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Retinal photography is a valuable non-invasive tool for assessing vascular health, but genetic
evidence linking retinal microcirculation to major vascular-related diseases (e.g., myocardial infarction
[MI], stroke, and chronic kidney disease [CKD]) remains scarce. This study investigates their
relationships from both phenotypic and genetic perspectives. Phenotypically, we developed a retinal
imaging-based screening model to evaluate 10-year risk of these conditions, incorporating
quantitative analyses to pinpoint specific vascular abnormalities. Genetically, we analyzed retinal
image-derived traits to explore their genetic and causal relationships with vascular-related diseases.
Internal validation with 25,840 UK Biobank participants and external temporal validation with 4558
participants confirmed the model’s superiority over traditional risk models. Mendelian randomization
suggested causal relationships between retinal traits and stroke and MI, as well as the impact of CKD
on retinal microcirculation. These findings reinforce the connection between retinal microcirculation
and major vascular-related events, highlighting the potential of retinal imaging for early detection in

clinical settings.

Retinal imaging has emerged as a potentially valuable tool for understanding
human vasculature and assessing cardiovascular health". It allows non-
invasive, in vivo assessment of the vascular system of the superficial inner
retina, including the central and branch veins and arteries, as well as the
venules and arterioles™'. Morphological changes in the retinal vessels often
coincide with those in the microvasculature of other organs and may pre-
cede the progression of systemic vascular diseases’. As such, the retinal
vasculature can provide supplementary insights into various systemic
conditions, including an increased risk of obesity and cardiovascular dis-
eases such as stroke™, coronary heart disease’”, peripheral artery disease’,
hypertension'’, and atherosclerosis™"'. By analyzing the retinal vasculature,
early detection of these systemic diseases becomes possible, thereby enabling
timely intervention and better management of vascular health"”.

The microcirculation of the heart, brain, and kidneys is a crucial
component of systemic circulation". Myocardial infarction (M), stroke, and
chronic kidney disease (CKD) are the primary indications of vascular dys-
function in these three essential organs. These major vascular-related events
have high incidence and mortality rates, imposing a considerable burden on
society™'. Previously established risk assessment models, such as the Fra-
mingham Risk Score (FRS)", the Pooled Cohort Equation (PCE)'*"”, the
QRISK3 model”, and the Systematic COronary Risk Evaluation (SCORE),

have been widely used in clinical practice to screen for these vascular-related
diseases. However, these models rely on multiple indicators and often require
blood tests and other measurements to gather the necessary data'*. While
cardiovascular imaging techniques like magnetic resonance imaging (MRI)
are non-invasive, they can be relatively expensive'. In contrast, fundus
images offer a non-invasive and cost-effective alternative to capture micro-
vascular abnormalities, thereby aiding the development of early screening
models for major vascular-related diseases, particularly in primary healthcare
settings. Existing studies primarily analyze retinal image parameters, such as
vessel caliber'*™, fractal dimension™*, and vessel tortuosity’>*, to identify
biomarkers for various diseases and predict their onset. Recent advance-
ments in artificial intelligence utilizing deep learning algorithms have indi-
cated that retinal photographs can predict cardiovascular events with
comparable accuracy to traditional cardiovascular disease risk assessment
models**”. Furthermore, existing studies have demonstrated that deep
learning models can effectively identify CKD and type 2 diabetes using
fundus images alone or in combination with clinical metadata™ . These
works often employ end-to-end deep learning models to learn the mapping
from fundus images to different adverse events. Additionally, there are stu-
dies exploring the estimation of disease risk factors/biomarkers such as
coronary artery calcium scores, left ventricular mass, and left ventricular end-
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diastolic volume using retinal images, followed by utilizing these indicators to
predict disease occurrence™*’'. This two-stage approach enhances the
interpretability of the disease warning process.

Despite previous studies have attempted to utilize fundus images for
early-stage screening of various vascular diseases, there remains a notable
dearth of research that comprehensively combines major vascular-related
events affecting the heart, brain, and kidneys, the microcirculation of which
is an important part of the systemic microcirculation. As demonstrated in
the previous study, assessing multiple diseases simultaneously using retinal
imaging is a feasible approach®. Building upon this, our study aims to
further explore the potential of combining MI, stroke, and CKD into a
composite outcome, allowing us to leverage their interconnected patho-
physiology to enhance predictive accuracy, as issues in one vascular domain
often reflect systemic vascular health and can precipitate other diseases™.
This integrated model improves the efficiency of screening for vascular
events, particularly in large-scale primary healthcare scenarios, thereby
leading to earlier interventions and ultimately better patient outcomes™*.
Furthermore, most existing studies focused on developing early screening
models while neglecting quantitative analysis of retinal image microvascular
features””. These microvascular traits, which can vary among populations
with different risks, offer valuable insights into vascular function and

structure. Additionally, it has been pointed out that studying the relation-
ships across a spectrum of microvascular diseases affecting the retina, brain,
kidney, and heart may uncover shared mechanisms that could inform novel
treatment strategies'>”’. To the best of our knowledge, there is still a lack of
systematic study that investigates the commonalities and differences in
retinal morphological features associated with different vascular-related
diseases. Moreover, prior studies on vascular disease screening using fundus
images have often concentrated on constructing predictive models to
explore phenotypic correlations, without specifically examining the genetic
causality underlying these conditions. As a result, a definitive chain of evi-
dence has not yet been established in this regard, inevitably hindering our
understanding of the underlying genetic mechanisms involved in these
diseases.

In this study, we aimed to analyze the association between retinal
microcirculation and major vascular-related events from both phenotypic
and genetic perspectives (Fig. 1). Phenotypically, we develop a fundamental
model for the early screening of major vascular-related events in primary
care, leveraging fundus photographs (FP) and minimal personal informa-
tion (MPI). We hypothesized that retinal images provided crucial indica-
tions for vascular-related diseases, allowing us to screen major vascular-
related events, such as stroke, MI, and CKD, using a deep learning model.
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Fig. 1 | Study design. This figure depicts the research framework of this study to
explore the association of retinal microcirculation with major vascular-related dis-
eases from the phenotypic and genetic perspectives. a Deep learning for major
vascular-related events prediction based on fundus images and personal informa-
tion. b The proposed model was compared with traditional risk assessment models
including PCE, FRS, QRISK3, and SCORE, and RMF-based models. ¢ Kaplan-Meier
curves depicting event occurrence rates across low, middle, and high-risk groups
based on risk thresholds of 0.25 and 0.75 were plotted. Quantitative analysis of
retinal microvascular parameters highlights differences in retinal indicators among
risk groups was conducted. d Attention maps were plotted to explore the prediction
mechanisms of our model for three vascular-related diseases based on retinal images.
e Genetic analysis of retinal image-derived traits: Retinal features were extracted

using our model and reduced to 5 dimensions via PCA, preserving 90% of the
information. GWAS was performed to pinpoint lead SNPs, and genetic correlation
and colocalization analyses were conducted to validate the shared genetic basis
between retinal image-derived traits and vascular-related diseases. f Causal effects
between retinal image-derived traits and three vascular-related diseases were esti-
mated using MR. AUC area under the receiver operating characteristic curve, CKD
chronic kidney disease, CRF clinical risk factor, FP fundus photograph, FRS Fra-
mingham Risk Score, GWAS genome-wide association study, MI myocardial
infarction, MPI minimal personal information, MR Mendelian randomization, PCA
principal component analysis, PCE pooled cohort equation, RMF retinal micro-
vascular features, SCORE systematic coronary risk evaluation.
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Fig. 2 | Model architecture and predictive performance. The figure illustrates the
model framework and compares the predictive performance between the proposed
model and baseline models. a Architecture of the early screening model. b ROC
curves of the proposed model (FP + MPI), its variant (FP + CRF), and baseline
models including MPI-based model, FRS, PCE, QRISK3, SCORE, RMF, RMF +
MPI, and FP-based model. ¢ Calibration curves. The x-axis represents the mean
predicted values and the y-axis represents the fraction of positive samples. Due to the
significant imbalance between positive and negative samples in the internal vali-
dation set, the calibration curve was plotted by under-sampling the negative samples

Follow up time, months

to achieve a 1:1 ratio with the positive samples, using the diagonal line as a reference.
d Decision curves. The x-axis represents the threshold probability and the y-axis
represents the net benefit. e Kaplan-Meier graphs for major vascular-related events
in low-risk, middle-risk, and high-risk groups. AUC area under the receiver oper-
ating characteristic curve, BS Brier score, CRF clinical risk factor, FP fundus pho-
tograph, FRS Framingham risk score, MPI minimal personal information, PCE
pooled cohort equation, RMF retinal microvascular features, SCORE systematic
coronary risk evaluation.

Additionally, we conducted quantitative analyses of retinal microvascular
features in various risk populations to identify specific vascular abnormal-
ities in high-risk patients. Besides, we explored both the commonalities and
differences in the retinal microvascular characteristics of the three vascular-
related diseases, aiming to gain a comprehensive understanding of the
general and specific retinal morphological changes closely associated with
them. More importantly, we performed a genetic analysis on the retinal
image-derived features obtained by the model to examine their potential as
biomarkers and determine if there are causal effects with vascular-related
diseases. The primary goal was to provide new insights and approaches for
the early screening and prevention of vascular-related diseases.

Results

Characteristics of the study population

The clinical characteristics of the participants are shown in Supplementary
Table 1. A cohort of 25,840 participants, with usable left eye fundus images
was enrolled in the study, with a mean age of 55.21 years (SD 7.97). Over a
10-year follow-up period, 1561 individuals experienced major vascular-
related events, including 354 cases of stroke, 642 cases of MI, and 672 cases
of CKD. Notably, 102 individuals demonstrated multimorbidity patterns: 5

cases with concurrent stroke, MI and CKD; 16 with stroke-MI co-occur-
rence; 25 with stroke-CKD co-occurrence; and 56 with MI-CKD co-
occurrence.

Prediction performance

Figure 2b demonstrates the predictive performance of our model in the
internal validation set and provides a comparison with other benchmark
models. The unimodal models achieved AUCs of 0.677 (SD, 0.011) for
fundus imaging alone and 0.686 (SD, 0.013) for MPI alone. However, when
enhanced MPI with retinal imaging data, the proposed model's AUC
increased to 0.737 (SD, 0.002). Additionally, the model variant that incor-
porated both retinal imaging and additional clinical indicators demon-
strated the highest predictive performance, with an AUC of 0.767 (SD,
0.009). In comparison, the widely used early screening models PCE, FRS,
QRISK3, and SCORE, achieved AUC values of 0.726 (SD, 0.006), 0.698 (SD,
0.010), 0.729 (SD, 0.012), and 0.709 (SD, 0.008), respectively. The proposed
models consistently demonstrated superior sensitivity and specificity
compared to the baseline models (Supplementary Table 2). The probability
density distribution of the predictions closely matches the actual observed
event frequency on the calibration curve (BS=0.209, SD, 0.005),
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demonstrating the accuracy of the model’s predictions (Fig. 2¢). In contrast,
the traditional risk assessment model, PCE, substantially overestimates the
risk of major vascular-related events. The largest red area in the decision
curve signifies a high level of accuracy and reliability of our model in
decision-making capability (Fig. 2d). This implies that the model is capable
of producing favorable outcomes in real-world clinical applications.

Consistency analysis in predicted probabilities based on left vs.
right eyes

This study utilized fundus images from the left eye to construct a model for
predicting major vascular-related events. To highlight the model’s robust-
ness in selecting fundus images, we also explored the performance of the
model based on the right eye (Supplementary Fig. 1). The predictive
probabilities showed a significant correlation (R=0.96, p <2.2E—16)
between the left and right eyes.

Association of predicted risks with major vascular-related events
To validate the correlation between the predicted risk of major
vascular-related events and the actual occurrence of events, we cate-
gorized patients into low-risk, middle-risk, and high-risk groups based
on prediction probability thresholds of 0.25 and 0.75. Subsequently, we
generated Kaplan-Meier survival curves for these three groups, as
illustrated in Fig. 2e. During the follow-up period, participants in the
low, middle, and high-risk groups displayed significantly distinct
survival outcomes (log-rank p value < 2.2E—16). The survival curve of
the low-risk group showcased the most favorable survival status,
characterized by a relatively high survival rate and a stable trajectory.
Out of the 5505 participants, only 66 (1.20%) experienced the adverse
event. In contrast, the survival curve of the high-risk group exhibited a
significant decline, indicating a heightened susceptibility to clinical
events among these participants. Out of the 1698 individuals in this
group, 310 (18.26%) experienced the target event, signifying a sub-
stantial increase compared to the low-risk group. This indicates a
robust correlation between the predicted risk and the actual occurrence
of major vascular-related events. An increasing pattern of ORs was
observed in all risk groups, indicating a strong association between the
predicted risks and the actual occurrence of targeted events (Supple-
mentary Fig. 2).

Quantitative analysis of retinal microvascular features among
three risk groups

To explore the correlation between retinal features and the risk of devel-
oping diseases, we performed the quantitative analysis of the retinal
microvascular parameters (refer to Section “Methods”) among the high,
middle, and low-risk groups (Table 1). Entire vessel maps show the full
microvascular network, while artery and vein maps classify vessels as arterial
or venous. All retinal features exhibit significant differences among these
three risk groups (p < 0.001). The average width of vessels, distance tortu-
osity, squared curvature tortuosity, and tortuosity density exhibit a positive
correlation with the increasing disease risk. Conversely, fractal dimension
and vessel density exhibit smaller values in the high-risk group. Arterial and
venous indicators demonstrate similar correlations. Specifically, the high-
risk individuals exhibited a marked reduction in vascular branching com-
plexity (as reflected by lower fractal dimension values in both arterioles and
venules), alongside significant venular dilation (evidenced by increased
retinal venular average width) and elevated vascular tortuosity (including
distance-based tortuosity and squared curvature tortuosity). Furthermore,
the retinal age gap in the high-risk group (4.60 (SD 4.50)) was significantly
higher compared to the low-risk group (—3.74 (SD 4.53)), confirming that
high-risking patients have a greater degree of microvascular aging in the
eyes. The middle-risk group showed a near-neutral gap (—0.14 (SD 4.94)
years), with stratified means of —1.70 + 4.72 years (predicted probability
0.25-0.50) and 1.66+4.55 years (predicted probability 0.50-0.75),
demonstrating a progressive increase in retinal aging with rising pre-
dicted risk.

Subgroup analysis of three vascular-related diseases

Our model demonstrated robust performance across stroke (AUC 0f 0.748),
MI (AUC 0f 0.721), and CKD (AUC of 0.752) sub-cohorts (Supplementary
Fig. 3). Specifically, in the screening for CKD, our model exhibited better
results compared to the eGFR-based model (AUC of 0.710). Calibration and
decision curve analysis confirmed superior clinical utility across nearly all
conditions. Survival curves (high/middle/low-risk groups) and retinal fea-
ture quantification consistently validated the model’s predictive accuracy,
aligning with primary analysis findings (Supplementary Fig. 3 and Sup-
plementary Tables 3-5).

To improve the interpretability of our model and shed light on its
diagnostic mechanism for different vascular-related diseases, integrated
gradients were used to generate saliency maps to highlight valuable areas of
images in corresponding subgroups. Figure 3 presents four individual sal-
iency maps of randomly selected patients and the compiled maps. The
saliency maps for three vascular-related diseases demonstrate both com-
monalities and differences in the model’s predictive mechanisms for stroke,
MI, and CKD, which are reflected by overlapping and disjoint areas of
empbhasis respectively. The optic disc area and the peripapillary area adja-
cent to major vessel branches, as well as the areas below the third branches of
the temporal superior vessels, and the macula area, exhibit prominent
predictive value for the model in predicting all three vascular-related dis-
eases, suggesting a possible association between the microcirculation of the
heart, brain, and kidneys and these specific regions of the retina. The sal-
iency maps for stroke, MI, and CKD also show somewhat distinct patterns
of emphasis. The model focuses more on the first and second branches of the
inferior and superior temporal vessels for predicting MI compared to stroke.
In the case of CKD, the model’s attention is more evenly distributed
throughout the retinal area, with a broader focus on microvessels and
adjacent areas (the second column of Fig. 3). This effect is even more
pronounced than in predicting stroke.

The quantitative analysis of retinal microvascular features in partici-
pants with three vascular-related diseases revealed both common and dif-
ferential retinal morphological characteristics of stroke, MI, and CKD
(Supplementary Table 6). We found that some retinal microvascular fea-
tures showed no significant differences among the three vascular-related
diseases, indicating partial consistency in the morphological characteristics
of microvessels in retinal images. However, a few microvascular parameters
did highlight significant differences. Specifically, compared to patients with
stroke or CKD, patients with MI exhibited increased vessel area, fractal
dimension, and vessel density. On the contrary, CKD patients showed larger
average retinal microvascular width and tortuosity. The characteristics of
veins and the overall binary representation of the vasculature were con-
sistent across all three diseases. Additionally, our observations revealed
differences in the degree of retinal microvascular aging among the three
vascular-related diseases, with CKD patients showing the most severe aging
and MI patients showing relatively less aging.

Subgroup analysis by age and sex

The model’s predictive performance varied across age groups and genders.
Notably, it achieved the highest accuracy in young adults (AUC = 0.721),
compared to middle-aged adults (AUC=0.674) and older adults
(AUC = 0.642) (Supplementary Table 7). While all models exhibited some
performance degradation in the older adult group, our proposed model
and its variant (AUC of 0.673) maintained the strongest predictive cap-
ability in comparison with baseline models. Regarding gender differences,
the model showed pronounced better performance in female participants
(AUC 0f 0.760) than in males (AUC of 0.680). However, the model variant
demonstrated relatively robust performance in the male subgroup (AUC
of 0.735), suggesting its potential utility for gender-specific applications
(Supplementary Table 8).

Sensitivity analysis
To address potential confounding by population structure, we conducted a
sensitivity analysis restricted to White British participants. Both our

npj Digital Medicine | (2025)8:437


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01850-5

Article

Table 1 | Comparison of retinal microvascular features among the high, middle, and low-risk groups

Overall Low-risk Middle-risk High-risk p
Characteristic Number 25,840 5505 18,637 1698
Binary Fractal dimension (—) 1.489 (0.035) 1.502 (0.032) 1.487 (0.034) 1.464 (0.035) <2.22E-16
Vessel density (—) 0.071 (0.010) 0.074 (0.010) 0.070 (0.010) 0.064 (0.010) <2.22E-16
Average width (pixel) 7416.400 (617.994) 7389.829 (622.269) 7417.583 (616.561) 7519.605 (607.894) 3.19E-09
Distance tortuosity (—) 3.397 (1.189) 3.245 (1.066) 3.426 (1.206) 3.674 (1.385) <2.22E-16
Squared curvature tortuosity (—) 23.996 (23.416) 21.373 (20.112) 24.569 (24.138) 27.818 (25.869) <2.22E-16
Tortuosity density (—) 0.699 (0.034) 0.696 (0.033) 0.700 (0.034) 0.706 (0.037) <2.22E-16
Artery Fractal dimension (—) 1.292 (0.037) 1.305 (0.034) 1.290 (0.036) 1.266 (0.040) <2.22E-16
Vessel density () 0.030 (0.005) 0.032 (0.005) 0.030 (0.005) 0.027 (0.005) <2.22E-16
Average width (pixel) 7284.574 (672.663) 7333.591 (661.714) 7263.419 (674.145) 7358.619 (684.664) 2.11E-12
Distance tortuosity (—) 5.568 (3.512) 5.202 (3.014) 5.655 (3.609) 6.009 (4.058) <2.22E-16
Squared curvature tortuosity (—) 72.730 (114.306) 61.280 (88.177) 75.250 (119.975) 89.182 (132.148) <2.22E-16
Tortuosity density (—) 0.750 (0.054) 0.747 (0.053) 0.751 (0.054) 0.754 (0.059) 7.96E—06
Vein Fractal dimension (—) 1.315 (0.039) 1.327 (0.037) 1.313 (0.039) 1.293 (0.039) <2.22E-16
Vessel density (—) 0.036 (0.006) 0.037 (0.006) 0.035 (0.006) 0.033 (0.005) <2.22E-16
Average width (pixel) 8009.407 (790.017) 7887.956 (746.560) 8024.175 (793.901) 8350.661 (808.945) <2.22E-16
Distance tortuosity (—) 3.491 (1.835) 3.344 (1.637) 3.518 (1.867) 3.788 (2.153) 2.62E-14
Squared curvature tortuosity (—) 27.271 (39.951) 25.069 (37.253) 27.730 (40.530) 30.795 (43.015) 3.49E-06
Tortuosity density (—) 0.760 (0.042) 0.757 (0.040) 0.761 (0.042) 0.764 (0.047) 1.31E-08
Age Gap (year) —0.593 (5.226) —3.735 (4.531) —0.138 (4.938) 4.597 (4.502) <2.22E-16

# — indicates that this indicator is a unitless measure.

Fig. 3 | Gradient visualizations of predictions of three vascular-related diseases.
This figure shows saliency maps of predictive gradients for three vascular-related
diseases, highlighting clinically relevant retinal regions. a Stroke. b MI. ¢ CKD. The
first image presents a compiled saliency map that encompasses all patients in the
subgroup. In this map, the highest value of each pixel from the saliency maps of
individual patients is captured, emphasizing the distribution of retinal micro-
vascular areas that the model considers crucial for this particular disease. The second

image shows a differential map of the compiled saliency maps for three diseases. It is
astandardized representation of the first image, where brighter pixels denote that the
corresponding region is more associated with the specific disease compared to the

other two. The subsequent four images (3rd to 6th) exhibit saliency maps derived

from fundus images of four randomly chosen patients who have the corresponding
vascular-related disease.
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proposed model and baseline models exhibited comparable predictive
performance between the full cohort and the White British subgroup
(Supplementary Table 9). Specifically, the proposed model achieved an
AUC of 0.740 in the White British subgroup, closely mirroring its perfor-
mance in the full cohort (AUC = 0.737; DeLong’s test p = 0.919). Similar
nonsignificant differences were observed across all baseline models (all
DeLong’s test p > 0.05), suggesting minimal evidence for population stra-
tification effects.

Extraction of retinal image-derived traits

The 32-dimensional retinal image features obtained from the convolutional
layers of the model have been reduced to 5 dimensions (retinal image-
derived traits) using PCA while preserving 90% of the original feature
information, namely FP_1 to FP_5. Supplementary Fig. 4 presents the
t-SNE visualization results of dimensionality reduction for FP_1 to FP_5.
The positive and negative samples demonstrate distinguishable patterns,
indicating the potential of the identified retinal-image derived traits to
effectively characterize fundus image features. Additionally, the Spearman
correlation heatmap shows the relationships between these traits and retinal
morphological characteristics, as well as the retinal age gap (Supplementary
Fig. 5). Significant correlations (marked with asterisks) are observed across
various features, highlighting the association between specific retinal image
traits and morphological characteristics. For instance, FP_1 exhibits a sig-
nificant inverse correlation with the average width of arteries and veins.
FP_2 shows a significant negative correlation with the fractal dimension and
vascular density of the retinal microvasculature, while it has a significant
positive correlation with the average width. FP_3 is significantly positively
correlated with fractal dimension and vascular density. FP_4, compared to
other traits, demonstrates a stronger positive correlation with the fractal
dimension and vascular density of the fundus microvasculature.

Genetic analysis of retinal image-derived traits

GWASs for 5 retinal image-derived features identified a total of 24
genome-wide-significant (p < 1.0E — 08) loci (Fig. 4 and Supplemen-
tary Data 1). Genomic heritability was estimated at 9.9% (SE, 2.4%),
4.6% (SE, 1.9%), 17.8% (SE, 2.6%), 8.7% (SE, 2.3%), 6.8% (SE, 2.1%) for
5 retinal image-derived traits. The average SNP-based heritability was
9.56%. According to the GeneCards database, 10 out of the 119 mapped
genes obtained from FUMA are involved in various biological func-
tions, including brain regulation (SRRT), kidney function (PLEKHAS,
DSTYK), blood vessel development (EPHB4, SLC12A9, CHEKI,
PDE3A, NOX4), and regulation of vascular functions (PLCB1, PLCB4).
By querying the GWAS Catalog, we found that the identified loci affecta
diverse range of traits (Supplementary Data 2). In addition to retinal
microvascular characteristics such as vascular fractal density and vas-
cular fractal dimension, these loci are also associated with clinical
biomarkers linked to vascular-related diseases, such as eGFR, high-
density lipoprotein cholesterol levels, and cystatin C levels.

Significant genetic correlation between retinal image-derived traits was
only observed in a few traits, including FP_1 and FP_4 (rg = —0.43), as well
as FP_3 and FP_4 (rg = —0.30, Supplementary Table 10). Additionally, we
analyzed the genetic correlations between retinal image-derived traits and
retinal microvascular features using available summary statistics from eight
GWAS datasets (Supplementary Table 11). Although most retinal image-
derived traits showed significant phenotypic associations with retinal
microvascular parameters, only a few exhibited significant genetic correla-
tions after FDR correction. Specifically, significant genetic correlations were
observed only with vessel density, whereas no significant associations were
found with vessel width or tortuosity. In contrast, colocalization analysis
revealed stronger evidence of shared genetic basis between retinal image-
derived traits and retinal microvascular features (Supplementary Table 12).
With the exception of FP_2, nearly all retinal image-derived traits shared
genetic variants with all available retinal microvascular traits. FP_2 showed
shared variants only with fundus microvascular tortuosity and vessel den-
sity, but not with vessel width.

Genetic analyses of retinal image-derived traits and three major
vascular-related diseases revealed potential shared genetic basis. Our ana-
lysis identified significant genetic correlations between FP_2 and both stroke
and CKD, as well as between FP_3 and both stroke and MI (Fig. 5a).
However, no significant genetic associations were observed between other
retinal traits and these three diseases. Colocalization analysis further
uncovered additional shared genetic foundations. Nearly all retinal image-
derived traits exhibited colocalized genetic loci with the three vascular-
related diseases (Supplementary Table 13). For instance, FP_1 colocalized
with stroke at SNP rs12913832 (Fig. 5b, PPH4 = 0.99), FP_2 colocalized
with CKD at SNP rs12913832 (Fig. 5¢, PPH4 = 0.99), and FP_3 colocalized
with MI at SNP rs1800407 (Fig. 5d, PPH4 = 1.00).

Causal effects between retinal image-derived traits and major
vascular-related diseases

We conducted a systematic analysis using two-sample bidirectional MR to
examine the causal relationship and effects between five retinal image-
derived traits and three vascular-related diseases, i.e., stroke, M1, and CKD.
Expect for a few IVs groups that exhibited heterogeneity and pleiotropy,
sensitivity analysis found no evidence of confounding heterogeneity of effect
sizes (Cochran Q statistic, p > 0.001; Supplementary Tables 14 and 16) or
from pleiotropy (MR-Egger intercept, p>0.05; Supplementary Tables
15 and 17). In the forward MR analysis, where retinal image-derived traits
were treated as exposures, we found nominally significant causal effects for
stroke with FP_1 as well as FP_2, and for MI with FP_4 and FP_5 (Sup-
plementary Tables 18 and 19). However, after applying the FDR correction,
only the preceding findings remained significant (p = 0.003, FDR-corrected
p=0.043 for FP_1; p = 0.006, FDR-corrected p = 0.046 for FP_2; Fig. 5e). In
the reverse MR analysis, where the three vascular-related diseases were
considered exposures, we observed nominally significant causal effects for
CKD with FP_2, FP_3, FP_4, as well as FP_5, and only the effect with FP_2
passed the FDR correction (p = 0.002, FDR-corrected p =0.026; Fig. 5e).
These findings suggest that changes in retinal image-derived traits may have
anoticeable impact on the risk of stroke and MI, while CKD may potentially
act as a contributing factor to retinal microcirculation.

External temporal validation

The clinical characteristics of the validation cohort are presented in Sup-
plementary Table 20. An independent cohort of 4558 participants with
usable left-eye fundus images was enrolled for external temporal validation,
with a mean age of 59.42 years (SD 7.78). Over a 10-year follow-up period,
350 individuals experienced major vascular-related events, including 75
cases of stroke, 141 cases of MI, and 159 cases of CKD. Among these, 1
patient presented with concurrent stroke, MI, and CKD; 6 exhibited stroke-
MI co-occurrence; 5 had stroke-CKD co-occurrence; and 12 displayed MI-
CKD co-occurrence.

The results from this cohort confirm the generalizability of our model
to new populations, showcasing superior performance compared to tradi-
tional risk assessment models (Supplementary Fig. 6). For composite major
vascular-related events, the AUC of the proposed model was 0.732,
reflecting improvements of 4%, 1.8%, 0.9%, and 3.7% over FRS, PCE,
QRISK3, and SCORE, respectively. When compared to RMF-based
approaches, our model maintained this performance advantage, showing
absolute AUC increases of 7% and 2% against the RMF-only and RMF +
MPI models, respectively. In sub-cohorts, the model demonstrated superior
performance, except for stroke, with a particularly notable improvement in
the FP + CRF model variant. Sensitivity and specificity further highlighted
the model’s superiority to identify high-risk individuals (Supplementary
Table 21). Additionally, calibration and decision curves provided further
support for the model’s superiority in this new cohort.

Our stratified evaluation revealed nuanced performance patterns
across demographic subgroups. Diverging from primary analyses, the
proposed model demonstrated superior predictive performance in middle-
aged adults (AUC of 0.703) compared to both younger and older adult
subgroups within the validation cohort (Supplementary Table 22). Notably,
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Fig. 4| GWAS analysis of retinal image-derived traits. This figure presents Manhattan and QQ plots visualizing the genome-wide association results for FP_1 (a), FP_2 (b),

FP_3 (¢), FP_4 (d), and FP_5 (e).

the model maintained its performance advantage over baseline approaches
specifically in middle-aged and older populations. Sex-specific analyses
corroborated primary findings (Supplementary Table 23), with consistently
stronger prediction accuracy in females (AUC of 0.770) versus males
(AUC of 0.684).

Discussion
In this study, we examined the correlation between retinal microcirculation
and major vascular-related diseases from both phenotypic and genetic

perspectives. Phenotypically, we proposed a deep learning model for the
early screening of major vascular-related diseases using fundus images.
Instead of screening different diseases separately, we integrated repre-
sentative vascular-related diseases into a single model. We demonstrated
that the deep learning model, integrating accessible fundus images and MP]I,
could achieve superior and promising performance for major vascular-
related events when compared to traditional assessment models. Through
further quantitative analysis, we identified the retinal morphological fea-
tures associated with high-risk patients for major vascular-related diseases,
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Fig. 5 | Genetic associations and causal effects between retinal image-derived
traits and three vascular-related diseases. The figure presents genetic correlations,
colocalization results, and causal relationships between retinal image-derived traits
and stroke, MI, and CKD. a Genetic correlations between retinal image-derived
traits and stroke, MI, and CKD. Results that passed the significant threshold (FDR-
adjusted p < 0.05) were marked in the plot. FDR-adjusted p values of <0.001, <0.01,

®IVW-FE @IVW-MRE

and <0.05 are indicated as ***, **, and *, respectively. b Colocalization results
between FP_1 and stroke. ¢ Colocalization results between FP_2 and CKD.

d Colocalization results between FP_3 and MI. e Significant causal effects (p < 0.05)
in bidirectional MR results, with significant FDR-adjusted p values in bold. CKD
chronic kidney disease, FDR False Discovery Rate, FP fundus photograph, MI
myocardial infarction.

as well as patients within different disease groups. Genetically, our study
revealed the potential of using extracted retinal image-derived features as
biomarkers and suggested a causal relationship between retinal micro-
circulation and major vascular-related diseases.

Previous studies have endeavored to predict vascular-related diseases,
along with their associated risk factors, utilizing retinal fundus images'******’
and optical coherence tomography (OCT) scans'*. These investigations

have not only affirmed the efficacy of early screening models but have also
underscored the feasibility of this technological pathway. However, most
existing models based on fundus images predominantly concentrate on
screening for a particular disease. In essence, these proposed models are only
effective in a narrow range of early screening scenarios. It is more efficient in
clinical practice to employ a comprehensive screening model that encom-
passes multiple crucial vascular-related diseases, as opposed to a single-
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disease screening model™. Physiologically, the retinal microcirculation is an
integral part of the systemic microcirculation, interrelated with the micro-
circulation of vital organs such as the heart, brain, and kidneys"**’. Corre-
spondingly, conditions such as MI, stroke, and CKD are significant
contributors to mortality and socioeconomic burden worldwide*'*. By
targeting the composite events related to these three representative diseases
in our prediction model, we demonstrated its practicality and potential to
enhance disease screening efficiency, particularly in scenarios involving
large-scale screening and limited medical resources.

Existing studies have utilized retinal imaging to predict various vas-
cular diseases, although their performance varies to some extent. In the
study focused on major adverse cardiac events, an AUC score of 0.73 (SD
0.04) was achieved, showcasing comparable predictive ability with our
study”. A similar level of performance was observed in the study aiming to
predict coronary artery calcium, where an AUC score of 0.742 (95% CI
0.732-0.753) indicated promising predictive potential’. In another study
focused on retinal imaging-based prediction of MI, they achieved an AUC
score of 0.80 (SD 0.02), surpassing the AUC score of our model". This may
be attributed to the incorporation of a comprehensive range of clinical
indicators in their model, including gender, age, HbAlc, systolic and dia-
stolic blood pressure, smoking habit, alcohol consumption, glucose, and
body mass index, which may enhance their predictive performance. Fur-
thermore, a study focused on diagnosing cardiovascular diseases using
retinal imaging and reported an impressive AUC score of 0.872 (95% CI
0.857-0.886)*. One possible reason for this could be that they included
various risk factors such as systolic blood pressure, total and high-density
lipoprotein cholesterol, and hypertension. It is worth noting that the diag-
nosis of cardiovascular diseases is generally considered easier compared to
predicting the risk over a 10-year period. In contrast to these studies, our
model adopts a more streamlined approach by solely considering minimal
demographic information, specifically age and gender. These easily
obtainable indicators not only simplify the process but also hold the
advantage of non-invasiveness, eliminating the need for any intrusive
procedures. We also observed pronounced age and gender disparities in the
predictive performance of the proposed model. Specifically, the model
showed superior performance in women compared to men. This finding
aligns with previous studies that have also reported gender differences in
predicting vascular-related events™*. For instance, studies by Liew et al.*’
and Wong et al.* found that changes in retinal vessel characteristics were
associated with an increased risk of vascular diseases in women, but not in
men. A meta-analysis focusing on retinal vessel caliber and risk for coronary
heart disease also highlighted an association between retinal vessel changes
and increased risk in females, but not in males’’. These findings indicate
significant differences in microcirculation between males and females,
suggesting that retinal microvasculature may serve as a more effective
indicator of vascular health in women than in men.

The populations identified as high-risk and low-risk based on the
model screening exhibit significant distinctions in all retinal parameters,
signifying a correlation between retinal microvascular features and the
likelihood of developing major vascular-related diseases. Notably, we found
that the high-risk individuals exhibited a marked reduction in vascular
branching complexity, alongside significant venular dilation and elevated
vascular tortuosity. Existing studies have confirmed that reduced fractal
dimension may indicate higher risks for various health issues such as stroke,
incident mortality, hypertension, congestive heart failure, and renal failure,
which is consistent with our main findings****". Likewise, researchers have
suggested that lower retinal vascular density is associated with a high AHA
(American Heart Association) risk score, hypertension, congestive heart
failure, and renal failure, which aligns with our study’s results**. Previous
studies have consistently found a significant connection between higher
retinal vascular tortuosity and an increased prevalence of cardiovascular
diseases”. Our study’s results reinforce this link, highlighting the impor-
tance of retinal vascular tortuosity as a clinical marker for identifying
individuals at risk. Retinal age gap, a novel biomarker to evaluate the aging of
microvascular status, has been convincingly demonstrated to have a robust

correlation with the occurrence of multiple diseases, such as stroke, arterial
stiffness, incident cardiovascular disease, and kidney failure’*. A positive
retinal age gap indicated an “older”-appearing retina, while a negative one
indicated a “younger”-appearing retina. Remarkably, our study has yielded
results consistent with prior research, revealing a substantial escalation in
retinal vascular aging among high-risk patients susceptible to severe vas-
cular ailments.

In addition to evaluating the all-cause predictive performance of the
proposed model, we conducted a thorough analysis of its direct application
in predicting the three target vascular-related diseases. Notably, the saliency
maps revealing the model’s prediction mechanisms highlight a significant
portion of the retina, indicating the strong correlation between retinal
microcirculation and the microcirculation of the heart, brain, and kidneys.
In the aggregated maps, the optic disc area and the peripapillary area
adjacent to major vessel branches, as well as the areas below the third
branches of the temporal superior vessels, and the macula area, are the
primary areas of interest, suggesting a close association between these
locations and the occurrence of outcome events. Despite the absence of
retinal microvessels in the macular region, the model places significant
emphasis on this area. This could be attributed to the presence of a
dense network of blood vessels in the surrounding retina of the macula,
and the possibility that morphological alterations in these microvessels
are closely interrelated with major vascular-related diseases. Additionally,
there may exist a correlation between other retinal ailments and the
occurrence of vascular-related diseases’*". Previous studies utilized saliency
maps to investigate the predictive mechanisms of the models based on
fundus images in predicting CKD, cardiovascular disease, and other
conditions™**. They discovered that the highlighted regions were pri-
marily located in the optic nerve, central macula, vessel branch points, and
arterial-venous junctions, which align with the important retinal regions
identified in our study. In addition to confirming the significance of the
main vascular trunk in providing valuable information, our research also
underscores the correlation between the third branches of the temporal
superior vessels and their impact on the outcome. This additional finding
serves as a valuable supplement to the existing body of research. Although
the primary regions of interest align across the diseases, it is particularly
significant to note that CKD demonstrates a wider focus on retinal areas
compared to the other two diseases. This intriguing observation suggests a
potential link between the occurrence of CKD and subtle microvascular
alterations within the retina.

We conducted a comparative study on the retinal morphological fea-
tures of the three vascular-related diseases to identify associations between
retinal microcirculation and the risk of these diseases. To the best of our
knowledge, this investigation had not been previously undertaken. The
results we obtained revealed distinctive differences in the retinal pathology
between different vascular-related diseases, despite the heart, brain, and
kidneys all being part of the systemic microcirculation. Specifically, patients
at risk of developing CKD exhibited lower fractal dimension and vessel
density, as well as higher average vessel width and tortuosity density, which
closely resemble the morphological characteristics observed in high-risk
populations. Notably, the disparities in microvascular parameters of veins
were more significant among the three diseases, aligning with the overall
binary vessel analysis results. In addition, the significant differences in the
retinal age gap across these three vascular-related diseases provide valuable
insights for assessing the acute and chronic nature of vascular events.
Individuals at risk of MI exhibit the smallest difference in retinal aging,
signifying a milder degree of microvascular aging and implying a swifter
onset of MI. Conversely, patients at risk of CKD display the largest retinal
age gap, indicating a more advanced stage of vascular aging and suggesting a
slower progression of this condition. These findings are highly significant in
advancing the understanding of the retinal morphological mechanisms of
major vascular-related diseases and their clinical management.

As mentioned earlier, previous studies have yielded favorable results in
using fundus images to screen for various diseases'******. However, these
studies primarily prioritize the development of screening models, and their
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impressive predictive performance merely showcased the phenotypic cor-
relation between retinal microcirculation and diseases. They did not delve
into the genetic relationship or causal effects, thus lacking the necessary
chain of evidence. In this study, we not only examined the phenotypic
correlation between retinal microcirculation and diseases but also investi-
gated their genetic relationship and causal effects. The results of the GWAS
analysis confirmed that the extracted retinal image-derived features could
serve as potential biomarkers for major vascular-related diseases, consistent
with prior genetic findings from retinal OCT imaging studies™. Genetic
analysis of retinal image-derived traits in relation to the three vascular-
related diseases revealed shared variants, thereby suggesting a common
genetic basis between retinal microcirculation and microcirculation in the
heart, brain, and kidney. This finding provides new insights for further
exploration of the genetic mechanisms underlying these major vascular-
related diseases. We also found that the significant loci identified for retinal
image-derived traits simultaneously influence risk factors for vascular-
related diseases, such as BMI”, and smoking initiation®*"', and bio-
markers for vascular-related diseases such as blood pressurezs, estimated
glomerular filtration rate®*, high-density lipoprotein cholesterol levels™ ™,
serum creatinine levels”, and blood urea nitrogen levels****. This finding
suggests that the utilization of retinal images for predicting major vascular-
related diseases may involve leveraging the prediction of risk factors and
biomarkers. In addition, the loci of retinal features identified in this study
overlap with previously identified retinal biomarkers like retinal fractal
dimension and vessel density*’. These findings further support the potential
of the extracted retinal image-derived features to serve as an objective
measure for retinal vasculature.

The MR analysis results offer additional insights, indicating the
potential causal relationship between retinal microcirculation and major
vascular-related diseases. It is worth noting that the causal effects between
retinal characteristics and these three vascular-related diseases have distinct
natures. Specifically, changes in retinal microvasculature occur prior to the
onset of stroke and MI, whereas the manifestation of renal vascular disease
may cause modifications to retinal characteristics. These variations poten-
tially reflect discrete mechanisms underlying the onset and progression of
stroke, MI, and CKD. One potential explanation for the divergence of CKD
from the other two diseases is that it predominantly affects small micro-
vessels, causing a gradual onset and protracted disease course™”. The initial
renal impairment in CKD causes changes in vascular structure and function,
ultimately leading to modifications to the retinal microvasculature”. In
contrast, MI and stroke manifest more acutely and are primarily linked to
greater vessels like major arteries and coronary arteries”. The changes in
retinal microvasculature in conjunction with systemic vascular alterations
are the primary factors behind the occurrence of these events. These findings
highlight the likely causal link between retinal microvasculature and acute
vascular events, thereby potentially identifying a new causal risk factor for
retinal microvascular abnormalities that may be used for monitoring and
therapeutic modulation. Besides, the order in which events occur, as
determined by their causal relationships (ie, CKD preceding retinal
microvascular changes, and retinal microvascular changes preceding stroke
and MI) is consistent with previous studies indicating that CKD is a risk
factor for cardiovascular events™””. Additionally, it can be observed that the
causal impact of retinal image-derived features on MI and stroke is not as
robust as the inverse causal effect. This could be attributed to the fact that the
retinal microvasculature predominantly consists of microvessels, and the
homogeneity with the small vessels involved in CKD is significantly stronger
than that with the great vessels involved in MI and stroke™. Regarding the
MR analysis, we recognize the complexity of establishing causality, espe-
cially when examining the occurrence of vascular diseases. While MR
provides useful insights into the potential causal relationships, we empha-
size the need for cautious interpretation of the results. The observed asso-
ciations may reflect underlying systemic processes rather than direct
causality. Our findings suggest that retinal microvascular changes could
serve as early markers of vascular health, but further research is needed to
confirm the causal direction and understand the underlying mechanisms.

157759

The potential bidirectional nature of these relationships—where retinal
abnormalities may both influence and be influenced by vascular disease—
requires further exploration.

Overall, while numerous studies have utilized retinal imaging for
vascular disease screening, our research presents several key advancements.
First, we integrate both phenotypic and genetic analyses, offering a more
comprehensive understanding of the relationship between retinal micro-
circulation and vascular diseases. Second, whereas many studies focus on
individual vascular conditions, our model expands the scope to include
vascular diseases affecting the heart, brain, and kidneys, providing a more
integrated approach to vascular health. Third, we go beyond qualitative
assessments by quantitatively analyzing retinal microvascular features,
providing more precise insights into early markers associated with vascular
diseases. Finally, through genetic analysis using GWAS and Mendelian
randomization, we not only identify associations but also uncover potential
causal relationships, thereby deepening our understanding of the under-
lying mechanisms driving vascular diseases.

We also acknowledge limitations. Several limitations should be con-
sidered. First, the relatively small sample size, particularly regarding the
number of positive cases, may introduce potential bias. Expanding the
sample size would improve the robustness and generalizability of our find-
ings. Second, demographic biases within the UK Biobank, such as age,
ethnicity, and social class, could limit the broader applicability of our results.
Future studies incorporating more diverse cohorts are needed to enhance
generalizability. Third, model validation was conducted using external
temporal validation within the UK Biobank cohort, focusing on participants
who had undergone the first repeat assessment visit. While this cohort is
independent, future validation with larger, more diverse samples from
multiple datasets will be important for a more comprehensive assessment of
the model’s generalizability. Fourth, although the proposed model demon-
strates promising AUC values (0.74-0.77), further refinement is necessary to
achieve the level of discrimination required for clinical use, potentially
through feature expansion, model optimization, or by incorporating more
diverse or higher-quality data. Additionally, while image quality assessment
was incorporated in our analysis, we did not specifically account for potential
confounding factors such as refractive errors and axial length measurements.
These unmeasured variables might have influenced the imaging outcomes
and therefore warrant consideration in future investigations. Furthermore,
while we have sought to explore both phenotypic and genetic associations
between retinal image-derived traits and retinal microvascular features, their
exact biological significance remains unclear, owing to the constraints
imposed by PCA-based dimensionality reduction. These traits should be
considered primarily as proxies for investigating the relationship between
retinal images and major vascular-related diseases. Future studies should
focus on identifying more meaningful retinal image traits to improve bio-
logical interpretability and clinical relevance. Moreover, the deep learning
model used in our study, while effective, remains a black-box, and its
interpretability is limited. The lack of transparency in model decisions may
hinder its clinical acceptance and application. Future work should aim to
enhance model explainability, potentially by integrating more interpretable
methods or by exploring causal relationships in greater depth. Finally, our
study did not examine the potential associations between retinal micro-
vascular features and other omics data, such as metabolomics or proteomics.
Incorporating such data in future studies could provide valuable insights into
the underlying molecular mechanisms.

Our study should be interpreted in light of its potential clinical impact.
First, we developed a robust and efficient screening model that leverages
retinal images and minimal demographic data to assess the 10-year risk of
major vascular-related diseases. With increasing accessibility to retinal
photography in community and primary care settings, our model holds
promise as a practical tool for early identification and primary prevention of
cardiovascular events, offering a non-invasive and cost-effective means for
clinicians to detect at-risk individuals in settings such as primary care clinics,
community health centers, and ophthalmology practices. Second, our
research identified distinct retinal morphological features associated with
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high-risk individuals and patients with various vascular-related diseases.
These features serve as reliable, interpretable biomarkers for early detection,
enabling healthcare providers to make more informed, data-driven deci-
sions about preventive care. By recognizing these features, clinicians can
tailor interventions based on individual risk profiles, ultimately improving
the effectiveness of prevention strategies. Third, our genetic analysis of
retinal image features has uncovered their potential as biomarkers of genetic
susceptibility. The causal links between retinal microcirculation and
vascular-related diseases provide valuable insights into their pathophysiol-
ogy, guiding clinicians in identifying patients at higher genetic risk and
informing future therapeutic strategies. In conclusion, this study highlights
the strong association between retinal microcirculation and major vascular-
related diseases from both phenotypic and genetic perspectives. The deep
learning-based retinal image prediction model offers clinicians a powerful,
scalable tool to predict major vascular events up to 10 years after a retinal
examination. By facilitating earlier detection and supporting more perso-
nalized prevention efforts, this model has the potential to significantly
improve patient outcomes and optimize clinical decision-making.

Methods

Datasets and subjects

Our study utilized data obtained from the UK Biobank (UKB) study, which
enrolled around half a million individuals from 2006 to 2010 (https://www.
ukbiobank.ac.uk/). The study was approved by the North West Multi-centre
Research Ethics Committee, the National Information Management Board,
and the UK government. The ethical considerations for research involving
individuals were thoroughly reviewed, and participants provided written
informed consent. As part of the eye assessments conducted during parti-
cipants’ visits to the UKB assessment center, retinal imaging scans were
performed. We obtained all retinal fundus images from Category 100,016.
In order to enhance the operability of the early screening model and
streamline the screening process, we simplified the necessary personal
information to only collect age and gender, making it more practical and
accessible for primary medical and health care institutions and ophthal-
mology clinics. To compare with traditional risk assessment models, a
combination of variables derived from the participant’s history and blood
samples—such as systolic and diastolic blood pressure, smoking habit, total
cholesterol, high-density lipoprotein cholesterol, and history of hyperten-
sion—were also collected.

Participants who had retinal imaging scans during their initial
assessment visits (2006-2010) were included in this study. We excluded
participants with serious eye conditions such as glaucoma, trauma, diabetic
retinopathy, or macular degeneration based on their diagnostic records, as
these conditions had the potential to cause alterations in the retinal fundus
image'*”. Participants who were diagnosed with any of the major vascular-
related diseases including stroke, MI, or CKD prior to the baseline, as
determined by the time of retinal imaging acquisition, were also excluded
from the study. The inclusion and exclusion criteria for participants are
reported in Supplementary Fig. 7.

Image preprocessing

Retinal photographs of the optic disc and macular were taken at baseline for
both eyes using a Topcon 3D OCT-1000 Mark II system. The system has a
45° field angle, scanning range of 6 mm x 6 mm centered on the fovea,
acquisition speed of 18,000 A-scans per second’”*. The images were con-
verted to JPEG and resized to 224 x 224 pixels for input into the neural
network with center cropping. During the training phase, data augmenta-
tion techniques such as random horizontal and vertical flipping, random
rotation within 30 degrees, random brightness adjustment with a factor of
0.1, and random zoom with a factor of 0.1 were applied as data augmen-
tation to facilitate improved and generalized network learning.

In accordance with prior studies, a deep learning method was
employed to assess the quality of retinal images, ensuring that they met
certain pre-specified criteria of sufficient quality while filtering out images
with poor clarity, low contrast, and significant artifacts'*”. This assessment

method utilized the publicly available EyePACS dataset (https://www.
kaggle.com/c/diabetic-retinopathy-detection/data) to train and validate its
performance'*’’. Any retinal fundus images classified as “reject” during the
quality assessment process were excluded from further analysis, while the
remaining images were used for both model training and validation. This
selection process was verified by the collaborating ophthalmologist, who
randomly sampled and manually confirmed the retained retinal images.
We also utilized pre-existing retinal imaging feature extraction tools to
obtain meaningful retinal microvascular features (RMF)**”". Specifically, the
extracted parameters included fractal dimension, vessel density, average
width, distance tortuosity, squared curvature tortuosity, and tortuosity
density of whole binary vessels, as well as arteries and veins. It is worth
noting that distance tortuosity, squared curvature tortuosity, and tortuosity
density are specific parameters used to quantify the degree of blood vessel
tortuosity, albeit calculated using different calculation methods. To measure
the extent of retinal vascular aging, we calculated the retinal age gap based on
previous studies, with a larger value indicating more severe vascular

24,50

aging™".

Definition of major vascular-related events

In this study, major vascular-related events are defined as a composite
outcome encompassing stroke, MI, and CKD. During a 10-year follow-up
period, the occurrence of any one of these three diseases is considered
indicative of experiencing the major vascular-related event. The identifi-
cation of these cases was achieved through linkage to electronic health
records, which encompassed admissions and diagnoses from hospitals in
England, Scotland, and Wales, as well as information on the cause of death
obtained from national death registers. Stroke and MI were ascertained by
the UK Biobank Outcome Adjudication Group, utilizing specific diagnostic
codes from both the 9th edition of the International Classification of Dis-
eases (ICD-9) and ICD-10. The incidence of CKD was determined based on
the codes from the ICD-10 and the Office of Population Censuses and
Surveys Classification of Interventions and Procedures version 4 (OPCS-4)*
*. The specific codes corresponding to the disease definitions can be found in
Supplementary Table 24. The follow-up period commenced from the date
of retinal image acquisition and concluded upon death, diagnosis of major
vascular-related events, or the end of the follow-up period, whichever
came first.

Model development and training

We utilized a multimodal deep learning approach, which utilizes multiple
data sources to train networks (Fig. 1a). Specifically, we conducted a mul-
timodal network by integrating a convolutional neural network (CNN) for
FP and a deep neural network (DNN) for MPI (Fig. 2a). To extract features
from retinal images, we developed a three-layer CNN that was specifically
designed for this purpose. Instead of using well-established pre-trained
models like ResNet-50 or DenseNet-169""*, we chose not to employ them
due to preliminary experiments showing significant overfitting issues and
subsequent decline in model performance. Meanwhile, we utilized a DNN
to capture the nonlinear interactions among MPI (age and gender). The
network had one fully connected layer followed by a rectified linear unit. The
weights of the networks were randomly initialized. These two separate
networks were then concatenated into a fully-connected layer for multi-
modality feature fusion. The final layer with a Softmax function was
appended to predict the major vascular-related events. To enhance the
predictive performance of the model without considering the ease of data
acquisition, we further developed a variant that incorporates additional
clinical risk factors (CRF). This variant includes clinical indicators such as
total cholesterol, high-density lipoprotein, and systolic blood pressure, as
used by PCE.

The cross-entropy loss was used as an objective function for the
classification task. The models were trained using back-propagation of
errors in batches of 16 images resized to 224 x 224 pixels for 200 epochs
with alearning rate of 5.0E—04. To prevent overfitting, we employed an
early stopping strategy whereby the model training would stop if the
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loss on the validation set did not decrease for 20 consecutive epochs. In
order to address the severe class imbalance in the data where negative
examples outweigh positive ones, we applied a strategy combining the
SMOTE algorithm to oversample the positive examples with an
undersampling technique to handle the negative examples®. Addi-
tionally, we utilized a five-fold cross-validation approach to alleviate
the random error introduced by data selection. The models were
implemented using PyTorch.

Performance comparison between the proposed model and
baseline models

The performance of the early screening model proposed in this study was
compared to that of baseline models, including models based solely on MPI
and FP, traditional risk assessment models, and RMF-based models (Fig.
1b). To the best of our knowledge, there is a gap in risk assessment models
that can effectively screen for 10-year risks of stroke, MI, and CKD simul-
taneously. For comparison, we selected the PCE, FRS, QRISK3, and SCORE
models, which are extensively applied in clinical settings to evaluate the 10-
year risk of cardiovascular and cerebrovascular diseases. Notably, previous
studies have also confirmed the usability of these models in screening for
CKD'***%, In addition, we also incorporated logistic regression-based
predictive models based on RMF as baselines, including RMF alone and
RMF + MPL Furthermore, given the crucial role of eGFR as a pivotal
biomarker in the early detection and diagnosis of CKD, we utilized eGFR to
fit a logistic regression model for predicting the 10-year risk of CKD
occurrence. This model was used as the baseline for the CKD subgroup
prediction task®.

We evaluated the predictive performance of the model by assessing
the area under the receiver operating characteristic curve (AUC), sen-
sitivity, and specificity to classify patients with and without disease based
on predictive values. The sensitivity and specificity for the FRS, PCE,
QRISK3, and SCORE models, were calculated using thresholds of 0.15,
0.075, 0.10, and 0.03, respectively. To evaluate the predictive perfor-
mance, we obtained the mean and standard deviation (SD) of the five-
fold cross-validation. We also plotted receiver operating characteristic
curves (ROC) for visual representation. Furthermore, we generated
calibration curves and decision curves to evaluate the model. The cali-
bration curve provides insights into the alignment between predicted
probabilities and actual outcomes, as measured by the Brier Score (BS). A
lower BS indicates a higher degree of consistency, signifying more
accurate estimations. On the other hand, the decision curve allows for an
evaluation of the model’s clinical utility. The larger the area under the
decision curve, the greater the practical value of the model in a clinical
setting. In this particular model, the training and testing are conducted
exclusively based on the fundus images of the left eye. We also trained a
model based on fundus images of the right eye to predict the likelihood of
major vascular-related events and conducted a Spearman correlation
analysis with the results from the left eye.

Association of predicted risks with major vascular-related events
We further verified the association between the predicted score and the
incidence of major vascular-related diseases (Fig. 1c). The study population
was stratified into low-risk, middle-risk, and high-risk groups based on the
predicted risk thresholds of 0.25 and 0.75. We conducted log-rank tests to
analyze the incidence of major vascular-related events among these three
groups and presented the survival probability using Kaplan—-Meier curves.
Additionally, the prediction scores were stratified into deciles and the odds
ratios (OR) of each decile in comparison with the lowest decile were
calculated.

Next, we investigated the disparities in retinal microvascular char-
acteristics among groups with high, middle, and low risks to establish the
associations between retinal morphological parameters and the risk of
developing major vascular-related events. Kruskal-Wallis test was utilized
to compare the retinal microvascular traits among three risk groups, with
P <0.05 indicating statistical significance.

Subgroup analysis

In addition to the analysis conducted at the composite event level, subgroup
analyses were performed for three selected diseases. Cohorts of stroke, MI,
and CKD patients were extracted to analyze the predictive performance of
the proposed model on these subgroups. Taking stroke as an example, the
sub-cohort was comprised of two groups: individuals with stroke and a
control group without any of the three types of diseases.

Each disease subgroup was further categorized into high, middle, and
low-risk populations using the same criteria as the main analysis. Addi-
tionally, Kaplan-Meier curves were plotted, and statistical tests were per-
formed to examine the differences in retinal features within each of the three
cohorts. To investigate the prediction mechanism of the model for three
vascular-related diseases based on retinal images, we generated saliency
maps. We utilized guided backpropagation, which employs gradients of
class probability for each image pixel, to demonstrate how pixels can
influence the prediction effects of the model*. By visualizing the attention
maps of the model for three vascular-related diseases, we aimed to compare
the similarities and differences in the model’s prediction mechanisms for
these distinct vascular-related diseases (Fig. 1d). As examples, we randomly
selected four patients from each sub-cohort to demonstrate the specific
retinal regions that the model focuses on when predicting different vascular-
related diseases. To obtain the model’s attentional positions on the retina for
each vascular-related disease in the entire population, we further aggregated
the saliency maps of each patient by taking the maximum value at each pixel.
Our intention was to comprehensively display the regions that may be
associated with the outcomes. While the saliency map provides only a
qualitative analysis of how the model predicts three vascular-related dis-
eases, our study also included a quantitative analysis of their retinal
microvascular characteristics. We compared the retinal parameters of the
stroke, MI, and CKD subgroups using the Kruskal-Wallis test, aiming to
uncover both the commonalities and differences in retinal morphological
features among these subgroups. Patients with multiple coexisting diseases
were excluded from the analysis.

We also conducted subgroup analyses to evaluate model performance
across age and sex strata. Participants were stratified into three age groups
(<45 [young adults], 45-60 [middle-aged adults], >60 [older adults] years)*
and by sex (male/female). Model performance metrics (AUC, sensitivity,
and specificity) were calculated for each subgroup.

Sensitivity analysis

We performed a sensitivity analysis restricted to White British participants
to evaluate potential confounding from population stratification. Model
performance metrics (AUC, sensitivity, and specificity) were calculated for
this subgroup. Discrimination between this sub-cohort and the full cohort
was assessed using a two-sided DeLong’s test for AUC differences™.

Extraction of retinal image-derived traits

A 32-dimensional feature vector for each patient’s retinal image was
extracted from the last convolutional layer of the model. We then applied
principal component analysis (PCA) to reduce the dimensionality of these
features. We extracted principal components that accounted for over 90% of
the cumulative variance, which were served as retinal image-derived traits.
These traits were then visualized using t-SNE to highlight their potential in
distinguishing positive and negative samples”. Subsequently, we analyzed
the Spearman correlation between these retinal image-derived traits and the
retinal morphological parameters and retinal age gap listed in Table 1 to
assess the clinical significance of these image-derived features. The p values
adjusted for false discovery rate (FDR) correction are reported to indicate
the significance of the correlations.

Genetic analysis of retinal image-derived traits

We conducted a genome-wide association study (GWAS) on these retinal-
image derived traits (Fig. le), employing imputed genotyping data from the
UKB study. To account for potential population structure bias, we retained
only individuals of White British ancestry and conducted a GWAS analysis
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on their retinal image-derived traits based on previous research™. Standard
quality control procedures were implemented to exclude samples and SNPs
that did not meet specific criteria. Samples with a phenotype deletion rate
exceeding 0.05, minor allele frequencies below 0.01, relatedness (PiHat
>0.2), and deviations from Hardy-Weinberg equilibrium (HWE p < 1.0E
—06) were eliminated. For the genetic association analysis, we utilized Plink
software (version 1.90 beta, https://www.cog-genomics.org/plink/) and
assumed an additive genetic model. Covariates such as chronological age,
sex, and the top five principal components were incorporated to address
population stratification. Considering that the GWAS was performed on
five retinal image-derived traits, Bonferroni correction was applied to
address the potential for type I errors due to multiple comparisons™.
Therefore, the standard GWAS significance threshold was set at 1.0E-08.
We utilized LDSC (LD SCore) software (version 1.0.1, https://github.com/
bulik/ldsc) to estimate genomic heritability for GWAS summary statistics of
derived traits mentioned above. To functionally characterize the genome-
wide significant loci identified in our GWAS analysis, we employed the
following approaches: First, we performed functional annotation and gene
mapping of image-derived trait-associated SNPs using FUMA (Functional
Mapping and Annotation; https://fuma.ctglab.nl). Subsequently, we inves-
tigated the biological roles of candidate genes through GeneCards (https://
www.genecards.org/), focusing on their molecular functions and disease
relevance. Finally, we examined previously reported phenotype associations
for these loci by querying the GWAS Catalog (https://www.ebi.ac.uk/gwas/).

To assess the genetic associations between retinal image-derived traits
and three vascular-related diseases, we employed two genetic analysis
techniques: genetic correlation and colocalization analysis, leveraging
publicly available GWAS results primarily sourced from the GWAS Cata-
log. Specifically, we utilized the LDSC software to quantify genetic corre-
lation. Only high-quality SNPs recorded in the HapMap3 dataset were
utilized for estimation, with LD scores derived from the IKGp3 EUR panel
applied for LDSC analysis. The genetic correlation (rg) values and the FDR-
adjusted p-values are reported. Moreover, to investigate whether the retinal
image-derived traits share common causal variants with three vascular-
related diseases, we conducted colocalization analysis using the R package
“coloc”  (https://chrlswallace.github.io/coloc/index.html). This method
utilizes Bayesian statistics to estimate the posterior probabilities of five
distinct hypotheses regarding the relationship between association signals at
a shared locus: PPHO (No association with either trait), PPH1 (Association
with the first trait only), PPH2 (Association with the second trait only),
PPH3 (Associations with both traits, but with different causal variants), and
PPH4 (Association with both traits due to the same causal variant). Fol-
lowing established conventions, variants with a posterior probability of
PPH4 >0.70 were considered as colocalized variants, indicating shared
causal variants between the retinal image-derived traits and three vascular-
related diseases. Genetic correlation and colocalization analyses were also
conducted to explore the genetic associations between retinal imaging-
derived traits and retinal morphological characteristics.

Causal effects between retinal image-derived traits and major
vascular-related diseases

Two-sample bidirectional Mendelian randomization (MR) analysis was
conducted to examine the causal effect between retinal image-derived traits
and three vascular-related diseases, including stroke, MI, and CKD (Fig. 1f).
In this study, we used the R package “TwoSampleMR” (version 0.5.6) and
applied the six default methods: IVW with fixed effects IVW-FE), IVW
with multiplicative random effects (IVW-MRE), MR-Egger, Weighted
median, Simple mode, and Weight Mode, with instruments for the diseases
obtained from GWAS conducted in non-UKB cohorts (Supplementary
Table 25). SNPs that surpassed the significance threshold in each GWAS
summary were chosen as instrumental variables (IVs) for the exposure data.
These SNPs were subsequently clumped at an ¥ =0.1 within a 1000 kb
window size using the LD panel of 1KGp3 to account for linkage dis-
equilibrium and minimize interference. To filter out weak instruments with
low statistical power (F-statistic <10), the F-statistic was employed. The

exposure and outcome data were then harmonized based on the same effect
alleles, and palindromic SNPs were excluded prior to conducting the MR
analysis. To ensure the stability and reliability of the results, a sensitivity
analysis was performed on the harmonized data, including heterogeneity
and pleiotropy tests”. In cases where heterogeneity was detected within a
specific set of IVs, precedence was given to the results generated from the
IVW-MRE method. Conversely, when pleiotropy was observed, the results
obtained from the MR-Egger method were relied upon. If a particular set of
IVs passed both tests (i.e., p > 0.05), the results from the IVW-FE method
were prioritized®”. To correct for multiple testing across all MR results
between five retinal image-derived traits and three vascular-related diseases,
we applied the method-level Benjamini-Hochberg False Discovery Rate
(BH-FDR) procedure”. The statistically significant threshold was set at
FDR-corrected p < 0.05.

External temporal validation

To assess the generalizability of the proposed model, we conducted external
temporal validation using an independent cohort from a subsequent time
period, an approach aligned with established validation frameworks in
previous studies’ ™. The validation data were obtained from participants
who underwent retinal imaging during the first repeat assessment visit
(2012-2013) of the UK Biobank. To maintain data independence, partici-
pants who were part of the initial assessment cohort (2006-2010) were
excluded. The cohort selection process for the remaining participants
adhered to the same protocol as the primary dataset (Supplementary Fig. 8).

Data availability

The UK Biobank data are available with a proper application process at
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access. An
interested researcher can contact the corresponding author for additional
information.

Code availability

The source codes pertaining to both the proposed model and data analysis in
this manuscript are provided at https://github.com/MenglinLu/Retinal
VascularEvents.
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