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Effective hemodynamic management in the intensive care unit requires individualized targets that
adapt to dynamic clinical conditions.WedevelopedDynamicCohort Ensemble Learning (DynaCEL), a
real-time framework that recommends personalized heart rate and systolic blood pressure targets by
modeling each time point post-intensive care unit admission as a distinct temporal cohort. Trained on
eICUdata and validated onMIMIC-IV and IndianaUniversity Health datasets, DynaCEL demonstrated
robust predictive performance (AUCs 0.83–0.91). In the MIMIC-IV cohort, proximity to DynaCEL-
predicted targets was associated with lower 24-hour mortality compared to fixed targets, after
adjustment using propensity scorematching. Dose-response and comparative analyses revealed that
greater deviations from personalized targets were associated with higher mortality. Case studies
illustrated temporal and inter-individual variation in optimal targets. DynaCEL offers interpretable and
scalable support for exploring precision hemodynamic management, although its clinical utility
remains to be established in prospective trials.

Precisely identifying individualized and dynamic clinical management
targets is a unique and essential task in daily intensive care unit (ICU)
practice. Among ICU management priorities, effective hemodynamic
monitoring and control are critical, as circulatory failure is a leading
cause of ICU mortality, accounting for over 40% of deaths1,2. Among
hemodynamic targets, heart rate (HR) and blood pressure (BP) are the
most commonly used, as these two complementary, modifiable indi-
cators are closely linked to mortality risk3–6. Therefore, setting and
adjusting HR and BP targets, including defining “safe zones” and
“risk zones,” are routine ICU tasks that guide interventions and
provide baselines for assessing the risks of deterioration and acute
death. Meanwhile, HR and BP targets vary widely and evolve dyna-
mically among patients, necessitating personalized and adaptive
approaches.

The relationship between HR, BP, and mortality in ICU patients is
complex and influenced by baseline health, comorbidities, acute illnesses,
and disease progression. Prior research has associated tachycardia with
increased mortality in septic shock patients3, severe bradycardia with
impending cardiac arrest7,8, andbothhypotension4–6 andhypertension6with
increased mortality. Yet, there remains a clear gap between population-
based evidence and personalized care. Clinical conditions change rapidly in
the ICU, requiring continuous, real-time adjustment of hemodynamic
targets.

Despite this complexity, current ICU practice largely relies on fixed,
population-level targets, such as an HR of 80 beats per minute (bpm) and
systolic BP (SBP) of 120 mmHg9, which does not account for patient-
specific variability in physiology, comorbidities, or illness severity. Recent
efforts to establish condition-specific targets have failed to meet the
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demands of precision hemodynamic care. For example, although BP is a
critical target in septic patients10,11, a randomized trial found no significant
mortality difference when comparing mean arterial pressure targets of 80-
85mmHg versus 65-70mmHg in septic shock9. Our recent randomized
controlled trial using individualized baseline tissue oxygenation “safe zone”
in off-pump coronary artery bypass grafting also showed no significant
reduction in 30-day postoperative complications12. These examples suggest
the need for data-driven, personalized, and dynamic hemodynamic man-
agement in septic shock, cardiac surgery, and other acute care settings13.

To date, no approach provides data-driven, personalized, and adaptive
HR and BP targets simultaneously, exposing a critical gap in hemodynamic
management. As a result, clinicians rely on empirical judgment to tailor
fixed targets, a practice that is anecdotal and inconsistent and contributes to
variation in care quality, especially in under-resourced areas likeAppalachia
regions in theUnited States14. This underscores an urgent unmet need: real-
time, individualized recommendations forHR andBPmanagement targets.

The emergence of rich,multi-domain, real-world ICUbig data, such as
the Indiana University Health (IUH) dataset (6918 ICU stays, 11 hospitals,
2019–2024)15, the national eICU database (200,859 ICU stays, 335 units
across 208 hospitals, 2014–2015)16, and the Medical Information Mart for
Intensive Care (MIMIC) IV database (73,181 ICU stays, single healthcare
system, 2008–2019)17, captures the heterogeneity and complexity of ICU
patients and presents opportunities to derive transferable insights for
hemodynamic optimization.

Still, real-time prediction of optimalHR andBP targets remains amajor
challenge18. Existing temporal models for ICU care include long short-term
memorynetworks19–21, temporal convolutionalnetworks22,23, recurrentneural
networks24, other neural network architectures25,26, and regression-based
approaches such as DYNAMIC-ICU27. Outside of ICU settings, models like
the Continuous Individualized Risk Index28, based onNaïve Bayes, have also
been developed. Ensemble models have proven effective in biomedical and
clinical applications29–33, including in the ICU (e.g., ICU-ISPM34 and stacked
ensemble models35). However, these models fall short of addressing the
unique complexities of personalized, real-time, and adaptive ICU care.

A defining feature of ICU care is the presence of rapidly evolving
clinical conditions, which introduce unique challenges for setting hemo-
dynamic targets. One such challenge is the dynamic shift in patient com-
position after ICU admission. Most patients are discharged or deceased
within two days16,17,36, so the ICU population at different time points post-
admission varies significantly (Supplementary Fig. 1) in terms of demo-
graphics, comorbidities, illness severity, and mortality risk. Thus, using a
single model across all ICU time points may not accurately reflect these
changing dynamics. Another challenge stems from the continuous evo-
lution of a patient’s clinical state during their ICU course. Therefore, not
only are demographics, comorbidities, and initial conditions highly vari-
able at admission16,17, but patients’ real-timemortality risk also changes due
to disease progression and therapeutic response. These fluctuations are
evident in vital signs such as HR and BP, life support interventions like
intubation, and measures of organ function such as the Sequential Organ
Failure Assessment (SOFA) score. Moreover, outcomes like mortality
often violate assumptions of parametric survival models, such as the Cox
proportional hazard model37.

To address these challenges, we developed a novel modeling frame-
work–DynamicCohort Ensemble Learning (DynaCEL)– for personalized,
real-time ICU hemodynamic management. DynaCEL treats patients at the
same time since the ICU admission as a “temporal cohort” and builds a
distinct hemodynamicmanagementmodel for each such cohort. Apatient’s
ICU trajectory is modeled as transitions through a series of these inde-
pendent temporal cohorts, and their evolving hemodynamic needs are
captured by aggregating models across temporal cohorts. DynaCEL is a
flexible framework compatible with various basemodels, including artificial
intelligence, machine learning, and statistical methods, and can be gen-
eralized beyond hemodynamic management to other personalized and
dynamic clinical tasks. To support this approach, we first outline the
rationale and design principles underlying the DynaCEL framework.

Results
DynaCEL: Rationale and framework
Predicting individualized hemodynamicmanagement targets, such as heart
rate (HR) and systolic blood pressure (SBP), in real time remains a major
challenge in ICUpractice. Existing temporal dynamicmodels—such as long
short-term memory networks19–21, temporal convolutional neural
networks22,23, recurrent neural networks24, other neural networkmodels25,26,
and regression-based approaches like DYNAMIC-ICU27, and ensemble
frameworks34,35—have advanced outcome prediction for ICU patients.
However, these models primarily forecast general risks (e.g., mortality or
sepsis) rather than generating actionable, dynamic hemodynamic targets
tailored to the patient’s evolving physiological state.

A key limitation is the profound temporal heterogeneity in ICU
populations. Most ICU patients are either discharged or deceased within
two days of admission16,17,36, leading to rapid shifts in demographic com-
position, comorbidity burden, illness severity, and outcome risks over time.
Single-model strategies, which assume relatively stable cohort character-
istics, may fail to capture this dynamic evolution. Moreover, real-time
changes in patient status, reflected in dynamic variables such as HR, BP,
respiratory support requirements, and SOFA scores, require modeling
approaches that can accommodate instantaneous physiological changes.
Standard survival models, such as Cox regression, also impose assumptions
like proportional hazards37 thatmay not hold in this volatile clinical context.

Recent availability of large, diverse ICU datasets—including the eICU
Collaborative Research Database16, MIMIC-IV17, and IUH dataset15—pro-
vides new opportunities to learn patient-specific hemodynamic manage-
ment strategies from real-world data. However, leveraging these resources
effectively demands approaches that account for rapid physiological shifts
and changes in cohort characteristics.

To address these challenges, we developed DynaCEL. DynaCEL tem-
porally decomposes the overall heterogeneous modeling problem into
multiple homogeneous subproblems. Specifically, it treats each moment
after ICU admission—known as a moment of prediction (MOP)—as a
distinct temporal cohort38. Separate base models are trained for each MOP
using demographic characteristics, baseline clinical information, and
dynamic variables within a designated predictor window (PW). These
models estimate acute mortality risks within a defined outcome window
(OW)without requiringassumptions about theunderlyinghazard function.
The individually trained models are then temporally assembled into an
ensemble that defines personalized HR and SBP targets associated with the
lowest predicted mortality risk at any given time.

By modeling dynamic cohorts independently and aggregating them
longitudinally, DynaCEL addresses the shifting trajectories of patient phy-
siology, illness progression, and treatment response in the ICU setting. This
approach leverages the depth of ICU big data to maintain sufficient sample
sizes for training each sub-model, even after temporal partitioning. The
framework is designed to be extensible, allowing new MOPs, PWs, and
OWs to be incorporatedflexiblywithout retraining the entiremodel system.
By enabling real-time, precision hemodynamic management tailored to
individual patients and time points, DynaCEL aims to address critical
challenges in ICU care and lays the foundation for broader applications in
dynamic clinical prediction.

A temporal ensemble learning framework for real-time, perso-
nalized hemodynamic management
The DynaCEL model is a big data-driven framework for defining perso-
nalized, dynamic hemodynamic targets—specifically, HR andBP safe zones
—that better address individual patient needs and reduce health disparities
across health systems13. It infers real-time, patient-specific HR-BP targets
and visualizes associated safe and risk zones as contour-basedmortality risk
maps, enabling precise computation of HR/BP values linked to the lowest
mortality risk.

The framework architecture is illustrated in Fig. 1. DynaCEL translates
ICU big data into bedside decision support for real-time, personalized
hemodynamic management. Using national-scale datasets such as eICU,
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Fig. 1 | The DynaCEL framework: translating ICU big data into personalized,
dynamic bedside hemodynamic management. DynaCEL identifies real-time, indi-
vidualized hemodynamic targets associated with the lowest acute mortality risk. It
leverages national ICU big data (e.g., eICU) to construct temporal cohorts representing
patient populations at specificpost-admission timepoints (e.g.,MOP= 0, 18, 36 h), each
with distinct clinical characteristics and mortality profiles. For each cohort, a separate
model is trained to learn HR and SBP targets linked to 24-hour mortality risk. These
models form a temporal ensemble, enabling bedside deployment in external hospitals

(e.g., Indiana University Health, Beth Israel Deaconess Medical Center). For a new
patient,DynaCELrecommendsHR/SBP targets basedoncurrent clinical data, visualizes
optimal targets on a mortality contour map, and displays the patient’s actual vs. target
trajectory. It also provides alerts for deviations from recommended targets. DynaCEL is
plug-and-play, supporting real-time, interpretable, and personalized hemodynamic
management at the bedside. DynaCEL Dynamic Cohort Ensemble Learning, ICU
intensive care unit, HR heart rate, SBP systolic blood pressure, MOP moment of pre-
diction (time since ICU admission).
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DynaCEL applies a temporal ensemble learning strategy to recommend
individualizedHR and SBP targets. Temporal cohortswerefirst constructed
based on post-admission time, each representing distinct patient char-
acteristics andmortality risks. A separatemodel was trained for each cohort
to capture the relationship between HR, SBP, and acute mortality. These
temporally stratifiedmodelswere then integrated intoanensemble ready for
bedside deployment in external settings (e.g., IU Health and Beth Israel
Deaconess Medical Center).

In real-time,DynaCEL recommendsHR/SBP target combinations and
projects them onto patient-specific mortality contour maps (Fig. 2). It
simultaneously visualizes the patient’s actual HR and SBP, highlighting
deviations from target values and alerting clinicians to high-risk deviations.
DynaCEL’s plug-and-play architecture allows implementationwithout site-
specific retraining, facilitating equitable care delivery across hospitals.

As detailed in theMethods,DynaCEL is trained tominimize the risk of
acutemortality, definedas deathwithin a 24-hour period (i.e., OW), starting
from a givenMOP. TheMOPwas defined as the time after ICU admission.
The model incorporates demographic and admission data, as well as
dynamic clinical features from the 12-hour period prior to the MOP (i.e.,
PW), to infer an acute mortality risk map over a clinically relevant HR/SBP
space. It then identifies the HR and SBP pair associated with the lowest
predicted mortality and defines “safe” and “risk” zones accordingly.

To validate the DynaCEL targets, we compared outcomes in patients
whose HR/SBP values were near versus distant from the model-
recommended targets and contrasted personalized versus population-
based targets in propensity score-matched analyses (Figs. 3–5). Model
performancewas evaluatedusing its ability topredict acutemortality in IUH
and MIMIC cohorts across various MOPs and hyperparameter settings
(Figs. 6–9).

DynaCEL’s generalizability across modeling approaches was demon-
strated using multilayer perceptron (AI), random forest and support vector
machine (machine learning), and logistic regression (statistical models)
(Figs. 6a and 7). Compared to single-model approaches that included time
since admission as a covariate, DynaCEL’s cohort-specific temporalmodels
showed significantly improved performance (Figs. 6b and 8). Models
trained on the national eICU dataset generalized well to the IUH and the
MIMIC IV populations (Figs. 6c and 9). Model fairness was assessed across
subpopulations (Fig. 6d and 6e), and versatility was shown via consistent
performance across different subpopulations. Two ICU case studies further
illustrate real-world applications.

By shifting from fixed, population-based targets to data-driven,
patient-specific recommendations, DynaCEL offers a scalable solution for
precision hemodynamic management. It is ready for bedside deployment
and has the potential to improve outcomes by delivering personalized,
dynamic decision support in the ICU.

Dose-response relationshipshighlight thesensitivityofDynaCEL
targets
Deviation analysis provides a keymetric for evaluating clinicalmanagement
targets, using real-world observations to quantitatively assess the dose-
response relationship between deviations from targets and negative out-
comes. In this study, we hypothesized that greater deviation from model-
recommended hemodynamic targets correlates with higher 24-hour mor-
tality.Deviations frommodel-recommendedHRor SBPvalueswere treated
as the “dose,” and the observed 24-hour mortality as the “response.” We
used this framework to compare DynaCEL’s personalized, dynamic targets
withfixed, population-based targets (HRof 80bpmandSBPof120mmHg).

As shown in Fig. 3, we used the MIMIC-IV cohort at 18 h post-
admission (MOP = 18 h, n = 63,310 ICU stays) as an example, dividing it
into subgroups based on deviation levels from DynaCEL or fixed targets
(Fig. 3a), ranging fromwithin 20%tobeyond50%.Figures 3b and3cpresent
subgroup distributions.

Mortality rates (Fig. 3d and e) and odds ratios (Fig. 3f and g) relative to
the within-target subgroup (deviation <20%) indicated that greater devia-
tions were consistently associated with higher mortality. While both target

strategies showed this trend, the dose-response gradient was more pro-
nounced under DynaCEL’s personalized targets. Specifically, mortality rose
from0.04% (within 20%) to 18.8% (beyond 50%) underDynaCEL (Fig. 3d),
comparedwith 0.8% (within 20%) to 7.3% (beyond50%)underfixed targets
(Fig. 3e). Corresponding odds ratios increased from 1 (within 20%, refer-
ence) to 421.6 (beyond50%) forDynaCEL (Fig. 3f), and from1 (within 20%,
reference) to 6.5 (beyond 50%) for population-based targets (Fig. 3g).

To further clarify, each patient was assigned to exactly one mutually
exclusive subgroup based on their degree of deviation from the personalized
or fixed targets. Mortality rates were lower for patients closer to either set of
targets, particularly within 20–30% deviations. As deviation increased,
mortality rose progressively in both groups. Importantly, the dose-response
gradient was steeper with DynaCEL-predicted targets than with fixed tar-
gets, highlighting the stronger sensitivity of personalized targets in dis-
criminating mortality risk. The apparent “crossing” of mortality rates
beyond 30% deviation does not imply that fixed targets are superior, but
rather reflects the greater sensitivity of personalized targets to deviations
from the optimal range.

These results suggest that DynaCEL’s personalized, dynamic targets
are more strongly associated with mortality risk than static benchmarks,
suggesting potential utility in guiding future clinical trials. DynaCEL’s
improved performance may be attributed to its ability to learn transferable,
generalizable knowledge from successful clinician-led deviations in the
eICUdataset—instances inwhich providers intentionally adjusted standard
guidelines based on clinical judgment and patient-specific needs—and
effectively apply these insights to patients at Beth Israel Deaconess Medical
Center.

DynaCEL targets have the potential to reduce mortality per
deviation-stratified propensity-matched comparative effective-
ness analysis
Some deviations from the hemodynamic targets occur as trade-offs
for competing therapeutic goals, such as avoiding excessive
vasopressor-related side effects or resulting from clinical conditions
like sepsis, both of which are associated with mortality risks. To
reduce confounding effects, we performed a comparative effective-
ness analysis using propensity score matching for different subgroups
with different deviations. Briefly, the temporal cohort representing
patients who had been admitted to the ICU for 18 h (MOP = 18 hr,
n = 63,310 ICU stays) was labeled as “within targets” if HR and SBP
were within 20% of the recommended values and “beyond targets”
otherwise (Fig. 4a, Supplementary Tables 1 and 2). Propensity score
matching was then used to construct matched subgroups, and odds
ratios for 24-hour acute mortality were computed.

When “beyond targets” was defined as either HR or SBP deviating by
more than 20% (Fig. 4b–d), the odds ratio for 24-hour mortality was 143.3
using DynaCEL’s personalized dynamic targets, versus 2.9 for fixed
population-based targets. If “beyond targets” required both HR and SBP to
deviate by more than 20% (Fig. 4e–g), odds ratios increased to 587.0 for
DynaCEL and 5.3 for the fixed targets. The corresponding 24-hour mor-
tality rates underDynaCELwere 0.03% (“within targets”) vs. 4.2% (“beyond
targets”) for the “HRor SBP” criterion, and 0.05%vs. 22.1% for the “HRand
SBP” criterion. For the fixed targets, mortality was 0.9% vs. 2.5% (“HR or
SBP”), and 1.0% vs. 5.3% (“HR and SBP”), respectively.

The comparative effectiveness results suggest that DynaCEL target-
guided hemodynamic management is associated with lower observed
mortality and may warrant further investigation in prospective interven-
tional studies, based on the direct comparisons between subgroups close to
and far away from these targets, after adjusting for observable confounding
factors.Moreover, DynaCEL target-guided care appears to reducemortality
risks more significantly than fixed population-based targets. However, the
final validation depends on future randomized controlled trials in which
mortality outcomes are compared between groups whose hemodynamic
care is guided by DynaCEL targets and those guided by usual targets,
respectively.
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Fig. 2 | Case studies illustrating DynaCEL’s real-time visualization and clinical
interpretability. Panel a shows the bedside implementation of DynaCEL and its
real-time visualization of recommended HR/SBP targets using HR–SBP–mortality
contour maps. These maps were applied to two elderly female patients with sepsis to
demonstrate the model’s interpretability over time. In patient b, who died 68 h after
ICU admission, mortality risk progressively increased alongside sustained devia-
tions between actual and predicted SBP. In contrast, patient c, who was discharged
after 69 h, showed a decline in mortality risk with closer alignment between actual

and predicted SBP values. These examples reveal distinct hemodynamic patterns,
highlight discrepancies between actual values and model-predicted targets, and
underscore the importance of personalized hemodynamic targets. (Artificial intel-
ligence (ChatGPT image generator) was used to create the vignettes in a). DynaCEL
Dynamic Cohort Ensemble Learning, HR heart rate, SBP systolic blood pressure,
MOP moment of prediction, ICU intensive care unit, SOFA Sequential Organ
Failure Assessment, BMI body mass index, CCI Charlson Comorbidity Index.
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Fig. 3 | Dose-response analysis of deviation from HR/SBP targets and 24-hour
mortality risk. Using the 18-hour MOP cohort from the MIMIC-IV dataset,
patients were divided into non-overlapping subgroups based on the degree of
deviation between actual HR/SBP values and two target strategies: personalized
targets predicted by DynaCEL and fixed population-based targets (HR = 80 bpm,
SBP = 120 mmHg). a shows the stratification strategy based on deviation levels.
b and c depict subgroup distributions by deviation fromDynaCEL and fixed targets,

respectively. Panels d and e present the corresponding 24-hour mortality incidence,
while f and g display odds ratios using the <20% deviation subgroup as the reference.
This analysis quantifies the dose-response relationship between target deviation and
mortality, highlighting a stronger and more discriminative risk gradient for perso-
nalized targets compared to population-based thresholds. DynaCEL Dynamic
Cohort Ensemble Learning, HR heart rate, SBP systolic blood pressure, MOP
moment of prediction, ICU intensive care unit.
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Fig. 4 | Propensity score-matched comparison of 24-hour mortality based on
proximity to HR/SBP targets. Propensity score-matched analyses were performed
on the 18-hour MOP cohort from the MIMIC-IV dataset to assess mortality dif-
ferences between subgroups whose actualHR and SBPwerewithin or beyond 20%of
target values. Two target sets were evaluated: personalized targets predicted by
DynaCEL and fixed population-based targets (HR = 80 bpm, SBP = 120 mmHg).
Panel a outlines the subgrouping strategy. Subgroups were stratified into those with

either HR or SBP beyond 20% of targets (b–d), and those with both HR and SBP
beyond 20% (e–g). Panels show distributions of deviations from DynaCEL-
predicted targets (b, e) and frompopulation-based targets (d, g). DynaCELDynamic
Cohort Ensemble Learning, HR heart rate, SBP systolic blood pressure, MOP
moment of prediction, MIMIC-IV Medical Information Mart for Intensive Care,
ICU intensive care unit.
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Direct comparison of DynaCEL and population-based targets in
propensity-matched comparative effectiveness analysis
The effectiveness of DynaCEL and population-based targets was directly
compared for the “within targets” subgroups using propensity score
matching (Fig. 5). The rationale was that the above deviation-stratified,
propensity-matched comparative effectiveness analyses were not head-to-
head direct comparisons between DynaCEL and fixed targets (Fig. 4);
therefore, differences in the study populations could introduce bias into the
observed superior performance ofDynaCEL targets. Another consideration
is that HR and SBP values in some ICU cases within the “beyond targets”
subgroup might be less modifiable. For example, some patients were less

responsive to vasopressor treatments due to their clinical conditions. To
address these potential confounders, we generatedmatched “within targets”
cohorts betweenDynaCELandpopulation-based targets (Fig. 5a), assuming
that patients’ HR and SBP were modestly modifiable.

The two “within targets” subgroups partially overlapped (Fig. 5b). We
performed propensity score matching on the non-overlapping portions
(Fig. 5a and b, the Unique A and Unique B portions) and assumed self-
matching for the overlapping segments. We observed a 24-hour mortality
rate of 0.04% in the subgroupwithin 20% of DynaCEL personalized targets,
compared to 0.85% in the subgroup within 20% of population targets. The
odds ratio between DynaCEL and the population-based targets was 24.0,

Fig. 5 | Propensity score-matched analysis of subgroups with actual HR/SBP
within 20% of personalized vs. population targets. This analysis, based on the 18-
hourMOP cohort from theMIMIC-IV dataset, compares two subgroups: patients
whose actual HR and SBP values were within 20% of DynaCEL-predicted per-
sonalized targets and those within 20% of fixed population-based targets (HR = 80
bpm, SBP = 120 mmHg). a Illustrates the subgrouping strategy and highlights the
overlapping cases, which were excluded from propensity score matching but
retained in the mortality analysis. b Shows the distribution of overlap between the
two subgroups, and c presents absolute mean differences in clinical characteristics

before and after matching to assess covariate balance. Matching was performed
using 1:1 nearest-neighbor matching between non-overlapping individuals, while
overlapping cases were treated as self-matched. ICU intensive care unit, DynaCEL
Dynamic Cohort Ensemble Learning, HR heart rate, SBP systolic blood pressure,
MOP moment of prediction, MIMIC-IV Medical Information Mart for Intensive
Care, COPD chronic obstructive pulmonary disease, MSLD moderate or severe
liver disease, HIV/AIDS human immunodeficiency virus/acquired immunodefi-
ciency syndrome, SOFA Sequential Organ Failure Assessment, MV mechanical
ventilation.
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indicating a 95% lower mortality associated with DynaCEL personalized
targets (Fig. 5a and Supplementary Table 3).

The quality of the propensity scorematchingwas evaluated using post-
matching absolute mean differences of demographic and clinical features
(blue dots, Fig. 5c). Before matching, the two “within targets” cohorts dif-
fered significantly in the Charlson comorbidity index and SOFA scores (red
dots, Fig. 5c). Aftermatching, all absolutemean differenceswere under 0.05,
suggesting high matching quality.

This comparative effectiveness analysis suggests that among patients
with modifiable HR and SBP, those within DynaCEL’s recommended
ranges hadamore than20-fold lowerobserved24-hourmortality compared
with the currently widely used population-based fixed targets. Once again,
the final validation depends on future randomized controlled trials, as
causality cannot be inferred from these retrospective analyses.

Applying DynaCEL at the bedside: two illustrative ICU cases
We conducted case studies to demonstrate the practical application of our
DynaCEL model (Fig. 2a). Using HR-SBP-mortality contour maps, we
visualized patient-specific relationships between HR, SBP, and mortality
risk at different ICU time points (e.g., MOP = 12, 18, 24, 30, 36, and 42 h)
(Fig. 2b and c). These maps, derived from patients with different demo-
graphics and baseline conditions (Supplementary Fig. 2) and varied critical
illnesses (Supplementary Fig. 3), revealed unique patterns and highlighted
discrepancies between actual values and predicted optimal targets.

Sequential maps for two elderly female patients with sepsis, who had
different outcomes, illustrate the evolving nature of optimalHR/SBP targets
and associated mortality risk (Fig. 2b and c and Supplementary Fig. 4). The
patient who died showed an increasing mortality risk with SBP persistently
below the predicted optimal range (actual 90–110mmHg vs. target
120–140mmHg) throughout her ICU stay (Fig. 2b). In contrast, the patient
whowasdischarged from the ICUdemonstratedadecreasingmortality risk,
with SBP closely tracking the predicted targets (Fig. 2c). Notably, the
deceased patient’s SBP was maintained around 100mmHg, a level con-
sidered acceptable in current ICU sepsis care39. However, this value was
below the DynaCEL-recommended optimal range, suggesting a potential
need to reconsider therapeutic goals in such cases.

These two case studies demonstrate that the DynaCEL model offers
real-time, intuitive visualizations of hemodynamic targets, safe and risk
zoneson theHR-SBP contourmaps, deviations from recommended targets,
and the trajectory of hemodynamic management for individual patients.
The DynaCELmodel is ready for bedside implementation and can support
real-time clinical decision-making in ICU settings in future clinical trials.

Feasibility assessment through ICU case review
To evaluate the clinical feasibility of aligning hemodynamic management
withDynaCEL-predicted targets, we conducted a structured chart review of
20 representative ICU cases. These patients were randomly selected from
theMIMIC-IVdataset andmet the criteria of being alive and still in the ICU
18 h after admission (i.e., the 18-hour moment of prediction). To enhance
the relevance of this analysis, we restricted the selection pool to cases in
which either themodel-predictedHR or SBP target deviated by at least 20%
from the actual recorded values. This criterion enriched the sample for
scenarios inwhich clinical practice diverged frommodel recommendations,
thereby optimizing the utility of expert review for assessing the feasibility
and safety of adopting DynaCEL targets.

For each case, we extracted demographic information, profiles of acute
illness and chronic comorbidities, SOFA scores, and details of cardiovas-
cular and respiratory support. Actual HR and SBP values were compared
with the correspondingDynaCEL-predicted targets. Two independent ICU
physicians, blinded tomodeldevelopment, reviewed each case andprovided
structured assessments of whether the recommended targets would have
been clinically appropriate and safely achievable.

As summarized in Supplementary Table 18, the predicted targets were
deemed consistent with individualized care strategies in the majority of
cases. No safety concerns were identified based on the available clinical

context. In several instances, clinicians noted that the model-predicted
targets may have offered helpful guidance for more personalized manage-
ment. These findings provide preliminary support for the real-world
applicability and safety of DynaCEL-recommended hemodynamic targets,
warranting future prospective evaluation.

Discussion
This study introduces a novel approach to personalized hemodynamic
management in ICU patients. It leverages real-time, dynamic, data-driven
HRandBP targets tailored to individual patient needs.Validation across the
eICU, MIMIC-IV, and IUH datasets demonstrates the robustness and
potential clinical applicability of this strategy. The DynaCEL models
account for variability in patient demographics, comorbidities, and illness
severity, delivering personalized hemodynamic targets that align with
individual physiological states and are associated with improved outcomes
in retrospective analyses.

Our study addresses the critical question of whether fine-tuning HR
and BPmanagement could be associated with improved outcomes without
introducing additional harm. As ICU clinicians often prioritize treating
underlying conditions—such as infection control in sepsis—rather than
restoring “normative” vital sign values, we acknowledge that interventions
solely targeting HR and BP must be interpreted with caution. While prior
studies and our findings suggest associations between HR, BP, and mor-
tality, achieving optimal hemodynamic targets should be considered com-
plementary to, not a substitute for, definitive disease-specific therapies. The
DynaCEL model does not imply that HR and BP management alone can
overcome critical illness; rather, it reflects best practices embedded in large-
scale ICU datasets to identify patient-specific hemodynamic ranges asso-
ciatedwith lowermortality risk.Validation ofmodel-guided targets through
prospective randomized trials is necessary to determine whether aligning
interventions to these targets improves patient outcomes.

The DynaCEL strategy harnesses large-scale ICU data and temporal
ensemble learning to enable precise, dynamic hemodynamic management.
Its adaptability across different time points, mortality windows, and patient
subpopulations ensures both flexibility and robustness. DynaCEL supports
seamless adjustments and is compatible with various machine learning
models, positioning it as a versatile tool for precisionmedicine. Compatible
with advanced AI and machine learning pipelines, DynaCEL offers a scal-
able framework for enhancing personalized care in ICU settings.

Hemodynamic management in critically ill patients remains complex
due to dynamic physiological changes and the interplay of multiple factors.
Although associations between HR, BP, and mortality have been estab-
lished, existing approaches lack a real-time, personalized framework that
adapts as clinical conditions evolve. Our findings highlight that optimal HR
andBP targets varywith individual characteristics, clinical context, and ICU
timing, underscoring the need for tailored approaches beyond static,
population-based targets.

The DynaCEL models address this need by integrating HR and BP,
recognizing their interdependence and the challenges of managing them
both independently and jointly in clinical practice. BP interventions, such as
vasopressors, often influenceHRdue to their interconnected regulation and
shared responses to treatment. However, in clinical settings, elevated HR is
less frequently a direct target of intervention than BP unless it reaches
extremes that cause hemodynamic instability or myocardial ischemia. In
many cases, HR serves as a marker of underlying physiological stress rather
than a primary therapeutic target. Nonetheless, by incorporating both HR
and BP, DynaCEL provides a comprehensive assessment of a patient’s
hemodynamic state, potentially enhancing decision-making through a
morenuanced andholistic perspective.At this stage of discovery, these data-
driven targets can support clinical decision-making, but clinical judgment
remains essential, particularly given the absence of trial-based evidence.

Systematic and rigorous validations of the DynaCEL targets were
conducted to assess model performance across multiple dimensions. Pro-
pensity score-matched analyses demonstrated that patientswithHRandBP
within personalized target ranges were associated with lower mortality
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compared to those within population-based targets. These findings reflect
associations derived from observed clinical patterns, not causal effects;
whether aligning interventions to these targets improves outcomes remains
unknown and must be tested in prospective, randomized trials. Although
our comparison was not based on a classical treatment assignment, we
applied propensity score matching to adjust for baseline risk when com-
paring outcomes across patient groups stratified by physiologic states (e.g.,
deviations from predicted HR and SBP targets). This approach reflects the
broader application of propensity score matching in observational
prognosis-related modeling rather than treatment evaluation, which has
gained traction in predictive analytics where no clear intervention is
applied40.

While our study focused on identifying associations between HR/SBP
and short-termmortality, we acknowledge that these parametersmay act as
either causal factors or bystanders influenced by underlying conditions or
therapeutic interventions, such as vasopressors or beta-blockers. Distin-
guishing between causal and non-causal pathways remains a central chal-
lenge in critical care analytics. As highlighted by recent work on
subphenotyping and causality in ICU patients41,42, observational models
must be interpreted within the limitations of retrospective data and
unmeasured confounding. Our findings should be understood as identify-
ing predictive targets associated with lower observed mortality risk, rather
than establishing definitive causal pathways. Future studies incorporating
causal inference methods and prospective interventional designs will be
crucial in determining whether achieving these personalized targets
improves patient outcomes through causal mechanisms.

Practical implementation of DynaCEL will require integration with
electronic health records and real-time monitoring systems, as well as
clinician-facing visualization tools such as the HR-BP-mortality contour
maps developed in this study. These maps translate model outputs into
intuitive, actionable insights, while robust error-detection mechanisms
ensure reliability in high-pressure ICU environments. Ongoing refinement
through real-world data and clinical feedback is essential to maintain
accuracy and clinical relevance across diverse settings.

Future research should explore the practical integration of this model
into ICU workflows and assess its influence on patient outcomes. Pro-
spective randomized trials are essential to determine whether maintaining
personalized HR and BP targets leads to improved survival. Although this
study focused on HR and SBP, many clinical protocols prioritize mean
arterial pressure. Investigating personalized mean arterial pressure targets
represents a key direction for broader clinical adoption. In addition,
expanding model inputs to include laboratory data, imaging, and other
clinical variables could enhance predictive performance. Evaluating the
framework’s utility in resource-limited settings will also be crucial in
addressing global disparities in critical care delivery.

In addition, we acknowledge that ICU populations are heterogeneous,
and the hemodynamic sensitivity and mortality risk associated with
deviations fromHR andBP targets likely vary across clinical subgroups. For
instance, patients with septic shock may have a narrower tolerance to
hypotension than thosewith chronicobstructivepulmonarydiseaseorheart
failure. While our current model incorporates demographic and clinical
features and performs robustly across multiple subpopulations (Fig. 6d and
e), future work should investigate whether subgroup-specific targets or
models are necessary to optimize outcomes further. This may involve
stratifying patients based on physiologic or diagnostic clusters, such as
hyperinflammatory versus immunosuppressed phenotypes43, or leveraging
causal inference techniques and stratified modeling to clarify whether
observed differences reflect underlying biology or treatment effect hetero-
geneity. Such approaches are especially relevant in light of growing evidence
that causal structures differ across ICU subpopulations and require tailored
modeling strategies, as discussed by Zhang et al. using marginal structural
models for longitudinal data42. This concept builds on the broader recog-
nition of syndromic heterogeneity in critical illness, such as in sepsis44.
Addressing this heterogeneity is essential to enhance the precision, fairness,
and clinical utility of the DynaCEL framework.

This study highlights the potential of personalized hemodynamic
management using machine learning, but several considerations must be
acknowledged. First, while we used large and diverse ICU datasets, these
primarily represent healthcare systems in the United States. Variations in
clinical practice, patient demographics, and data availability in lower-
resource environments may affect model performance and generalizability.
Future studies should prioritize external validation across diverse healthcare
settings, particularly in low- and middle-income countries.

Second, the reliability of our model depends on the quality and com-
pleteness of input data.Although thedemographic and clinical features used
are widely available in most ICU settings, and standardized imputation
techniqueswere applied to addressmissing data, thesemethods cannot fully
account for unmeasured confounders or capture the complexity of nuanced
clinical situations. Additionally, as a retrospective study, data quality is
inherently constrained by documentation practices in electronic health
records, introducing potential biases. Prospective validation in controlled
environments is necessary to ensure robustness and clinical applicability.

Third, although we implemented rigorous cross-validation and
hyperparameter tuning tomitigate overfitting, andmodel performancewas
not sensitive to cohort characteristics or data structure, the model has
already been externally validated inmultiple hospitals through the IUHand
MIMIC datasets, representing diverse regional features of ICU patients and
clinical practices. Nevertheless, because machine learning models may
exhibit reduced accuracy when applied to entirely new populations with
distinct clinical patterns, local hospitals are encouraged to perform their
own validation using institutional data prior to clinical implementation.
Alternatively, hospitals may use our open-source algorithm to train a new
DynaCEL model based on their own patient data, ensuring optimal per-
formance and contextual relevance.

Furthermore, our analysis focused onHRand SBP, as these parameters
are commonly monitored in ICU settings and readily available in real-time
data streams. We recognize that other hemodynamic parameters, such as
central venous pressure, cardiac output, and indicators of volume status, are
clinically relevant and may enhance model performance. However, these
variables were excluded due to their limited availability and inconsistent
documentation across the datasets, with most patients lacking reliable
measurements. Our goal was to develop a broadly applicable model using
parameters that are routinely and consistently captured in ICU patients.
Nonetheless, the DynaCEL framework is modular and extensible, allowing
users to incorporate additional hemodynamic features when available to
enhance predictions and adapt the model to local practice.

For institutions where other hemodynamic variables, such as mean
arterial pressure, are prioritized, our framework offers flexibility. While we
used SBP in this study, we acknowledge that mean arterial pressure is more
commonly used in clinical practice to guide vasopressor therapy and assess
perfusion.However, in large retrospective ICUdatasets likeMIMIC-IV and
eICU, SBP is often recorded more frequently and consistently, whereas
mean arterial pressure is sometimes derived from systolic and diastolic
values and not always directly charted45. To maximize data completeness
and applicability across diverse settings, we selected a single, directly mea-
sured blood pressure parameter for modeling. Nonetheless, our open-
source algorithm allows users to substitute SBP with mean arterial pressure
or other hemodynamic variables, supporting integration into institution-
specific protocols while preserving the flexibility and robustness of the
modeling framework.

Lastly, while our findings indicate an association between personalized
HR and BP targets and lower mortality, this study does not establish
causality.Whether adherence tomodel-inferred targets improves outcomes
remains unknown and must be rigorously tested through prospective ran-
domized controlled trials. Additionally, feasibility studies are needed to
evaluate how this model can be effectively integrated into ICU workflows,
ensuring that its recommendations are actionable and supportive rather
than burdensome to clinical practice.

Despite these considerations, this study represents an important step
toward data-driven, personalized hemodynamic management. Addressing
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these challenges through prospective validation, broader population studies
and real-world implementation research will be critical for translating this
approach into clinical practice.

Taken together, this study presents a data-driven framework for per-
sonalized hemodynamic management, leveraging machine learning to
deliver real-time, adaptiveHR andBP targets tailored to individual patients.

By integrating patient-specific characteristics, this model offers a potential
alternative to static, population-based targets, with the capacity to refine
clinical decision-making. While findings suggest an association between
personalized targets and lower mortality risk, additional validation remains
essential. Prospective studies should assess feasibility, clinical adoption, and
integration into ICU workflows, while randomized controlled trials are

https://doi.org/10.1038/s41746-025-01863-0 Article

npj Digital Medicine |           (2025) 8:474 11

www.nature.com/npjdigitalmed


needed to determine their impact on patient outcomes. Expanding model
parameters, including mean arterial pressure, may further enhance its
applicability in routine practice. With continued validation, this approach
could advance precision in hemodynamic management, enabling more
individualized and responsive ICU care.

Methods
This study employs a machine learning-based approach to personalize HR
and BP management targets for critically ill patients. Distinct from prior
research, it advances beyond model development to demonstrate practical
applications in personalized medicine and validate effectiveness in guiding
individualized hemodynamicmanagement. The study was approved by the
Indiana University Institutional Review Board on 2 February 2024
(#22056), with patient consent waived due to its retrospective nature.

Datasets
Three large ICU datasets were used: the eICU Collaborative Research
Database (v2.0)16, theMIMIC-IV dataset (v2.2)17, and the IUH ICU dataset
(v1.0)15. The eICU dataset includes 177,187 admissions from over 200
hospitals in the United States (2014–2015), offering a broad and diverse
sample. The MIMIC-IV dataset (2008–2019) includes 73,181 ICU stays at
Beth Israel Deaconess Medical Center (Boston, Massachusetts, the United
States). The IUHdataset contains 4179 ICUadmissions from11hospitals in
Indiana, theUnited States (2022–2024), offering relevance to post-COVID-
19 clinical practice. Supplementary Table 4 provides additional dataset
details.

Participants and ICU stays
Eligible participants were ICU patients aged ≥18 years with available HR
and BP data, documented sex, and known survival status. As patients could
have multiple ICU stays, this study used ICU stays—rather than unique
individuals—as the unit of analysis, reflecting clinical practice where care is
based on current presentation regardless of prior ICU admissions.

Predictors
Predictors included a comprehensive range of demographic, baseline,
comorbidity, and dynamic variables (Supplementary Table 5). Demo-
graphic and baseline data comprised age, sex, height, weight, body mass
index, and race (categorized as Caucasian, African American, Latino/His-
panic, or other). Comorbidities were assessed using the Charlson Comor-
bidity Index, which assigns weighted scores based on 17 predefinedmedical
conditions46,47. Dynamic variables included SOFA scores48, respiratory
support modes, and HR and SBP measurements. For modeling, the SOFA
score closest to theMOP, themost intensive respiratory support mode, and
the median HR and SBP values within the prediction window were used.

Outcomes
The outcome was acute mortality within a predefined short-term outcome
window following each MOP (which indicates the time after ICU admis-
sion), representing real-time clinical decision-making. Short-termmortality
was chosen because acute HR and BP changes are more strongly associated
with short-term outcomes, and improvements in short-term survival are

likely to influence long-term outcomes. ICUmortality was used, defined as
death occurring during the ICU stay. Mortality status was classified as
deceased or survived based on discharge disposition and time of death, as
recorded in ICU-specific tables within each dataset.

Data processing
ICU stays missing critical data (i.e., age, HR/BP values, sex, and survival
status) were excluded (Supplementary Fig. 5). Dynamic variables were
computed hourly. Missing values were imputed as follows: height, weight,
and BMI were imputed using the median; SOFA scores were forward-filled
using the nearest previous value when necessary (Supplementary Table 6
and Supplementary Fig. 6). When respiratory support data were unavail-
able, the absence of support was assumed.Hourlymissing rates of heart rate
and systolic blood pressure were low (Supplementary Table 7). Since ICU
stays without either HR or SBP (i.e., complete missingness) during the
prediction window were rare (Supplementary Table 8), these stays were
excluded from model training and validation. Therefore, for HR and SBP,
missing hourly values within the prediction window were not imputed, as
partial missingness did not affect the derivation of median values.

Class imbalance
To address the imbalance between survival and mortality outcomes, the
Synthetic Minority Over-sampling TEchnique (SMOTE) was applied to
generate synthetic samples for the minority class, resulting in a balanced
dataset for model training.

Model development
The model was designed to identify personalized hemodynamic targets
associatedwith the lowestmortality risk for individual ICUpatients (Fig. 1).
Model development followed a two-phase strategy. First, predictionmodels
were constructed to establish associations between input variables
(including HR and BP) and acute mortality (model development phase).
These models were then used to infer individualized HR and BP targets
associated with the lowest mortality risk (model application phase). In
clinical practice, care providers could refer to these personalized targets to
support real-time decision-making.

To enable practical application, ICU admission was standardized as
time zero,with each subsequent hour defined as anMOP.At eachMOP, the
model generated recommendations for optimal HR and BP values for that
specific point in time. For this study, we selectedMOPs at 12, 18, 24, 30, 36,
and 42 h for validation purposes based on the median ICU stay length;
however, the DynaCEL framework can be applied flexibly to any time point
as needed by clinical users. Model inputs included a combination of fixed
variables (e.g., age) and dynamic variables (e.g., HR), with only pre-
MOP dynamic data within the prediction window used to forecast
outcomes in the outcome window. This structure allowed clinicians
to base decisions on recent data, simulating real-time guidance in
ICU settings. Prediction window lengths (e.g., 3, 6, or 12 h) were
treated as hyperparameters and optimized accordingly. Various base
models, including random forest, multilayer perceptron, support
vector machine, and logistic regression, were evaluated, and the best-
performing model was selected.

Fig. 6 | Summary of DynaCEL performance across models, datasets, and patient
subpopulations. This figure summarizes DynaCEL’s predictive performance across
several modeling configurations and validation settings. a compares four base
learners—random forest, MLP, SVM, and logistic regression—using a 12-hour
predictor window and 24-hour outcome window, applied to the eICU test set cohort
at MOP = 18 hr. b compares DynaCEL’s temporally stratified ensemble to a single
pooled model trained across all MOPs with MOP included as a covariate; both used
random forest and the same prediction window configuration as in panel a, eval-
uated on the same cohort. In c, external validation of DynaCEL is shown using the
same random forest model applied to 18-hour MOP cohorts from the eICU test set,
MIMIC-IV, and IUHdatasets.d presentsmodel performance across subpopulations

defined by age, sex, race/ethnicity, BMI, comorbidity burden, and SOFA score using
18-hour MOP cohorts from the same three datasets. e shows HR–SBP–mortality
contourmaps from theMIMIC-IV cohort atMOP = 18 hr, illustratingmortality risk
variation across HR–SBP combinations by subpopulation. DynaCEL Dynamic
Cohort Ensemble Learning, AUC area under the receiver operating characteristic
curve, MOP moment of prediction, PW predictor window, OW outcome window,
MLP multilayer perceptron, SVM support vector machine, eICU eICU Collabora-
tive Research Database, MIMIC-IV Medical Information Mart for Intensive Care,
IUH Indiana University Health, BMI body mass index, CCI Charlson Comorbidity
Index, SOFA Sequential Organ Failure Assessment, HR heart rate, SBP systolic
blood pressure.

https://doi.org/10.1038/s41746-025-01863-0 Article

npj Digital Medicine |           (2025) 8:474 12

www.nature.com/npjdigitalmed


ICU populations experience dynamic changes in cohort size due to
patientdischarges anddeaths,whichvary acrossMOPs(SupplementaryFig.
1). Additionally, patient conditions evolve over time. To address these
changes, MOP-specific models were trained on corresponding MOP-
specific cohorts using the DynaCEL framework. Further explanation of this
approach is provided in the Introduction under ‘DynaCEL: Rationale and
Framework.’

Each MOP-specific cohort included ICU stays where patients were
alive and still hospitalized at the time of theMOP. Characteristics of the 18-
hour MOP cohort from the eICU, MIMIC-IV, and IUH datasets are pro-
vided in Supplementary Table 9. To improve model sensitivity, we also
evaluated expanded cohorts that included ICU stays ending in death
(positive controls) or discharge (negative controls) during the prediction
window preceding each MOP, and compared them with unexpanded
cohorts that excluded these cases. The final model was selected by com-
paring the performance between models trained on expanded versus
unexpanded cohorts. Models trained on expanded cohorts, which inte-
grated ongoing ICU stays with those concluding during the prediction
window, consistently outperformed those trained on unexpanded cohorts
(Supplementary Table 10). Accordingly, all models in this study were
trained on expanded cohorts.

Model training, testing, and validation
For the validation within the eICU dataset, a 5-fold cross-validation design
was used. The model was trained on four folds and tested on the remaining
fold, with this process repeated five times so that each fold served as the test
set once (Supplementary Fig. 7). The resultingmodels were validated on the
MIMIC-IV and IUH datasets to assess their generalizability across popu-
lations and time periods. Specifically, five independent models were trained
on different cross-validation splits of the eICU dataset, and eachmodel was
independently applied to the external MIMIC-IV and IUH datasets,
resulting in five AUCs for each external validation to assess robustness.
Model performance was evaluated using the area under the receiver oper-
ating characteristic curve (AUC), with median and interquartile range
(IQR) reported across the five models. Results were visualized using
boxplots.

Performance across different prediction windows, outcome
windows, and base models
We evaluated three prediction windows and four outcome window lengths
across six MOPs using the eICU test set, MIMIC-IV dataset, and IUH
dataset (Figs. 7–9).DynaCELmodelswith a12-hourpredictionwindowand
a 24-hour outcome window consistently outperformed models using other
durations.Modelperformance across different base algorithmswas assessed
using the eICU test set under various predictions and four outcomewindow
combinations and MOPs (Fig. 7 and Supplementary Table 11). Random
forest consistently outperformed other models, achieving an AUC of 0.912,
compared to 0.788 for multilayer perceptron, 0.763 for support vector
machine, and 0.796 for logistic regression in the 18-hourMOPcohort using
a 12-hour prediction window and a 24-hour outcomewindow (Fig. 7). As a
result, all DynaCEL models used in this study were based on the random
forest algorithmwith a 12-hour prediction window and a 24-hour outcome
window.

We specifically compared the performance of theXGBoost basemodel
with the random forest model in reconstructing mortality risk (Supple-
mentary Table 12) and in reliably inferring hemodynamic management
targets (Supplementary Fig. 8) for the MIMIC-IV MOP 18-hour cohort,
using a 12-hour prediction window and a 24-hour outcome window. The
results suggested no noticeable difference in reconstructing mortality risk;
however, the XGBoost base model demonstrated artifacts in target
inference.

Comparison with a single model
The DynaCEL strategy used multiple dynamic models, each trained on a
specific MOP cohort. To evaluate its effectiveness, we compared this
approach to a single model trained on the pooled data (originally used to
train individual DynaCELmodels), withMOP included as an input feature.
DynaCEL outperformed the single model when the prediction windowwas
6 or 12 h (but not 3 h) across various outcome windows andMOPs (Fig. 8).
For example, in the 18-hourMOP cohort from the eICU test set, DynaCEL
achieved an AUC of 0.912 versus 0.795 for the single model (Fig. 6b and
SupplementaryTable 13). Bothmodels useda random forest algorithmwith
a 12-hour prediction window and a 24-hour outcome window.

Fig. 7 |Model performance across basemodels and
prediction configurations.This figure evaluates the
effect of base model selection and prediction con-
figuration on DynaCEL performance. The base
model was treated as a hyperparameter, and AUC
values were calculated across combinations of PW
andOWusing cohorts defined byMOPs in the eICU
test set. Performance is shown for random forest,
MLP, SVM, and logistic regression. Random forest
consistently achieved the highest AUC across most
configurations and was selected as the base model
for subsequent analyses. AUC area under the
receiver operating characteristic curve, MOP
moment of prediction, PW predictor window, OW
outcomewindow,MLPmultilayer perceptron, SVM
support vector machine, eICU eICU Collaborative
Research Database.
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Performance across different datasets
Using a random forest basemodel with a 12-hour prediction window and a
24-hour outcome window, DynaCEL models achieved AUCs of
0.841–0.912 in the eICU test set, 0.825–0.889 in MIMIC IV, and
0.850–0.883 in the IUH dataset across MOPs at 12, 18, 24, 30, 36, and 42 h
(Fig. 9 and Supplementary Table 13). At the 18-hour MOP, the AUC was
0.912 for eICU, 0.889 for MIMIC-IV, and 0.868 for IUH (Fig. 6c and
Supplementary Table 13). Notably, IUH models trained on later MOPs

yielded higher AUCs than those trained on earlier MOPs in the eICU and
MIMIC-IV datasets.

Sample size sensitivity analysis
A sensitivity analysis assessed whether sample sizes were sufficient for
training theDynaCELmodels.Models were trained on varying proportions
of the eICU training data (e.g., 1%, 5%, 10%, 50%) and evaluated using
consistent test and validation datasets. For each proportion, five models

Fig. 8 | Comparison of DynaCEL with a single
model trained on pooled data. This figure com-
pares the performance of DynaCEL models trained
separately for each MOP cohort with a single model
trained on pooled data across allMOPs, whereMOP
was included as an input feature. Both models used
random forest and were evaluated across various
PW and OW configurations. AUCs were derived
from the eICU test set using MOP-specific cohorts
to reflect dynamic population changes and time-
dependent shifts in clinical characteristics. Dyna-
CEL Dynamic Cohort Ensemble Learning, AUC
area under the receiver operating characteristic
curve, MOP moment of prediction, PW predictor
window, OW outcome window, eICU eICU Colla-
borative Research Database.

Fig. 9 | DynaCEL performance across datasets and
prediction configurations. AUCs were evaluated
for DynaCEL models using random forest across
multiple PW and OW combinations to assess gen-
eralizability across datasets and time points. Models
were trained on MOP-specific cohorts from the
eICU training set and externally validated on the
eICU test set, as well as the MIMIC-IV and IUH
datasets. Consistent performance across varied PW
and OW configurations demonstrates robustness to
both temporal and institutional variations. Dyna-
CEL Dynamic Cohort Ensemble Learning, AUC
area under the receiver operating characteristic
curve, PW predictor window, OW outcome win-
dow, MOP moment of prediction, eICU eICU Col-
laborative Research Database, MIMIC-IV Medical
Information Mart for Intensive Care, IUH Indiana
University Health.
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were trained with randomly selected data from different combinations of
four eICU training folds. Performance was assessed on the held-out eICU
test sets and validated on the MIMIC-IV and IUH datasets to evaluate
robustness across sample sizes. Results showed that performance saturation
varied by dataset (Supplementary Fig. 9). In the eICU and MIMIC-IV
datasets, model performance (AUC) increased with larger training sample
sizes and saturated at approximately 80% of the training data. In the IUH
dataset, saturation was observed at around 30%.

Determination of personalized HR/SBP targets
The primary objective was to identify HR and SBP targets associated with
the lowest mortality risk at specific MOPs for personalized hemodynamic
management in critically ill patients. Optimal targetswere inferred via a grid
search of clinically plausible HR/SBP combinations, with DynaCELmodels
estimating associated mortality risk. Because each MOP includes only one
observed HR/SBP pair, theoretical alternatives were evaluated to determine
the combination with the lowest predicted mortality (Fig. 1). Personalized
HR/SBP targets were defined as the median values from the 100 combi-
nations yielding the lowest predicted mortality probabilities.

We used the 18-hour MOP cohort from the MIMIC-IV dataset
(n = 63,310) to illustrate personalized target estimation. The median actual
HR in the 12-hour predictionwindowwas 83 bpm (IQR, 72–95), compared
with a predictedmedian target of 79 bpm (IQR, 74–83). For SBP, the actual
median was 115mmHg (IQR, 105–128) versus a predicted target of
121mmHg (IQR, 115–127). The median HR deviation (actual minus pre-
dicted) was 3 bpm (IQR, –4 to 14), and the median SBP deviation was
–4mmHg (IQR, –14 to 4).

Visualization of personalized HR/SBP targets
To improve clinical usability, we visualized the relationship between HR,
SBP, and mortality risk at individual MOPs using color contour maps with
Gaussian smoothing (Fig. 1).Thesemapsdepict themortality risk landscape
acrossHR/SBP combinations,marking both the predicted optimalHR/SBP
targets and the patient’s actual HR/SBP levels. Discrepancies between pre-
dicted and actual valuesmay indicate a potential need for intervention at the
treating physician’s discretion.

Validation of personalized HR/SBP targets
Validating the proposed personalizedHRand SBP targets is essential.While
randomized controlled trials comparing personalized, target-guided man-
agement with usual care represent the gold standard, the following analyses
provide preliminary insights into the validity of this approach.

First, we assessed the impact of deviations between actual HR and SBP
values andmodel-predicted personalized targets. A± 20% relative deviation
threshold was selected based on several considerations. Optimal HR and
SBP values vary substantially across patients and clinical trajectories in the
ICU. A relative threshold enables flexible modeling of inter-individual
variability and evolving physiologic states, whereas absolute cutoffs may be
overly rigid. To support this rationale, we visualized the distribution of HR
and SBP values in the MIMIC-IV dataset at 18 h post-admission, high-
lighting the wide variability in these parameters across ICU patients (Sup-
plementary Fig. 10). We recognize that the ±20% cutoff is somewhat
arbitrary, and future work could test alternative thresholds (e.g., ±25%) or
directionally weighted thresholds based on clinical context.

We acknowledge that defining “within targets” as within ±20% of the
model-recommended or fixed values may appear arbitrary. For instance, a
heart rate of 60 bpm is widely accepted as the lower limit of normal, yet it
falls outside a ±20% range around afixed benchmark of 80 bpm.However, a
relative deviation threshold offers several advantages in the ICU context.
First, it allows for personalization and flexibility, accommodating the broad
physiologic diversity and shifting hemodynamic demands seen in critically
ill patients. Second, it enables consistent comparisons across a wide range of
baseline values. Nevertheless, this threshold should be interpreted as a
pragmatic starting point rather than a definitive clinical boundary. Future
research could explore sensitivity to threshold selection, incorporate

directional weighting for hypotension versus hypertension, and evaluate
clinical relevance through prospective testing.

The MOP-specific cohort was stratified based on whether the actual
HR and SBP values fell within or beyond the ±20% threshold. Propensity
scores were constructed using demographic variables, comorbidities, the
worst SOFA subscores observed during the prediction window (i.e., the 12-
hour period preceding the MOP), and respiratory support status at MOP
(excluding HR and SBP). This ensured comparability in illness severity
across groups before comparing subsequent outcomes. We applied nearest
neighbor matching with a caliper width of 0.1 and used a variablematching
ratio to maximize the number of ICU stays retained after matching. Cov-
ariate balancewas assessedusinga standardizeddifference thresholdof 10%,
and odds ratios were calculated to compare mortality between groups.

To further assess the validity of our stratification and ensure robustness
of the propensity score-matched comparison, we performed a supple-
mentary analysis using theMIMIC-IVdataset atMOP = 18 h. Patientswere
categorized into two mutually exclusive subgroups: (1) both HR and SBP
within ±20% of the DynaCEL-recommended targets, and (2) either HR or
SBP beyond ±20%. Propensity scorematching was conducted as previously
described. We then examined the use of vasoactive drugs and antibiotics—
variables not included in the matching model but clinically relevant to
hemodynamic status. These variables were expressed as categorical indi-
cators of administrationduring the 12-hour predictionwindow.The results,
shown in Supplementary Table 14, demonstrated comparable medication
usage across subgroups,with absolute standardizeddifferences<0.111 for all
variables. This analysis suggests minimal confounding from unadjusted
hemodynamic medications and supports the validity of our subgroup
comparisons.

Second, a dose-response analysis stratified the MOP-specific cohort
into subgroups with increasing deviations from targets (e.g., ±20–25%,
±25–30%, ±30–35%). This tested the hypothesis that greater deviations
correlate with higher mortality risk. Crude mortality and odds ratios were
reported for each subgroup, with the ±20% subgroup serving as a reference.

Lastly, we compared patients within ±20% of the personalized targets
to those within ±20% of population-based fixed targets (e.g., HR = 80 bpm,
SBP = 120mmHg). If the personalized targets are valid, we hypothesized
lower mortality among patients closer to them. This comparison also used
propensity score-matched analyses as previously described.

Subpopulation analysis and model fairness
We conducted subpopulation analyses to assess model performance across
demographics (age, sex, race), baseline features (body mass index), and
clinical characteristics (comorbidity burden, illness severity) to evaluate
fairness and generalizability. HR–BP–mortality contour maps with Gaus-
sian smoothing visualized risk distributions across HR/BP combinations
within MOP-specific cohorts. These maps highlighted mortality risk dif-
ferences across subpopulations and served as an additional validation layer,
with accurate predictions expected to reflect known patterns—for example,
higher mortality among older or more severely ill patients.

Subpopulation characteristics are summarized in Supplementary
Table 15. Model performance was assessed using the 18-hour MOP cohort
from the eICU test set and MIMIC-IV and IUH datasets (Fig. 6d, Supple-
mentary Table 16). The model performed comparably across vulnerable
subgroups, including patients aged ≥65 years, females, African Americans,
and Latino/Hispanic individuals. Performance was consistent across BMI
categories (<30 vs.≥30), comorbidity burden (CharlsonComorbidity Index
≥2 vs. <2), and illness severity (SOFA score≥5 vs. <5). However, in the IUH
dataset, performancewas lower amongpatientswithSOFA ≥ 5 compared to
those with SOFA < 5.

The relationship between HR, SBP, and mortality was also
visualized across subgroups (Fig. 6e). As expected, older patients,
those with more comorbidities, and patients with higher illness
severity in the 18-hour MOP MIMIC-IV cohort had greater mortality
risk. Among racial/ethnic groups, Caucasians showed lower overall
mortality compared to others.
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Feature importance analysis
We used Gini impurity reduction (scikit-learn version 1.6.1) and Shapley
additive explanations (SHAP) to evaluate the contribution of each feature
(Supplementary Table 17). Heart rate and systolic blood pressure ranked
among the top 10 of 44 features and are highlighted in SupplementaryTable
17 and Supplementary Fig. 11.

Sensitivity analysis using an encoder-decoder model
To assess whether other temporal features influence the inference of
hemodynamic targets, we conducted a sensitivity analysis using an
encoder–decoder model with a masking approach to reconstruct the input
features. Specifically, we masked selected features and used the
encoder–decoder model to predict their values, thereby estimating their
dependenceonHRand SBP.The reconstructed input featureswere then fed
into the pretrained DynaCEL model to infer hemodynamic management
targets, whichwere compared to those derived from the original, unmasked
inputs.

The encoder–decoder model comprised a gated recurrent unit
(GRU)–based encoder to extract latent representations from sequential
clinical data, followed by a GRU decoder that reconstructed the original
time series. This architecture captures temporal dependencies and
compresses the multivariate clinical state into a hidden latent space. The
model processed hourly time series data from 14 clinical variables—
including HR, SBP, SOFA-related variables, and respiratory support
parameters. The latent space had 64 dimensions, and the model was
trained to minimize the mean squared error between the original and
reconstructed sequences, thereby learning the joint distribution of tem-
poral clinical features.

We used a dynamic cohort defined by MOP= 18 h, a 12-hour pre-
diction window, and a 24-hour outcome window from the MIMIC-IV
dataset. Results from this analysis are shown in Supplementary Fig. 12. The
inferred HR and SBP targets remained consistent when reconstructed
inputs were used in place of original inputs. These findings suggest that the
DynaCEL model is not sensitive to dependencies between HR/SBP and
other temporal features, supporting the robustness of its recommendations
in the presence of potential feedback relationships.

Patient involvement and ethical considerations
This retrospective study did not involve patients in formulating the research
question, defining outcomes, or developing recruitment or implementation
strategies. Patients were also not involved in interpreting or reporting
results. However, findings will be shared with patients and families via
scientific presentations and publications to promote future engagement. All
analyses followed ethical standards, including data anonymization and
privacy safeguards, as approved by the institutional review board.

Data availability
The IndianaUniversityHealth dataset is available upon request via email to
Lingzhong Meng (menglz@iu.edu) and is pending institutional approval.
The eICU and MIMIC-IV datasets are accessible via their corresponding
sources.

Code availability
The codes used in the current study to develop the algorithmare provided in
GitHub (https://github.com/Su-informatics-lab/DynaCEL).
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