Table 4 Information of model backbones

From: Diagnosing pathologic myopia by identifying morphologic patterns using ultra widefield images with deep learning

Model

Architecture

Implementation

Version

Image Size

#Params(M)

FLOPs(G)

DeiT21

Transformer

Distillation

Base

384

86.10

55.65

ConvNeXt22

ConvNet

Hierarchy

Tiny

384

27.83

13.14

EfficientNet23

ConvNet

Scaling

B4

380

17.56

4.51

Swin Transformer24

Transformer

Hierarchy

Base

384

86.89

47.19

DINOv225

Transformer

Foundation Model

Base

384

86.14

78.46

VisionFM26

Transformer

Foundation Model

Base

384

86.46

55.54

RealMNet-Min (Ours)

Hybrid

Hierarchy Pretraining Distillation

21M

224

20.63

4.28

RealMNet (Ours)

Hybrid

Hierarchy Pretraining Distillation

21M

384

20.66

13.77

RealMNet-Max (Ours)

Hybrid

Hierarchy Pretraining Distillation

21M

512

20.70

27.02