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Artificial intelligence applications in liver pathology remain limited, with existing tools either narrowly
focused or lacking external validation. This study introduces HOTSPoT, an open-source, validated
transformer-based model for automated segmentation of portal tracts in H&E-stained liver biopsy
whole slide images. A multi-institutional dataset of 223 cases was used, with annotations by expert
hepatopathologists. HOTSPoT achieved high performance with mean Dice scores of 0.92 (train/val)
and 0.91 (test), and mean IoUs of 0.86, 0.85, and 0.84, respectively, showing minimal domain shift.
Automated portal tract quantification showed strong concordance with manual assessments (κ up to
0.90), and portal area correlated with fibrosis stage (r = 0.87, p < 0.001). The model is available as a
TorchScript file with a modified WSInfer library, enabling efficient WSI-level inference and integration
with QuPath for advanced pathology analysis.

The transition from traditional microscopy to Whole Slide Imaging (WSI)
has revolutionized pathology, enabling the quantitative study of patholo-
gical tissues through advanced computer vision techniques applied to high-
resolution digital slides1,2. This technological leap has laid the foundation for
integrating artificial intelligence (AI) into liver pathology, with the promise
of standardizing tissue analyses and enhancing research through precise
assessment of morphological elements and improved integration with
ancillarymethods such as in situ -omics3. Despite the increasing application
of AI in liver pathology (e.g., fibrosis andMetabolic dysfunction-Associated
Steatotic Liver Disease -MASLD), rare inflammatory diseases with sig-
nificant clinical burden remain largely underexplored4,5. Histological eva-
luation plays a crucial role in the diagnostic workflow of these conditions
and requires detailed evaluation of inflammation, considering its localiza-
tion and spread across specific compartments6.

Although some commercial applications exist for dividing liver tissue
into its main components, their datasets and intended uses are often
restricted to specific diseases and usually lack an external validation7.
Moreover, there is a lack of reliable open-source options that would enable
pathologists and researchers to perform automated zonation of liver tissue8.
This capability could unlock various applications, not limited to studying
the localization of inflammatory infiltrates, but also extending to tasks such
as data coregistration across advanced methodologies through automated

annotation and targeted region selection for studying specific compart-
ments, thereby saving computational resources9. As well as other promising
computer vision techniques, such as weakly supervised classification
methods, as demonstrated in our previous research, these strategies offer
significant potential for advancing tissue analysis10.

This study aims to bridge this gap by developing anAI-based approach
for automating the segmentation and semantic recognition of portal and
lobular compartments in liver biopsies.

Results
Cases
A total of 223 cases were collected for training the model, encompassing a
diverse range of conditions. The largest group consisted of cases classified as
AIH (85 cases, 38%), followed by primary biliary cholangitis (PBC, 54 cases,
24%), normal or near normal liver parenchyma (25 cases, 11%), drug-
induced liver injury (DILI) (16 cases, 7%), MASLD (15 cases, 7%), graft-
versus-host disease (GVHD) (10 cases, 5%), primary sclerosing cholangitis
(PSC, 10 cases, 5%), infectious disease (5 cases, 2%), and iron overload
disorder (3 cases, 1%). The sex distribution within the study was nearly
balanced, with females constituting 59.64% (132 cases) and males 40.36%
(90 cases) of the total. The mean age of participants was 50.2 years, ranging
from aminimumof 8 years to amaximumof 85 years (median 50). The test
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set comprised 16 AIH cases and eight PBC cases from five institutions
external to the training and validation datasets, alongwith fiveGVHDcases
from one internal institution. After tile extraction, the dataset comprised
54,338 patch pairs at 1 μm/px magnification. Following an 80/20 split,
43,470 patches were allocated for training and 10,868 for validation. At
2 μm/px magnification, the dataset contained a total of 28,197 patches,
which were similarly divided into 22,558 for training and 5639 for valida-
tion. The test set included 8789 patches at 1 μm/pxmagnification and 4611
patches at 2 μm/px magnification. In the training and validation sets, the
dataset compositionwas~17%background, 71%hepatic lobule regions, and
12% portal areas. In the test set, the corresponding proportions were ~28%
background, 61% hepatic lobule regions, and 11% portal areas.

Model development
The model was trained over a total of 100 epochs, with early stopping
triggered at epoch 49 based on the validation loss, preventing further
unnecessary training and reducing computational costs (Fig. 1). The overall
training time was 10.6 h, and the average time per epoch was 13.1 min. The
resulting model, called “Hematoxylin & Eosin-based Open-access Tool for
Segmentation of Portal Tracts” (HOTSPoT), achieved a mean Dice coeffi-
cient of 0.92, 0.92 and 0.91 and a mean IoU of 0.86, 0.85 and 0.84, respec-
tively, on the training, validation and test set. Detailed performance metrics
are provided in Table 1, which presents the mean and per-class Dice coef-
ficient and IoU values. Segmentation performance across the test set is
further elaborated in Table 2. The average inference time for WSI, con-
sidering the test set was 1.3 s, while full test set inference time is 38 s,
indicating scalability to larger datasets. The average time for inference and
deployment on QuPath was 20 s (range 5 s–1.2m). Variations in time were
primarily influenced by the preprocessing steps of the tissue finder, which
analyzed the entire slide to handle cases with dark or noisy backgrounds
effectively. The QuPath implementation allows the graphic visualization of
the automatic segmentation process, as shown in Fig. 2.

Upon completion of the training, the model was exported as a fully
traced and weight-optimized TorchScript file for efficient deployment and
inference. HOTSPoT was implemented in Python using the PyTorch 2.3
framework. The source code togetherwith the torchscript full tracedmodel,
is available in the GitHub repository at the following URL: https://github.
com/Gizmopath/HOTSPoT.

A modified version of the existing WSInfer library, designed for the
deployment of WSI-level models in TorchScript format, was implemented
and used for slide-level inference11. This library was built and used in pre-
vious projects and it is easily editable to fit any segmentation project12. The
inference is supported at the WSI level, with model predictions being
converted into GeoJSON files, an open standard for representing geo-
graphical features, that can be imported into QuPath. Within the Rever-
seQuPath folder, the source code required to run inference at WSI level
using a pixel-based model is provided at the following URL: https://github.
com/Vsc0/nutshell.

HOTSPoT clinical deployment: biopsy adequacy assessment
The clinical validation of themodel included a total of 35 liver biopsy cases.
The clinical diagnoses comprised autoimmune hepatitis (AIH, n = 4), drug-
induced liver injury (DILI, n = 8), metabolic dysfunction-associated stea-
tohepatitis (MASH, n = 6), primary biliary cholangitis (PBC, n = 2), ductal
plate malformations (n = 3), primary sclerosing cholangitis (PSC, n = 3),
andvascular/sinusoidal diseases (n = 6).Among these, 26patients presented
with a Ludwig fibrosis score of less than 3 at the time of diagnosis; inference
on whole-slide images yielded a mean of 16.96 ± 6.08 portal tracts per case,
showing a very high level of agreement with both observers (κ = 0.90 with
original diagnosis and κ = 0.80 with the second observer).

The mean total biopsy area across the 35 cases was 19.56 ± 7.88mm²,
while the mean manually assessed length was 1.94 cm (r = 0.92, p < 0.001).
Portal area percentages quantified by HOTSPoT on the total tissue area
(mean 0.13 ± 0.14%) differed significantly across the five Ludwig fibrosis
stages (0–4), as shown in Fig. 3, with a correlation with the histological

fibrosis of 0.87 (p < 0.001), suggesting that HOTSPoT quantification may
serve as a useful surrogate for immediate “macroscopic” fibrosis assessment
without special stains.

Discussion
The segmentation of portal areas in the liver has become an area of
increasing interest in AI-based research, due to its potential to automate
tasks that require complexmanual annotations13.Oneof the key goals of this
study was to develop amodel capable of generalizing across a wide range of
liver biopsy samples, obtained from different institutions and scanned with
various devices14. HOTSPoT’s generalizability is demonstrated by its per-
formance on test sets from multiple centers, which used distinct scanners,
magnifications, and pre-analytical protocols, suggesting that its architecture
is resilient also to geographical diversity of the dataset. The scalability of
HOTSPoT can be partially attributed to its transformer-based architecture,
which is known for its ability to handle large, complex datasets and retain
contextual information across various regions of interest. Traditional con-
volutional neural networks (CNNs) often face limitations when processing
high-resolution images or when capturing long-range dependencies across
distant regions in an image15. Additionally, in this experiment, data aug-
mentation techniques were conducted under human supervision to ensure
that the generated images remained realistic and reflective of typical
pathological variability, avoiding the introduction of artificial artifacts. By
simulating the diverse conditions encountered in real-world pathology
practice, these techniques enhanced the model’s ability to generalize across
different tissue appearances, staining quality, and slide artifacts, improving
its performance on unseen biopsy samples while reducing the risk of
overfitting16,17. HOTSPoT’s scalability is further demonstrated by its small
size (approximately 15 MB) and its ability to perform inference almost
instantaneously, even on large datasets18. Additionally, its seamless inte-
gration with QuPath enables general pathologists to incorporate advanced
AI tools into their workflow, facilitating research and enhancing the
potential for broader adoption and contribution to scientific practice19. In
particular, the model empirically demonstrated superior performance on
clean, thin, artifact-free sections, as reflected by differing metrics across the
various validation centers. For example, Fig. 4a (portal tract) and b (cen-
trilobular vein) shows a nearly perfect segmentation, whereas the presence
of artifacts (such aspenmarkings, dust particles, and slide imperfections) led
to misclassification of non-tissue regions as tissue (Fig. 4c). The test set,
which includesmultiple cases of both chronic and acute hepatitis, serves as a
rigorous stress test for aportal-space recognitionalgorithm:disease-induced
alterations can be profound, and centrilobular regionsmay closely resemble
portal spaces. Theoutstanding performancemetrics attest to the algorithm’s
robustness, although it can occasionally “capture” small, highly inflamed
lobular areas in error (Fig. 4d).

Several experiments already exist in the literature, with various tech-
nologies, algorithms, and datasets developed to address this challenge,
providing valuable insights for comparison in recent studies. A study
published in the Journal of Pathology Informatics in January 2022 focused
on the automated detection of portal spaces and central veins in liver tissue
images of rats, achieving an F1 score of 0.81 compared to expert manual
annotations. However, when applied to steatotic liver tissue, the model’s
performance dropped to an F1 score of 0.59, demonstrating the difficulty in
generalizing the model to unseen pathological tissues during training20. A
studybyHanyiYuet al. in 2022proposed the segmentationof portal areas in
human liver biopsies. The introduced model, named MUSA-UNet, is a
variant of the traditional UNet architecture. The authors used a dataset of
histological images from 53 transplant patients stained with H&E and
Masson’s trichrome, achieving precision of 0.94, recall of 0.85, F1 score of
0.89, and accuracy of 0.89 on the validation set21. Hung-Wen Tsai et al.
tackled the segmentationof periportal regions infiltratedby lymphocytes, an
important aspect for diagnosing and classifying chronic hepatitis. Their
advanced framework integrates automatic segmentation based on a variant
of DeepLabv3, achieving IoU values of 0.905 for portal spaces and 0.744 for
bile ducts. In the second step, lymphocyte infiltration was detected by
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analyzing the protrusions at portal boundaries, identifying suspicious
infiltration areas22. In 2024, Caner Ercan et al. introduced AI(H), an AI-
based model using convolutional neural networks (CNNs) to analyze liver
biopsies for autoimmune hepatitis (AIH). The training dataset consisted of
123 pre-treatment liver biopsies from confirmed AIH cases, analyzed on a
proprietary platform. The AI(H) model achieved 99.4% accuracy in tissue
detection, 88.0% for hepatic microanatomy, 83.9% for necroinflammation
features, 81.7% for bile duct damage, and 79.2% for portal inflammation23.

Despite significant progress, these studies have certain limita-
tions. Most did not release open-source models, which would have
facilitated broader adoption within the scientific community. Addi-
tionally, many datasets were derived from a single clinical center,
potentially limiting the models’ applicability and generalizability24.
External validation remains a critical step in ensuring the robustness
and reliability of AI models for histological analysis. While high
accuracy can often be achieved on training datasets, evaluating model

Fig. 1 | Training process of the HOTSPOT model. The training process illustrates the model’s IoU and dice coefficient improvement over the epochs, with steady
improvement in both training and validation performance. IoU Intersection over Union.
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performance on diverse, independent data from different institutions
is essential to enhance generalizability and reduce the risk of
overfitting25,26. Furthermore, the development and adoption of open-
source solutions in pathology is increasingly important for advancing
research and automated diagnostics. Open access to software and
algorithms promotes collaboration, reduces barriers associated with
proprietary systems, and fosters innovation and transparency within
the field27.

As a first immediately clinically implementable application, the high
concordance metrics achieved demonstrate that our model can both pre-
cisely quantify two-dimensional tissue area (mm²) and automatically count
the number of portal tracts—complementing traditional manual adequacy
assessments with a more comprehensive appraisal of specimen adequacy28.
Furthermore, by producing a fully segmented biopsy -delineating portal
tracts, interface (one hepatocyte diameter from the tract), and lobular
regions- the tool lays the groundwork for future pathology workflows in
which segmented images couldbeused to guidemoreprecisemeasurements
of inflammatory infiltrates, fibrosis staging, and other morphometric fea-
tures, ultimately supporting more accurate and reproducible diagnoses.

However, HOTSPoT holds significant potential for advancing liver
pathology in several key applications (Fig. 5). It can extract morphometric
features and localize cells or clusters within liver tissue, enabling a multi-
dimensional analysis that includes morphometric data, being particularly
promising for inflammatory and autoimmune conditions29. Additionally, it
optimizes computational resources by automating liver region segmenta-
tion, enabling targeted analysis of specific compartments, such as lobules
(e.g., steatosis quantification) or portal areas (e.g., portal tract study), in line
with an ecologically sustainable use of AI in pathology30,31. HOTSPoT’s
advanced segmentation capabilities support the integration of spatial-omics
data, such as proteomics or transcriptomics, with histological tissue context.
By providing precise spatial annotations, it facilitates mapping molecular
markers to specific liver regions, offering valuable insights into disease
mechanisms and responses to treatment32.

Foundation models, such as large pretrained Vision Transformers
(ViT) ormodels like Swin Transformer, are increasingly being explored in
medical imaging. These models are typically pretrained on massive
datasets like ImageNet and then fine-tuned for specific tasks. While
foundation models show great promise in areas like classification, their
applicability in pathology is still somewhat limited by their focus on
neoplastic conditions33,34. Pathological studies, particularly in liver dis-
eases, require specializedmodels that can handle the complexities of tissue
segmentation, especially in non-neoplastic contexts, where inflammatory
and autoimmune conditions are not sufficiently represented in the large,
pretrained datasets typically used in foundation models. This challenge
calls for the development of models that can be fine-tuned for non-
neoplastic liver diseases, as well as the creation of specialized datasets for
these diseases.

Table 1 | Model performance on training, validation and test
sets overall and divided by compartment of interest

Training
set
(2 µm/
px)

Validation
set
(2 µm/px)

Test
set
(2 µm/
px)

Training
set
(1 µm/
px)

Validation
set
(1 µm/px)

Test
set
(1 µm/
px)

Mean

Dice 0.92 0.91 0.90 0.92 0.92 0.91

Iou 0.86 0.85 0.84 0.86 0.85 0.84

Background

Dice 0.98 0.98 0.96 0.94 0.94 0.93

IoU 0.97 0.96 0.93 0.89 0.89 0.87

Lobule

Dice 0.97 0.95 0.94 0.96 0.96 0.93

IoU 0.91 0.90 0.91 0.93 0.93 0.91

Portal areas

Dice 0.83 0.81 0.79 0.85 0.84 0.83

IoU 0.71 0.69 0.67 0.74 0.74 0.73

IoU Intersection over Union

Table 2 | Summary of test set performance metrics across
different institutions and diseases

Tiles Disease Inference
Time

Inf/Vis
Time
QuPath

Mean
Dice

Mean
IoU

Barcelona 1186 AIH (5) 7 s 4.4m 0.92 0.86

Buenos
Aires

950 AIH (5) 5 s 0.6m 0.91 0.85

Coimbra 1187 AIH (5) 6 s 0.5m 0.93 0.88

Monza 1744 GVHD (5) 9 s 1.2m 0.92 0.84

Maastricht 1107 AIH (2)
PBC (3)

6 s 1.7m 0.91 0.84

Palermo 1605 PBC (5) 5 s 1.4m 0.89 0.82

Full test set 8789 AIH(16)
PBC(8)
GVHD(5)

38 s 9.8m 0.91 0.84

The table includes the number of tiles processed, disease types, inference times, inference +
visualization times in QuPath, mean dice coefficient, and mean IoU. The number of cases for each
disease is indicated in parentheses.
AIH Autoimmune Hepatitis, GVHD Graft-Versus-Host-Disease, IoU Intersection over Union, PBC
Primary Biliary Cholangitis

Fig. 2 | Graphic visualization of the automatic
segmentation process. Inference via the con-
structed model and tile level segmentation were
automatically imported as geoJSON objects into
QuPath for image visualization and analysis. On the
left, biopsy of a patient with cirrhotic liver in AIH.
On the right, biopsy of a non-cirrhotic patient with
quiescent PBC.
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While the annotation of portal tracts is considered a low-variability
task due to their clear histological definition, the use of a single expert may
inherently limit the assessment of inter-observer consistency. Although no
evidence of significant variability is reported in the literature for this specific
feature, future studies including multiple annotators could further confirm
the robustness and generalizability of the annotations. Variations in scanner
types,magnifications, and staining protocols were considered duringmodel
development; however, potential biases introduced by site-specific differ-
ences in sample preparation and digitization may still impact performance
in real-world clinical settings.

This study presents a promising approach for automating the seg-
mentation and semantic recognition of liver tissue in WSI using a
transformer-based model. HOTSPoT demonstrated high performance
across a variety of scanning protocols and pathological conditions, show-
casing its potential for standardizing liver tissue analysis and supporting
research in rare liver diseases. Furthermore, the trained model is available
for free, enabling local use and fostering broader accessibility within the
research community.

Methods
Cases
Hematoxylin and eosin (H&E) stained liver biopsies WSIs were
retrieved from three different institutions (Fig. 6): IRCCS Fondazione
San Gerardo dei Tintori (Monza, Italy); Institute of Pathology,
Hannover Medical School (Hannover, Germany) and ASST Grande
Ospedale Metropolitano Niguarda (Milan, Italy), and anonymized.
These slides were digitized using four different scanners at different
magnifications. Demographic (sex and age) and key pathological data
(final diagnosis, Ishak fibrosis stage) were collected for each case.
Additionally, 20 cases from four external institutions: Hospital Clínic
de Barcelona (Barcelona, Spain), Hospital Italiano de Buenos Aires
(Buenos Aires, Argentina), Hospitais da Universidade de Coimbra
(Coimbra, Portugal), Maastricht University Medical Centre (Maas-
tricht, Netherlands) and Policlinico di Palermo (Palermo, Italy) and 5
cases from one institution internal to the training/validation set were
used as a test set, each scanned with a different institution-device
combination from those used in the training/validation set. Technical

Fig. 3 | Portal area quantification by HOTSPoT
correlates with Ludwig fibrosis stages. Box plots
showing the percentage of biopsy area occupied by
the portal region relative to the total tissue area,
stratified by histological fibrosis class. A strong
positive correlation between portal area percentage
and fibrosis class was observed (Pearson’s
r = 0.87, p < 0.001).

Fig. 4 | Variability of the algorithm across differ-
ent settings. Segmentation performance of the
model under varying conditions. Panel (a) shows
accurate identification of a portal tract in a clean,
artifact-free section, while (b) illustrates successful
segmentation of a centrilobular vein. In contrast, (c)
highlights misclassification caused by artifacts such
as pen markings and debris. Panel (d) demonstrates
an instance where the algorithm erroneously cap-
tures inflamed lobular areas resembling portal
spaces in the context of hepatitis.
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and scanning characteristics of the whole dataset are reported in Table
3. All participating institutions are recognized as expert referral centers
for liver diseases and (in part) members of the European Reference
Network for rare liver diseases.

Approval was obtained from the local ethics committees of each
institution. The coordinating center is University of Milano-Bicocca which
coordinates the PBC Database (NCT05151809) and AIH Database
(NCT06078098), approved by CET Lombardia 3.

Fig. 5 | Clinical and research applications of the HOTSPoT liver biopsy
segmentation model. HOTSPoT enables advanced liver pathology analysis by
extracting morphometric features, localizing cell clusters, and supporting targeted

compartment analysis. Its segmentation capabilities facilitate efficient resource use
and integration of spatial-omics data with histological context, offering insights into
disease mechanisms and treatment responses.

Fig. 6 | Study design. H&E-stained liver biopsy WSIs were collected from multiple
expert liver pathology centers across Europe and South America, digitized using
diverse scanners and magnifications. The dataset includes training/validation cases

from three institutions and an independent test set from five external centers,
ensuring variability and robustness across acquisition settings.
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Annotations
Tissue on the biopsy was identified using QuPath’s custom tissue finder
with a thresholding approach35. Portal tracts were annotated within the
same software based on a standard definition (presence of at least two
out of three portal triad structures, including at least one portal artery or
interlobular duct)36 and semantically delineated from the lobular com-
partment by a hepatopathologist (GC). As the resolution of each WSI is
in the order of tens of thousands of pixels and the region of interest (ROI)
size varies among the different images, a tiling procedure was applied on
the ROIs to obtain smaller images—of a fixed size—suitable as input for
the transformer model. Tiles of 256 × 256 pixels (no overlap) were
extracted from tissue areas at amagnification of 1 μm/px (approximately
10× magnification). These tiles (original images) were extracted along
with their corresponding masks, in which distinct colors were used to
label background, liver lobule tissue, and portal areas. The same
extraction procedure was also performed at a magnification of 2 μm/px.
The percentage of pixels belonging to each of the three classes (see
below) was computed in the training/validation and test sets to provide
an estimate of class distribution across the dataset.

Model development
This experiment focused on training a deep learning model for multi-class
semantic segmentation using the SegFormer architecture, fine-tuned for
segmenting images into three distinct classes: background, liver lobule, and
portal areas. The model utilized a pretrained SegFormer-b0 structure
(nvidia/segformer-b2-finetuned-ade-512-512), which was adapted specifi-
cally for this task using images and their corresponding masks37.

Data augmentation, including rotations, flips, elastic transformations,
grid distortions, and color jittering, was applied to images and masks, with
strength tailored by a pathologist to ensure realism and reflect laboratory
variability without introducing artifacts. Early stopping based on validation
loss prevented overfitting, and performance was evaluated at each epoch
using metrics such as intersection over union (IoU) and Dice coefficient
both overall and per class. Dice coefficient measures the similarity between
the predictedand ground truth segmentations by evaluating howmuch they
overlap relative to their total size at patch level, while IoU evaluates the ratio
between the overlapping area (intersection) and the total combined area
(union) of the prediction and the ground truth. The inference at the WSI
level was carried out using a modified version of the WSInfer library, spe-
cifically adapted for deploying WSI-level models in TorchScript format.
This library is fully customizable to accommodate any segmentation
workflow. No overlapping between tiles was used during tile-based infer-
ence; instead, model predictions are output as GeoJSON files, an open
standard for representing geographic features, which can then be seamlessly
imported into QuPath. Training and inference were performed on a

machine equippedwith 16GBofRAMand anNVIDIAGeForceGTX1070
GPU with Max-Q Design.

HOTSPoT clinical deployment: biopsy adequacy assessment
The resulting model (HOTSPoT), was applied to evaluate the adequacy of
35 consecutive cases, including 25 internal cases from the IRCCS Fonda-
zione SanGerardodeiTintori (Monza) and10 consultation cases referred to
the sameunit,without restrictionbyunderlyingdisease.WSI-level inference
was performed on each case to identify portal regions, which were auto-
matically labeled and counted, providing a continuous estimate of the total
numberof portal tractswhere feasible, specifically in caseswithLudwig stage
<3. For all 35 cases, the total biopsy area on the slide (inmm²)was extracted,
as well as the cumulative portal tract area and its proportion relative to the
entire biopsy. The same portal-tract count was also extracted from the
original pathology report and was independently assessed by a second
observer (AQ), allowing comparison of both interobserver agreement and
the performance of the model (HOTSPoT). Biopsy length (in cm) was
manually measured for each case. Agreement between the model and
human observers in counting continuous portal tracts was assessed using
Weighted Cohen’s Kappa. To evaluate the reliability of HOTSPoT as a
surrogate for immediate macroscopic assessment of histologic fibrosis,
Pearson correlation coefficients were calculated between HOTSPoT’s
biopsy area quantification and manual length measurements, as well as
betweenHOTSPoT’s portal area percentage and histological fibrosis scores.

Data availability
The liver biopsy whole slide images used in this study are not currently
publicly available due to data sharing restrictions. All underlying data,
including the relevant spreadsheets necessary to interpret and verify the
findings of this study, are available in the following GitHub repository:
https://github.com/Gizmopath/HOTSPoT.

Code availability
The source code together with the torchscript full traced model, is available
in the GitHub repository at the following URL: https://github.com/
Gizmopath/HOTSPoT. A modified version of the existing WSInfer
library, designed for the WSI-level deployment of models in TorchScript
format is provided at the following URL: https://github.com/Vsc0/nutshell.
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