. To ensure reliable photo-
graphy, several UWF images are captured at the same time for each patient,
and many patients undergo examinations at different times. As a result, it’s
not feasible to split UWF images from the same patient into different sets
during data partitioning. Furthermore, as mentioned earlier, our objective
involves a multi-label learning task, which further complicates the data
partitioning process. To address this, we adopted an approach where we
assigned a single-class label for each patient and employed a stratified strategy
to ensure independent and identically distributed partitioning”'. Specifically,
we assigned a pseudo single-class label that was quantitatively dominant over
all labels of UWF images for each patient and then stratified the patient image
groups into training, development, and testing sets.

End-to-end lightweight framework

We present details about the feature extraction backbone and optimized
designs with cost-sensitive calibration and classifier adaptation for multi-
label imbalance alleviation.

We harness TinyViT* as the fundamental backbone of the proposed
RealMNet to ensure the model achieves excellent performance while
remaining lightweight. TinyViT is favored for its application of distillation
during pretraining for knowledge transfer. We employ a hierarchical
design to address the need for multi-scale features in identifying mor-
phologic patterns. This architecture comprises four stages, each featuringa
gradual reduction in resolution akin to the Swin Transformer™ and
LeViT*. The patch embedding block incorporates two convolutions with a
3 x 3 kernel, a stride of 2, and a padding of 1. In the initial stage, we
implement lightweight and efficient MBConvs” and downsampling
blocks, recognizing that convolutions at earlier layers can proficiently learn
low-level representations due to their strong inductive biases. The sub-
sequent three stages are constructed with transformer blocks, leveraging
window attention to mitigate computational costs. To capture local
information, we introduce attention biases and a 3 x 3 depth-wise con-
volution between attention and MLP. Each block in the initial stage, as well
as attention and MLP blocks, is complemented by a residual connection.
High-performing neural network activation functions GELU* are used for
smoothing model training. The normalization layers for convolution and
linear operations are BatchNorm® and LayerNorm®, respectively. The
embedded dimensions in each stage of the adopted backbone are 96, 192,
384, and 576. Furthermore, the number of blocks in each stage of the
backbone corresponds to that of Swin-T: 2, 2, 6, and 2. Depending on the
input resolutions that the model could accept, three model variants are
defined: RealMNet-Min for 224 x 224 inputs, RealMNet for 384 x 384
inputs, and RealMNet-Max for 512x512 inputs. We differentiate
RealMNet from the vanilla TinyViT backbone and other general-purpose
foundation models to highlight the superiority of the proposed method in
handling multi-label imbalance while identifying morphologic patterns for
diagnosing pathologic myopia. RealMNet encompasses strategic
enhancements like cost-sensitive calibration and classifier adaptation and
is fine-tuned with unique training processes tailored to address real-world
challenges that are not fully captured by existing models.

Cost-sensitive methods are practical and efficient techniques that take
into account the costs resulting from prediction mistakes made by the
model. When dealing with the complication of lesions in terms of posterior
staphyloma and myopic maculopathy, we aim to explore cost-sensitive
approaches suitable for multi-label learning. We begin by using the BCE
Loss, based on cross-entropy in information theory. In this context, cross-
entropy of the distribution ¢ relative to a distribution p over a given set is
defined as follows:

H(p,q) = —E, [logq] (1

where I [] is the expected value operator regarding the distribution p.
Cross-entropy can be utilized to create a loss function in machine learning

and optimization:

H(p.q) = =) _pilogq; = —[ylogy+ (1 —plog(1-3)]  (3)

where y means the ground-truth and 5 means the predictions from the
model. Next, we introduce a weight factor a € [0, 1] to help address class
imbalance and a modulating factor (1 — p) ¥ to reshape the loss function,
thereby reducing the emphasis on easy examples and focusing training on
challenging negatives™. Till now, we define the cost-sensitive calibration
(CSC) as follows:

CSC = —a[p’logp+ (1 — p) log(1 — p)] 3

where p = 0(z) is the prediction probability given output logits zand y is the
focusing parameter. We also separate the focusing levels of positive and
negative samples to avoid eliminating gradients from rare positive samples
when setting a high value for y. Additionally, we examine the effects of
asymmetric probability shifting, achieved by setting a probability margin
m > 0 to reject mislabeled negative samples™. Therefore, the ultimate CSC is
defined as follows:

CSC = —a((p,,)" logp + (1~ p)* log(1 — p)] @)

where p,, = max(p —m,0) is the shifted probability, y, and y_ are
positive and negative focusing parameters, respectively. Furthermore, we
evaluate the effectiveness of a state-of-the-art cost-sensitive method called
Two-way Loss”, specially designed for multi-label learning. We follow the
original computational formula:

¢ = softplus | T s log Z e% + Tplog Z e_% 5)
neN peP

where softplus(-) = log[1 + exp(-)], P means positive labels, ' means
negative labels, T’y and Ty, are two temperatures applied to negative and
positive logits, respectively. We fine-tune temperature parameters through
grid search for optimal performance.

Classifier adaptation is technically complex but helpful for addressing
multi-label imbalance issues by adjusting the model’s classifier design. The
design of the implemented classifier is inspired by a simple and efficient
module called class-specific residual attention’ that achieves state-of-the-
art results on multi-label recognition.

Given an input image 7 with the scale of H x W, the backbone as a
feature extractor F transforms the input image into a feature tensor

x € R" by x = F(Z; 6), where 6 represents parameters of the back-

bone. The feature tensor is decoupled as x;, x,, -+ , xp, where x,, € R?

P
indicates the p-th feature tensor in positions P = h x w. The class-specific

: ; Txl ¢ .
attention scores are presented by s; = M, where Here, s} can be

P Y5 T »

Zz:: exp('Tx[ c,)

regarded as the probability of i-th class appearing at the position p with
Z§=1 s; = land 7 stands for the temperature controlling the sharpness of
i-th
vipec = Zf;:l s;,xp. The class-agnostic feature vector for the entire image is

the scores. The class-specific feature vector for class is

Vagno = %ZE xp- The final feature vector for the i-th class is
' + v, The

=, .
1gno spec
yEGL Y y") = (e[ v, e v3, -+ ¢} v"), where n stands for the

number of classes. The final prediction is produced with multi-head

v classifier produces

extension to the residual attention by y = >, yr,» where yr € R"
represents the logits of head h.
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Experimental protocols

We introduced three distinct experiment protocols that naturally empow-
ered both the internal and external validation of the model, quantitatively
demonstrating that the proposed model was efficient with good robustness
and generalizability.

The centralized inference protocol aimed to demonstrate the inference
capacity of models directly on the intact PSMM dataset. Models were
trained on the training set of the PSMM dataset and tested on the testing set
of the PSMM dataset. Models learned task-specific knowledge from all
available training resources and were developed on the development set of
the PSMM dataset, eventually inferring all available unseen testing resour-
ces. In our experiments, we compared our method, RealMNet, with four
widely recognized models under the centralized inference protocol, in which
models were sufficiently motivated for optimal identification performance.

The main-source robustness protocol aimed to demonstrate the
robustness of models on the separate PSMM dataset. Models were trained
solely on the main subset and tested on four auxiliary subsets, the averaged
performances of which were provided. All data from the main-source
dataset comprised the training set, and each auxiliary-center dataset served
as the testing set separately. In our experiments, we implemented our
method, RealMNet, under the main-source robustness protocol for
robustness verification.

The cyclic-source generalizability protocol aimed to demonstrate the
generalizability of models on the separate PSMM dataset. Models were
trained on the main-source dataset combined with three auxiliary-center
datasets and tested on the rest of the auxiliary dataset. The performances of
four cyclic experiments were provided. In our experiments, we implemented
our method, RealMNet, under the cyclic-source generalizability protocol for
generalization verification.

Evaluation metrics

Cutting-edge artificial intelligence models frequently excel based on a single
or a few evaluation metrics. However, this can introduce bias into the results
and impact the perception of their scientific objectivity”’. This issue is
particularly relevant in multi-label learning, which is more intricate than
single- and multi-class learning*. In our study, we opted for comprehensive
measures to assess both bipartitions and rankings, considering the char-
acteristics of multi-label data®.

Considering a development set that has multi-label samples (x;, y;)
wherei=1,..., Nand N means the number of samples. The labelset of i-th
sample y; € £ where £ = {},: j = 1,..., L} is the set of all ground-truth
labels and L means the number of labels. For each label A, the rank is termed
asr;(A). The predictions made by the Multi-Label Classifier are defined as y,.
Let tpy, fpa, tny, and fny be the number of true positives, false positives, true
negatives, and false negatives after binary evaluation for a label A.

For the evaluation of bipartitions, we use Precision = ; t+p 7 toreflect the
ability not to label as positive a sample that is negative. We use Recall = %
(also called Sensitivity) to reflect the ability to find all positive samples. A
good discrimination model should be sensitive in identifying as many
potential positive samples as possible to help screen in medical scenarios.
The F-measure is the harmonic mean of the Precision and Recall that
symmetrically represents Precision and Recall in one metric. We use

F1 Score = Wm to reveal the balanced ability of the model to both
capture positive cases (Recall) and be accurate with the cases it does capture
(Precision), which is exceptionally able to measure performance objectively
when the class balance is skewed. We use mean Average Precision (mAP) to
reflect the average fraction of relevant labels ranked higher than one other

relevant label, which is calculated by:

1 L
mAP = Z; Z;(Rn —R,_,)P, (6)

where R, and P, stand for Precision and Recall at the n-th threshold,
respectively. The AUROC (Area Under the Receiver Operating

Characteristic Curve) indicates the level of separability of a model. This
metric is calculated as the area under the Receiver Operating Characteristic
Curve (ROC). A larger AUROC indicates that the model can achieve a high
true positive rate while maintaining a low false positive rate. Essentially, it
demonstrates the model’s ability to differentiate between classes. The
measures above can be calculated using two types of averaging operations:
macro-averaging and micro-averaging. Specifically, given a bipartition-
based measure B,

Z B(tpy, foy, tny, finy ) (7)

macro -

Bmicro =B<th/\72ﬁ7/17ztnl72fnl) (8)

We use Hamming Loss to measure the proportion of incorrectly classified
instance-label pairs, which is defined as follows:

Hamming Loss = — Z ly:#9;1 ©9)

i=1

For the evaluation of rankings, we use Coverage to assess the average
number of steps required to encompass all relevant labels in the ranked label
list for each example, which is defined as follows:

1
C =— ) —1 10

overage N ; T;X r,(A) (10)
We use Ranking Loss to evaluate the fraction of reversely ordered label pairs,
which is defined as follows:

Ranking Loss = Z {(As2e) s 1i(A,) >

H}’ (&), (Aarhy) € i %7i K

(11)

where y; is the complementary set of y; with respect to L.

Implementation details

Our model remained lightweight due to pretraining distillation techniques
and utilized hierarchical transformer architectures that incorporated con-
volution operations. Therefore, we chose various widely used benchmark
counterparts: DeiT”', ConvNeXt™, EfficientNet”, and Swin Transformer™.,
Specifically, DeiT is a convolution-free transformer trained with a distilla-
tion procedure. ConvNeXt is a pure ConvNet that is modernized toward the
design of a vision transformer. EfficientNet is a ConvNet designed using
neural architecture search to enable model scaling with significantly fewer
parameters. Swin Transformer is a hierarchical transformer that can be
modeled at various scales. Foundation models designed for multiple pur-
poses can perform tasks even if they haven’t been explicitly pretrained for
them. They can adapt to various clinical applications and demonstrate
generalizability. In this context, we chose two recent foundation models
trained using different types of images: DINOv2*, which was trained with
natural images, and VisionFM™, which specialized in ophthalmic images.
We compared RealMNet to these benchmark approaches concerning
model development in Table 4.

We approached the problem in this study as a multi-label learning task
to account for the complex relationships between morphologic patterns and
explore their underlying interdependencies. We chose TinyViT-21m as the
feature extractor backbone of RealMNet and initialized it with weights
pretrained on ImageNet-21k using pretraining distillation. The image size
was set at 384 x 384 for model development and 512 x 512 for optimal
performance. The model was optimized using Adam with decoupled weight
decay with an initial learning rate of 1e-4 and a weight decay of 0.05, trained
with a batch size of 16 per graphics processing unit. We implemented

npj Digital Medicine | (2025)8:435

15


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01849-y

Article

warmup for 10% of the total 50 epochs, with a starting factor of le-2,
followed by a cosine annealing schedule with a learning rate of 1e-6. A drop
path rate of 0.5 was used to prevent over-fitting. We employed two types of
augmentation techniques: simulated and batch-wise. Simulated augmen-
tation was intended to mirror real-world scenarios by means of spatial-level
and pixel-level transformation. For spatial-level transformation, we used a
random affine, random flip, and random erasing. For pixel-level transfor-
mation, we used a Gaussian blur, Gauss noise, and Color jitter. The batch-
wise transformation involved Mixup™ and CutMix’". For simplicity, we
used the same parameter settings as in the previous study*' for UWF images.
We leveraged asymmetric focusing as a cost-sensitive calibration with
configurable parameters (y; = 3 and y_ = 4). We harnessed classifier
adaptation with the leveraging parameter A = 1.2 and H = 2 multi-head
attention. In the centralized inference protocol, the entire PSMM dataset is
divided into a training set, a development set, and a test set at a ratio of
7:1.5:1.5 using stratified partitioning. In the main-source robustness pro-
tocol, the ShenzhenEye subset is utilized as the training set, while the
remaining four source subsets take turns as the test set. In the cyclic-source
generalizability protocol, the ShenzhenEye subset and three of the
remaining four sources are used as the training set, and testing is conducted
on the subset of the last source. In all experimental protocols, the ML-RUS*
resampling method was applied to the training set only, with an under-
sampling ratio of 0.2. We trained benchmark approaches using a consistent
setup on a unified platform. The weights from the teacher network of
VisionFM were utilized as the encoder for VisionFM. VisionFM maintained
a three-layer MLPs as the decoder for optimal performance. DINOv2
initially set the LayerScale value to le-5. We utilized transfer learning by
initializing the backbone with weights that were trained on the PSMM
dataset, followed by fine-tuning the model with data specific to peripheral
retinal lesions. Experiments were deterministic and reproducible, with a
fixed seed of 42. We conducted the training and testing on the OpenMMLab
platform using 4 NVIDIA GeForce RTX 4090 GPUs.

UWF imaging investigation

We investigated the potential negative impact of physical device boundaries
in images captured by UWF imaging. We demonstrated the advantages of
the UWF modality by comparing them with fake CFP images.

Modern ultra-widefield imaging inevitably captures the boundaries of
the physical devices along with the imaging targets, which can obscure
essential information. To determine if these boundaries negatively impact
the model’s inference capability, we segmented out these boundaries and re-
trained our model using data without them. We found that nearly three-
quarters of the images in the PSMM dataset contain significant black bor-
ders, and the remaining images, although lacking black borders, still exhibit
considerable interference from the device boundaries.

To create a segmentation dataset, we randomly sampled 1% of the data
from the two imaging types, selecting at the patient level to avoid infor-
mation leakage that could arise from stratified partitioning. We enlisted the
expertise of professional physicians to annotate the dataset at the pixel level.
The resulting segmentation dataset consisted of 412 images, comprising 303
images with black borders and 109 images without them. We divided this
dataset into training, development, and testing sets in an 8:1:1 ratio.

For segmentation, we employed ResNet-50°" as the backbone and used
DeepLab-v3™ as the segmentation model, utilizing weights pretrained on
the PASCAL dataset. We utilized the SGD optimizer with a batch size of 4,a
learning rate of 0.01, and a momentum of 0.9 for 2000 epochs, imple-
menting early stopping. After fine-tuning, we applied the model to segment
the boundaries of the physical devices and then retrained RealMNet with
these segmented images.

In comparison to conventional CFP, UWF imaging provides a broader
field of view and captures more detailed essential information. To investi-
gate the benefits of using UWF for diagnosing pathologic myopia by
detecting fundus lesions, we utilized existing UWF data to create fake CFP
images. Specifically, we generated fake CFP images by center-cropping
original UWF images with a crop ratio of 2.5, which is in line with the ratio of

the retinal field of view between UWF and CFP images. We used the same
training strategies as in the original UWF data to ensure a fair comparison.

Data availability
The datasets that support the findings of this study are publicly accessible at
https://github.com/yo3nglau/RealMNet.

Code availability

The codes and trained models developed for this study are publicly available
at https://github.com/yo3nglau/RealMNet. Labeling is completed with the
open-source graphical image annotation software labelme v5.3.1 (https://
github.com/labelmeai/labelme). The codes are built on three open-source
projects, MMCV v2.0.1, MMEngine v0.8.4, and MMPretrain v1.0.2 of the
OpenMMLab codebase (https://github.com/open-mmlab). The evaluation
metrics are implemented with scikit-learn v1.3.2 (https://github.com/scikit-
learn/scikit-learn). All experiments are supervised on Weights & Biases
v0.16.4 (https://github.com/wandb/wandb). All histograms and line charts
are drawn by Matplotlib v3.9.1 (https://github.com/matplotlib/matplotlib).
The Sankey map and Chord diagram are drawn by Plotly v5.22.0 (https://
github.com/plotly/plotly.py) and pyCirclize v1.6.0 (https://github.com/
moshi4/pyCirclize), respectively.
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