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Transformer patient embedding using
electronic health records enables patient
stratification and progression analysis
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Current studies regarding the secondary use of electronic health records (EHR) predominantly rely on
domain expertise and existing medical knowledge. A powerful representation approach can unleash
the potential of discovering new medical patterns underlying the EHR. Here, we introduce an
unsupervised method for embedding high-dimensional EHR data at the patient level to characterize
heterogeneity in complex diseases and identify novel disease patterns linked to disparities in clinical
outcomes. We applied this approach to 34,851 unique medical codes across 1,046,649 longitudinal
patient events, including 102,740patients in theElectronicMedical RecordsandGEnomics (eMERGE)
Network. The model achieved strong predictive performance in predicting future disease (median
AUROC = 0.87 within one year) and bulk phenotyping (median AUROC = 0.84). Notably, these patient
embeddings revealed diverse comorbidity profiles and health outcomes, including distinct subtypes
and progression patterns in colorectal cancer and systemic lupus erythematosus.

Electronic health records (EHRs) have become widely adopted across the
United States1. The “meaningful use” of EHR, as defined by theDepartment
ofHealth andHuman Services, aims to improve the quality and efficiency of
care2. In recent decades, the potential for the secondary use of EHR to
facilitate clinical research has been explored and gained considerable
attention.Oneof themajor topics is EHR-based digital phenotyping3,4,5. The
electronic Medical Records and GEnomics (eMERGE) consortium created
the Phenotype KnowledgeBase (PheKB) as a digital platform for pheno-
typing knowledge. This initiative allows multiple large hospitals and uni-
versities to collaborate and share their phenotyping algorithms developed
from electronic health record (EHR) data6,7. Thoughmost of the algorithms
stored in PheKB are rule-based and validated by domain expertise, there are
also efforts towards developing scalable machine learning algorithms for
EHR-based phenotyping, which generally require less time and expertise.
Various machine learning and deep learning methods have been applied to
build EHR-based phenotyping algorithms, including support vector
machines (SVM), random forests, logistic regressions, and neural network

architectures4,8,9. These efforts seek to enhanceourunderstandingofdiseases
and improve the healthcare system. Currently, a crucial and challenging
question is how to leverage the EHR data to help identify and characterize
disease patterns. With the ideal solution, we can promote disease mon-
itoring and clinical predictive tasks.

Representation learning is a powerful tool that can characterize existing
and uncover novel disease patterns to facilitate the study of disease etiology,
prevention, forecasting, and even heterogeneity analysis10–13. Though
researchers inmodern times are exploringnewpatternsusing theEHRdata14,
the research applications of EHR still largely depend on existing domain
knowledge from experts15–18. Emerging pioneering studies using EHRs are
uncovering theheterogeneity of adefinedphenotype, highlightingdifferences
in comorbidities that may be linked to genetics, lifestyle, and environmental
factors19–21. To further improve this, representation learning has become an
essential tool for handling high-dimensional EHR data, aiding in pattern
recognition, heterogeneity analysis, and subsequent prediction tasks. How-
ever, a significant challenge is that, in theEHR, eachpatient canhavemultiple
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visits in ayear or acrossdifferent years, generatinga largenumberofdiagnosis
andprocedure codes accompanied by numerous lab values and observations,
making it difficult to summarize. A simple representation of patients utilizing
the nature of the EHR data structure is through binary vector encoding to
indicate if patients have specificdiagnoses, procedures, or labs. In this context,
matrix decomposition serves as an effective tool to compress patient data into
lower numerical dimensions.22. Matrix decomposition, such as principal
components analysis (PCA) andnon-negativematrix factorization (NMF), is
used to compress a largematrix of patients into a relatively smaller one, while
preserving the relationship of the selected features, such as diagnosis, pro-
cedures, and labs. The resulting matrix is commonly referred to as patient
embedding. Besides traditional matrix decomposition, a specific deep-
learning model adopted from the autoencoder has been implemented to
perform the embedding task10. Apart from the purely data-driven method,
some methods integrate medical entities to perform predictive tasks23.
Overall, without the obligation of cohort building or domain expertise to
iteratively process the phenotyping tasks, various unsupervised methods are
applied to identify unknown patterns of patients and diseases using the
EHR data.

Manyneural network architectures have beendeveloped andproven to
show progress in various kinds of health-related tasks, both supervised and
unsupervised24,25. Specifically, transformer attention mechanisms have
surpassed traditional sequence models, such as recurrent neural networks
(RNN) and their variations (gated recurrent unit, GRU, long short-term
memory, LSTM), both in efficiency and performance in downstream tasks
within the natural language processing (NLP) field26,27. Inspired by the
attentionmechanisms, we explored the potential of usingmedical diagnosis
and procedures to construct patient vectors. In this work, we represented
each patient as a sentence, using diagnosis and procedure codes as voca-
bularies to compose patient vectors.Moreover, we generated patient vectors
in a longitudinal format, allowing investigation of a patient at a specific time
point.Here,we present the transformer-basedEHRpatient data embedding
method and demonstrate its power in bulk phenotyping, future disease
prediction, comorbidity study, and longitudinal analysis.Weutilized 34,851
available codes for 1,046,649 patients from the electronic Medical Records
and Genomics (eMERGE) network to train the model and generate patient
embeddings. The patient embeddings demonstrated exceptional perfor-
mance in forecasting future disease events (median ROC = 0.87) and bulk
phenotyping (median ROC= 0.84) using simple logistic regression models
without any fine-tuning. More importantly, we demonstrated that patient
vectors can reveal the heterogeneity of comorbidity patterns within a single
phenotype, which forms sub-clusters of comorbidities.We also showed that
these clusters exhibit different trajectories of disease progression over time.
With external validation using de-identified patients fromUWspanning 20
years (n = 840,000, from 2000 to 2020), our model showed great flexibility
and stable performance in reproducing the sub-cluster analysis and iden-
tifying distinct clinical outcomes associated with each cluster. Together,
thesefindings provide new insights into personalizedmedicine by analyzing
complex patterns of comorbidity within diseases and revealing distinct
disease trajectories associated with varying mortality rates.

Results
Model illustration and performance evaluation
The outline of our work is summarized in Fig. 1, with a detailed model
architecture in Fig. S1. The three steps of performing numerical patient
embedding in this session are illustrated in Fig. 1a–c. We first created an
embedding of vocabularies (diagnosis codes, procedure codes) using a
variational autoencoder neural network architecture (Figs. 1a, S1, left).
Then, we fed the embedded diagnosis codes and procedure codes as voca-
bularies to a transformer model, representing each patient’s longitudinal
visits as sentences (Figs. 1b, c, S1, middle and right). Finally, we imple-
mented the sentence-BERT architecture, transforming the 2-D vector
output (vocabulary × probabilitymatrix) from the transformermodel into a
1-D vector, which serves as the final output of patient embedding (Figs. 1c
and S1). We evaluated each step separately with a greater emphasis on the

last two steps (Fig. 1b, c), as they are critical for the performance of
important downstream tasks. For more detail, we included the distribution
of the number of follow-up years and number of codes per year in Figure S2.

During training, the transformer model masked 20% of the code, and
we evaluated its ability to use existing codes to predict the codes for the
following year. Themodel achieved a peak prediction accuracy of 79%. The
result suggests that the learned numerical embeddings can almost perfectly
recapture what is shown in the training set. However, inferring 20% of the
masked code using the provided information remains a challenging task.
During the evaluation, we randomly selected 32,000 samples (1000 steps
with a batch size of 32)withoutmasking the sequence.Themodel achieved a
mean precision of 91.7% and a median precision of 95.8%. Additionally, it
attained a mean recall of 89.5% and a median recall of 93.7% in recon-
structing the original codes (Table 1). These results demonstrate that the
numerically embedded vector can accurately recover the diagnosis and
procedure codes.

The sentence-embeddingmodel (Fig. S1, right) has two goals. One is to
predict whether a given pair of patient embeddings at different time points
represents the same patient. Another goal is to predict if one patient
embedding is a longitudinal following event of another. We selected 34,633
events from 500 randomly chosen patients during the evaluation. We
formed pairs as input and divided them into 5 iterations (with 100 patients
for each iteration), and evaluated the performance of two tasks (Table 2).
The accuracy for the is_same_patient task is 0.797 ± 0.0016 (mean and
standard deviation), and for is_next_event is 0.769 ± 0.011. Overall, the
model achieved ideal performances on two crucial tasks, indicating a great
potential for multi-purpose downstream analysis.

Disease onset prediction and bulk-phenotyping
Predicting disease onset is vital for early diagnosis and risk assessment
before the disease occurs. Using the longitudinal embeddings of patient
vectors, we first construct simple logistic regression models to distinguish
between the disease state and the non-disease state (Fig. S3a). We mapped
ICD-10 and ICD-9 codes to phecodes as a standard reference of
phenotypes28. For a specific disease represented by phecodes, the patient
vector after a diagnosis time point is denoted as positive samples (disease
state), and the patient vectors before the diagnosis are negative samples
(non-disease state). Across all 1855 unique phenotypes represented by
phecodes, the simple logistic regression model achieved a median area
under the receiver operating characteristic (AUROC) of 0.81. Among the
groups analyzed, the circulatory system group showed the highest perfor-
mance, while the pregnancy complications group ranked the lowest (Fig.
S3b). The median area under the precision–recall curve (AURPC) is 0.80,
which is not surprising, as the sample sizes of the positive and negative
samples are approximately balanced (Fig. S3b). This disease state versus
non-disease state classification task can be seen as a baseline between
“phenotyping” and “onset prediction” as it demonstrates the ability to
differentiate between disease and non-disease states. However, it lacks
timing in prediction. Therefore,we thenperformeddisease onsetprediction
using patient vectors one year before disease onset (Figs. 2a and S4a). We
observed a median AUROC of 0.87 for the disease onset task. The best-
performing group was pregnancy complications (AUROC= 0.93), while
the lowest-performing group was congenital anomalies (AUROC= 0.82).
These results exceeded the performance of the baseline model, which dis-
tinguishes between disease status and non-disease status. We attribute this
exceeding performance to thefine-tuning tasks from the patient embedding
model, where we trained the longitudinal vectors to predict the next event
(Figs. 1c and S1, middle). Although the sample size is heavily imbalanced
within each phenotype for this task, we show that the AUPRC is strongly
associated with the positive-to-negative ratio (Fig. 2a), indicating stable
performance when enough samples are available. These results suggest that
patient vectors can be used as features for disease forecasting tools or risk
models, even when applying simple linear models.

Automated bulk phenotyping is ideal if no extra human effort is
required, as developing high-performance phenotyping algorithms is
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Fig. 1 | Illustration of the patient embeddingmodel and downstreamapplication.
a Encoding diagnosis and procedure codes into numerical space as basic vocabul-
aries in downstream training using an autoencoder architecture. b Representing
patients’ visits within a year as sentences and diagnoses, procedure codes as

vocabularies. c Feed each visit from b into a Transformer model and concatenate
through the Patient Embedding model to generate the final patient vectors.
d Downstream applications workflow of disease onset prediction (left), bulk phe-
notyping (middle), and clustering subgroup analysis (right).
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usually iterative, time-consuming, and demands knowledge from domain
expertise15,29. Here, we explored the potential for using the longitudinal
vectors as bulk-phenotyping tools and illustrated the process in Figure S4b,
using phecodes as standard references. In detail, since each patient has
multiple vectors corresponding to different time points, we calculated the
arithmetic mean of those vectors as a compressed vector representation of
each patient. This method resembles the chronological accumulation of all
high-dimensional vectors andnormalizes it by the number of steps (referred
to as summed-up embedding later). The median AUROC of all 1855
phenotypes is 0.84, which is slightly lower than the disease onset task
(Fig. 2b). The best performance group is for pregnancy complications
(AUROC= 0.90), and the poorest for congenital abnormalities
(AUROC= 0.77). Likewise, we observed a strong association between the
positive-to-negative ratio and the AUPRC (Fig. 2b). Together, these two
outstanding performances showed great potential for patient vectors to
achieve excellent results in bulk phenotyping.

We benchmarked our model’s performance in predicting disease
onset, comparing it to Deep Patient and BEHRT, two models specifically
trained for future disease prediction (see Supplementary Table 6 and
methods for more details)30. We show that the embedding quality of the
transformer is on par with the state-of-the-art BEHRT model in disease
prediction, albeit with 0.022 lower median AUROC and 0.012 lower mean
AUROC. Although we observed a performance drop after fine-tuning with
the S-BERT model, we reason that the S-BERT model is fine-tuned on
patient-level information and not prioritized for disease onset prediction.
We will demonstrate the power of this fine-tuned embedding in the fol-
lowing sub-phenotype session.

Sub-phenotype identification using patient vectors clustering
analysis
Comorbidity, the simultaneous presence of two or more diseases or
medical conditions, has a profound impact on an individual’s care plan,
quality of life, and mortality 31. Using the summed-up embedding to
represent individual patients, we show that within a well-defined single
phenotype, the comorbidity status formed different clusters, exhibiting
heterogeneity in comorbidity patterns (Fig. 3). Using colorectal cancer
(CRC) patients (identified using phecode 153) as an example (n = 2837),
we identified 4 clusters (Fig. 3a) according to the Bayesian information
criterion (BIC) using Gaussian mixture models (GMM) (Fig. S5a). To
characterize the comorbidity patterns within each cluster group, we fitted
logistic regression models using one cluster group versus the rest strategy
adjusted for age of onset, race, ethnicity, and sites (see the “Methods”
section). Cluster 2 (median onset age = 51) has the earliest onset age (Fig.
3b) and is strongly associated with HIV infection (phecode = 071) and a
few pregnancy complications, representing a subgroup of female patients
with immunodeficiency phenotypes (Fig. 3c). This association between
HIV and CRC is not new and is more prevalent in women in a pooled
result from several studies32–35. Cluster 1 (median onset age = 62) is
associated with secondary malignant neoplasm, which reflects cancer
pleiotropy and late-stage cancer patients with metastasis (Fig. 3c) 36,37.

Cluster 0 (median onset age = 60) is enriched in genitourinary and
endocrine diseases, including disorders of lipoid metabolism, menopause
issues, andmenorrhagia issues (Fig. 3c). Though endocrine andmetabolic
disease might be risk factors for CRC, and vice versa, a study has also
shown a greater risk of CRC patients developing endocrine andmetabolic
diseases38,39. Cluster 3 (median onset age = 72) is the latest onset group
(Fig. 3b), which has a strong pattern of the circulatory system and
endocrine diseases, including atrioventricular block, valvular heart dis-
ease, mitral valve disease, diabetes, and hyperlipidemia (Fig. 3c). This
cluster group aligns with existing findings that CRC patients have an
increased risk of developing cardiovascular disease and heart failure40,41.

Similarly, we performed GMM clustering on systemic lupus erythe-
matosus (SLE) patients (n= 1806, Fig. 4). We identified 4 clusters (Fig. 4a)
based on BIC and observed a wide range of disease patterns within these
clusters (Fig. S5b). Cluster 0 has the lowest onset age (median onset age = 37,
Fig. 4b) among all other groups and is associated with epilepsy (Fig. 4c).
Cluster 1 has the highest median onset age (median onset age = 57, Fig. 4b)
and is joint with skin cancer and eye diseases, such as glaucoma, cataracts,
dermatochalasis, etc (Fig. 4c). Evidence shows that SLE patients can develop
cataracts and many other eye diseases42,43, some of which could be linked to
medications43. Cluster 2 has a median onset age similar to cluster 0 (median
onset age = 40, Fig. 4b) and is enriched inpregnancy complications, including
hemorrhage in early pregnancy, miscarriage, stillbirth, etc (Fig. 4c). Cluster 2
also has signs of infertility, irregular menstrual cycle, and developmental
disorder (Fig. 4c). Though still unclear, numerous studies have tried to dissect
the relationship between lupus and pregnancy complications and identified
hormone-level abnormalities44,45.Cluster 3has amedianonset ageof 44and is
associated with renal diseases, including renal osteodystrophy, end-stage
renal disease, chronic kidney disease, etc (Fig. 4c). SLE is known to be a
systemic disease, and cluster 3 reflects its systemic involvement in kidney
disorders.Whenaggravated, it can lead to kidney failure.UsingCRCandSLE
as two case studies, we show that patient vectors can reveal distinct comor-
bidity patterns. Even within a single phenotype, diverse patterns of comor-
bidities exist. Thus, further evaluation and a personalized care plan are
required to improve healthcare.

In addition to the two mentioned phenotypes above, we also present
the visualizationof otherphenotypes thathave a reasonable sample size.The
interactive website is running on: https://ehrcluster.web.app/. Users can
search for a phenotype of interest and visualize the subgroup clusters.

External evaluation using UW EHR data identified similar
comorbidity patterns and survival differences
To the best of our knowledge, most of the unsupervised patient repre-
sentation learning models are only evaluated internally, without robust
external validation. Here, we collected the EHR data at the University of
Washington (UW) from 2000 to 2020, including n = 840,000 patients as
external sources of validation to assess our model’s validity and robustness.
First, albeit not comparable to the original model performances (Table 1),
the transformer model trained on the eMERGE data still earned a reason-
able performance in sequence recovery tasks running onUWpatients, with
a mean and median precision of 0.862 and 0.903, respectively. The mean
and median recall are 0.852 and 0.896 (Table 3). Next, the performance of
the sentence embedding model has an accuracy of 0.796 ± 0.0023 in the
is_same_patient task and 0.742 ± 0.0042 for the is_next_event task on the
UWdataset. This result is interesting as it is comparable to the performance
on the training set (eMERGE), andwe can conclude that the performance is
ideal for external validation (Table 4). Together, this evidence indicates that
the transformer model excels in patient embedding internally and
demonstrates generalizability with the external UW cohort.

We then evaluated the performance of bulk phenotyping and disease
onset prediction on the UW dataset (Fig. S6). The median AUROC for the
bulk phenotyping task and disease onset task is 0.83 and 0.84, respectively.
We noticed a tiny performance drop in the UW datasets from comparing
these two tasks to the original eMERGE dataset. Still, the performance is
robust and surprisingly stable for an external evaluation (Fig. S6).

Table 2 | Evaluation of the is_same_patient and the
is_next_event performance for the sentence-
embedding model

is_same_patient is_next_event

Accuracy 0.797 ± 0.0016 0.769 ± 0.011

Table 1 | Evaluation of sequence recovery performance

Median Mean

Precision 0.958 (0.90, 1.00) 0.917 ± 0.096

Recall 0.937 (0.875, 0.964) 0.895 ± 0.092
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Besides the model performance, bulk-phenotyping, and onset pre-
diction, more importantly, we also performed the comorbidity analysis to
see if we could re-identify similar disease patterns across distinct groups.We
focused on SLE andCRC and compared the results between theUWcohort

and the eMERGE cohort, aiming to reproduce the findings in the UW
validation cohort. We discovered 4 clusters of CRC in the UW cohort (Fig.
5a). One cluster (cluster 2, the median age of onset = 54.5) that has a rela-
tively younger age of onset is enriched in infectious diseases (HIV infection,

Fig. 2 | Model performance on (a) disease onset prediction and (b) bulk pheno-
typing. Performances on disease onset prediction (a) and bulk phenotyping (b). The
top right shows the boxplot of AUROC, and the bottom shows the relationship

between sample size (positive/negative ratio) and AUPRC. On the right, each
boxplot represents the AUROC distribution categorized by disease class according
to phecodes.
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Fig. 3 | Clustering analysis identified subgroups with distinct comorbidity pat-
terns in colorectal cancer patients (n= 2837) from the eMERGE cohort. a TSNE
plot of patient vectors colored by cluster groups defined using a Gaussian mixture
model (GMM)with optimal Bayesian information criteria (BIC).bBox plot showing
the distribution of age of onset for individual CRC cluster groups. c Comorbidity

pattern enrichment plot grouped by disease classes (in the x-axis) within each cluster
group (represented by color). The y-axis indicates the log odds ratio of the comor-
bidity enrichment. Only statistically significant results are shown (p < 2e−5) after
the Bonferroni correction. Colored texts are used to highlight the top results within
each cluster group.

Table 3 | External validation of the is_same_patient and the
is_next_event performance for the sentence-embedding
model using the UW cohort

Median Mean

Precision 0.903 (0.833,0.946) 0.862 ± 0.129

Recall 0.896 (0.813, 0.938) 0.852 ± 0.128

Table 4 | Evaluation of the is_same_patient and the
is_next_event performance for the sentence-embedding
model using the UW cohort

is_same_patient is_next_event

Accuracy 0.796 ± 0.0023 0.742 ± 0.0042
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Viral hepatitis C, etc.) and a fewmental disorders (Bipolar, Suicidal ideation
or attempt, Mood disorder, etc.), identical to cluster 2 from the eMERGE
cohort (Fig. 5b, c). Cluster 0 (median age of onset = 65, Fig. 5b, c) from the
UW cohort is similar to cluster 3 from the eMERGE cohort (Fig. 3b, c), as
both showed phenotype enrichment in circulatory systems (Atrioven-
tricular block) and endocrine/metabolic diseases. Moreover, cluster 1
(median age of onset = 61, Fig. 5b) from theUWand eMERGEcohorts (Fig.
3b, c) are both enriched in secondary malignant neoplasm, specifically,
cancer of the liver and intrahepatic bile duct. Together, these results pro-
vided compelling evidence that our findings of disease subtypes from the
training cohort (the eMERGE cohort) are stable and can be validated using
the UW cohort externally. Again, analyzing the 10-year overall survival
difference (Fig. 5d), we found cluster 2, enriched in infectious diseases and
mental disorders, showed a significantly lower overall survival probability

than the other 3 clusters. Searching through existing literature, though there
are a few discussions about HIV and colorectal cancer risk, only one report
used a meta-analysis method investigating the mortality rate of CRC
patients with HIV, with non-significant results, partially due to inadequate
samples (n = 194)32. One report also found HIV-infected cancer patients
with elevated mortality rates46. Our findings provide supporting evidence
supporting these research works and demonstrate the potential of unco-
vering new patterns in clinical outcomes among patients. Most current
research often overlooks the impact of comorbidity patterns on outcome
prediction and personalized medicine. Our data indicates that recognizing
these patterns can provide essential insights into patient care and life
expectancy.

In theUWcohort, we identified 4 clusters of SLE enriched for different
comorbidities (Fig. 6a, b). Cluster 2 (median age of onset = 44), likewise,

Fig. 4 | Clustering analysis identified subgroups with distinct comorbidity pat-
terns in systemic lupus erythematosus patients (n= 1806) from the eMERGE
cohort. a TSNE plot of patient vectors colored by cluster groups defined using a
Gaussian mixture model (GMM) with optimal Bayesian information criteria (BIC).
b Box plot showing the distribution of age of onset for individual SLE cluster groups.

c Comorbidity pattern enrichment plot grouped by disease classes (in the x-axis)
within each cluster group (represented by color). The y-axis indicates the log odds
ratio of the comorbidity enrichment. Only statistically significant results are shown
(p < 2e−5) after the Bonferroni correction. Colored texts are used to highlight the
top results within each cluster group.
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Fig. 5 | Clustering analysis identified subgroups with distinct comorbidity pat-
terns in colorectal cancer patients (n= 3312) from theUWcohort. aTSNEplot of
patient vectors colored by cluster groups defined using a Gaussian mixture model
(GMM) with optimal Bayesian Information Criteria (BIC). b Box plot showing the
distribution of age of onset for individual CRC cluster groups. cComorbidity pattern
enrichment plot grouped by disease classes (in the x-axis) within each cluster group

(represented by color). The y-axis indicates the log odds ratio of the comorbidity
enrichment. Only statistically significant results are shown (p < 2e−5) after Bon-
ferroni correction. Colored texts are used to highlight the top results within each
cluster group. d Kaplan–Meier curve showing 10-year overall survival differences
across individual cluster groups.
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Fig. 6 | Clustering analysis identified subgroups with distinct comorbidity pat-
terns in systemic lupus erythematosus patients (n= 2546) from the UW cohort.
a TSNE plot of patient vectors colored by cluster groups defined using Gaussian
mixture model (GMM) with optimal Bayesian Information Criteria (BIC). b Box
plot showing the distribution of age of onset for individual SLE cluster groups.
c Comorbidity pattern enrichment plot grouped by disease classes (in the x-axis)

within each cluster group (represented by color). The y-axis indicates the log odds
ratio of the comorbidity enrichment. Only statistically significant results are shown
(p < 2e−5) after the Bonferroni correction. Colored texts are used to highlight the
top results within each cluster group. dKaplan–Meier curve showing 10-year overall
survival differences across individual cluster groups.
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enriched with pregnancy complications, genitourinary, and a few mental
disorders, has a relatively early onset age and is highly similar to what we
identified in the eMERGE cohort. Cluster 0 (median age of onset = 48, Fig.
6b) is associated with endocrine/metabolic (such as diabetes, overweight,
and obesity, Fig. 6c). Cluster 3 (median age of onset = 56, Fig. 6b) is asso-
ciated with the circulatory system (Atrioventricular block, Cardiac defi-
brillator in situ, Heart failure, etc, Fig. 6c), genitourinary (chronic Kidney
diseases, end-stage renal disease, anemia in chronic kidney disease, etc, Fig.
6c.), and a few neoplasms (malignant neoplasm of bladder, cancer of
bladder). Cluster 1 (median age of onset = 42, Fig. 6b) does not have a
unique pattern of enrichment of comorbidities (Fig. 6c). In short, we
identified 4 clusters of SLE in the UW cohort, with three having distinct
disease patterns. Two cluster groups have identical properties to what we
have found in the eMERGE dataset, including pregnancy-complication-
associated lupus (cluster 2) and renal-associated lupus (cluster 3). Addi-
tionally, with available survival data in theUWcohort, we compared the 10-
year overall survival among different cluster groups (Fig. 6d). Among the
comorbidity groups, cluster 1 showed no comorbidity enrichment and had
the lowest 10-year survival rate.We reason that the low survival ratemay be
partially attributed to a higher proportion of males in cluster 1 compared to
other clusters (odds = 2.54, p = 1.42e−14). This is consistent with previous
reports thatmale SLE patients suffer from a lower life expectancy compared
to females47,48. Then, we noticed that cluster 2 also showed a relatively lower
survival rate than Cluster 3 (FDR = 8.01e−4). This result might imply that
pregnancy-complication-associated lupuspatientsmight needmore follow-
up and on-time treatment to improve their health outcomes and life
expectancy. One national study also found that SLE women have 20-fold
higher maternal death44. Clusters 0 (diabetes-associated SLE) and cluster 3
(renal-associated SLE) showed a better survival status, which also has a
relatively late onset age, potentially representing late-stage SLE, as SLE can
progress into multiple organ-level dysfunctions.

To further illustrate the clustering of comorbidities in survival differ-
ences, we focus on cancers, which are the second leading cause of death and
exhibit high levels of heterogeneity. We apply the GMM clustering frame-
work to demonstrate their survival differences (Fig. S7).

Distinct progression trajectory patterns among cluster groups
We further evaluated the potential of using longitudinal embedding vectors
to study the progression of diseases. We used CRC (phecode = 153) as an
example, including all available patients with 10-year longitudinal data after
a diagnosis of CRC (n = 110). We first performed Principal Components
Analysis (PCA) on the longitudinal vectors, trying to decompose the
changes in disease progression and analyze the variance. We included the
first three PCs which explained 75.6% of the variance (Fig. 7a). Using
analysis of variance (ANOVA), including the age of onset, race, gender, site,
and clusters as covariates, we found that PC1 andPC2are explainedmajorly
by the cluster groupswe identified usingGMM(see session), then the age of
onset, gender, sites, and races (Fig. 7a, b).While PC3 is explainedmainly by
sites (Fig. 7b). This result suggests that the variation in disease progression
longitudinally is also captured by the clusters, indicating that individual
cluster groups also have a different disease progression track, meaning that
the cluster groups we identified capture the disease trajectories. To under-
stand the differences in progression, we then analyzed the emerging phe-
notypes following the onset of the disease, revealing substantial differences
among cluster groups (Fig. 7C). Besides the consistent occurrences of
“Malaise and fatigue” and “Other anemias” across all four clusters, a few
phenotypes were also present in three out of four clusters. These included
“Essential hypertension,” “Gastrointestinal hemorrhage,” “Other symptoms
of the respiratory system,” “Benign neoplasm of the colon,” and “Abdom-
inal pain.”The remaining emerging phenotypes displayed radical variations
across all four clusters, indicatingdistinct progression trajectories and varied
comorbidity patterns. Given the substantial disparities in the progression of
the four clusters,we investigated their disease patternsbefore theonset of the
CRC.Our investigation revealed their initial divergence, as illustrated in Fig.
S8. However, these disparities are not particularly prevalent; the maximum

frequency across all four clusters ismerely 21% (Fig. S8). This frequency can
subsequently escalate to as high as 55%after the onset of thedisease (Fig. 7c).
These findings indicate that disease progression is highly heterogeneous, yet
they reveal noticeable patterns regarding comorbidities. This observation
indicates varying disease risks and underscores the potential for persona-
lized medicine approaches.

Discussion
Mining information from the EHR has become a crucial topic for several
meaningful downstream implementations, such as disease prediction,
patient phenotyping, and personalized medicine14,49. In this work, we
developed a novel patient embedding method using EHR data. We inte-
grated a three-step model architecture to accomplish this complex task and
demonstrated several downstream applications. We evaluated the model's
performance both internally and externally. Although performance on the
external UW EHR data declined, the metrics score (Table 4) remains
satisfactory, experimentally demonstrating the robustness of ourmodel.We
noticed drastic differences in model performance across various lengths of
patient vectors (Fig. S9). This variation is related to the attention mechan-
ism. The attention mechanism is designed for pairwise translation, where a
sentence usually consists of a proper number of words. Therefore, when a
patient sequence sparsely contains very few codes, the model lacks a strong
co-occurrence pattern to recover the original codes.

Several other studies have explored the potential of representation
learning to characterize diseases using the EHR with various machine
learning architectures10,11,13,50,51. Most of these studies use different metrics
and disease annotations, making it challenging to compare the perfor-
mances. However, we did notice a trend of more complicated model
architectures and downstream applications within the development of this
new area, indicating a promising future for EHR representation learning.
Among them, our model used a novel vocabulary embedding strategy to
represent the diagnosis andprocedure codes in the onset frequency domain.
Our model has fewer components—only diagnosis and procedure codes—
yet maintains high computational efficiency while achieving vigorous per-
formance. To our knowledge, we are the first group to utilize a complex
source of EHR data across 12 sites to perform the representation learning,
resulting in a comprehensive and more generalized patient representation
model. Importantly, we appear to be the only group that externally exam-
ined model performance, validating the results and demonstrating repro-
ducibility using an External EHR dataset.

We demonstrated that a simple linear combination of the embedded
features can manage disease onset predictions and bulk phenotyping tasks.
The disease onset prediction itself is not only an evaluation of the embed-
dingbut also sheddingnew light onan automatic prediction tool for the alert
system in the EHR regarding patient risks of future diseases.

In disease comorbidity analysis, we applied cluster algorithms and
detecteddistinct comorbidity patternswithinCRC and SLE.Meanwhile, we
reproduced similar cluster results and revealed distinctions in overall sur-
vival in the UW cohort. In the progression analysis, we demonstrate that
each cluster is linked to distinct phenotype gains. This suggests that the
groups within the cluster are progressively different, indicating that our
model reflects continuous variation rather than capturing a static moment.
Moreover, this unsupervised method is data-driven and thus not limited to
existing knowledge for EHR-based risk prediction and can uncover new
disease patterns andpotentially explain the progressiondifferences of highly
heterogeneous diseases. Further analysis using UW EHR data identified
overall mortality disparities among different cluster groups, paving the way
for further investigation of health outcome variations.

Together, these results suggest that partitioning patients into different
subgroups can reveal discrepancies in disease progression and critical health
outcomes. Although more efforts are needed to understand the complex
comorbidity relationship, implementing an intelligent clinical decision
support system to facilitate personalized medicine is feasible, leveraging the
abundant patient data within the EHR. For instance, when the system
notices that anHIV patient has recently been diagnosedwithCRC, which is
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Fig. 7 | Longitudinal analysis revealed progression differences within each cluster
group in CRC. a Barplot showing ANOVA results of negative log10 P-value of each
variable in the y-axis, explaining variances of PCs in different colors. b Scatterplot
showing the cluster groups in different colors is driven by PC1 and PC2. c Dot plot

indicating phenotype (comorbidity) gain (y-axis) within each cluster after CRC
onset. Color scales are used to indicate the fraction within each cluster obtaining a
new phenotype corresponding to the y-axis.
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an extremely high risk, an early warning can inform the severity of the co-
occurrence of these two phenotypes to facilitate on-time treatment. Thus,
this system can identify urgency and achieve early healthcare to increase life
expectancy. Besides actions in clinical application, identifying comorbidity
patterns within a phenotype might indicate pathological, etiological, beha-
vioral, or environmental similarities between co-occurring phenotypes.
These comorbidity patterns can facilitate fundamental scientific advances in
identifying molecular signatures of diseases and thus help us better
understand the mechanisms.

Our model has a few notable limitations. First, our model only
included diagnosis and procedure codes as embedding building blocks,
lacking medications, labs, observations, and clinical notes due to the lim-
itation of data sources. Without these variables, our model might lose
certain meaningful information and limit the downstream analysis on
medications, labs, etc. Besides, we used phecodes as surrogate phenotypes.
Though phecodes have demonstrated their efficiency in large-scale EHR-
based genetic studies, they lack granularity andmay not be an appropriate
use for some complicated phenotypes, such as depression52. Moreover,
misdiagnosis is common in the EHR, which can cause potential issues that
lead to deteriorated embedding qualities. A few studies have suggested
diagnostic errors that impact timely healthcare, which in our case can lead
to a misrepresentation of patients and a failure to capture meaningful
patterns53,54. Finally, our patient data drawn from the eMERGEconsortium
might contain potential ascertainment bias during patient recruitment,
meaning that there might be population structures that do not represent
the general population of the United States. However, on the other hand,
with only diagnosis and procedure codes available, our model still
demonstrated great performance in several downstream analyses, such as
bulk phenotyping, disease forecasting, comorbidity pattern study, and
progression analysis. This is not surprising, as diagnoses and procedures
are the most crucial information within the EHR for many downstream
tasks. Although phecodes are new and still in development, there is evi-
dence that phecodes can reproduce genetic findings and serve as a great
proxy for phenotypes. To adjust for the potential biases caused by indi-
vidual sites, we always included sites as covariates in our statistical analysis.
Most importantly, we demonstrated the external validity of our model
using the UW dataset and showcased the robustness of our performance
with experimentally reproduced stable disease patterns, which were
invariant across different cohorts.

In summary, our study developed a novel architecture for modeling
patient learning using EHR data, highlighting the effectiveness of bulk phe-
notyping, disease forecasting, and variations in comorbidities. More impor-
tantly, we demonstrated that the disease trajectory differs within each cluster,
providing insights for studying disease progression to understand its etiology
and pathology. Future works may consider two directions among others.
First, integrating additional data sources such as laboratory results, medica-
tions, and vital signs into the currentmodel could enhance performance and
enable more complex downstream analyses focused on health outcomes.
Second, conducting detailed subgroup characterizations—such as applying
topic modeling to patient data and analyzing complex clinical outcomes—
could further refine our understanding of disease dynamics25,55,56.

Methods
Data
EHR data from the eMERGENetwork (n = 102,740) were used to train and
develop the patient embeddingmodels. These included basic demographics
(birth decade, gender, race, and ethnicity), patient diagnosis codes (ICD-10
and ICD-9), procedure codes (CPT-4), and age at diagnosis. We included a
basic demographics summary of the eMERGE data in Supplementary
Tables 1 and 2. The UW EHR data (n = 840,000) served as a validation set.
Besides the same data elements mentioned above (birth decade, gender,
race, ethnicity, diagnoses, and procedures), UW included overall mortality
data, which is then used to evaluate the survival differences among clusters.
A basic demographics summary of the UW data is in Supplementary
Table 2.

IRB
This study is approved by the IRB STUDY00015886: Generalizability
Assessmentof the eMERGEstudyon theUniversity ofWashingtonMedical
Center Population. All data extracted from the University ofWashington is
under this IRB approval and stored on a HIPAA-compliant server.

Autoencoder model structure
We collected all available codes, including ICD-9, ICD-10, and procedure
codes. To ensure the quality of embedding, we kept all codes that appeared
more than five times in the entire dataset, resulting in 34,851 unique codes.
We used the week as a time interval unit and counted the number of
appearances of each code across 0–4320 weeks, which equals 90 years. This
produced a 34,851 × 4320-dimensional matrix, with each unique code
represented by a vector of length 4320, and in the autoencoder model, this
served as a feature for each code. The autoencoder model architecture is
illustrated in Fig. 1a. The goal of thismodel is to condense the representation
of the codes, producing a 34,851 × 50-dimensionalmatrix, where each code
vector length is reduced from 4320 to 50. The non-linear functions in the
autoencoder can identify complex patterns among the codes. In addition to
using the traditional reconstruction error to train the model, we incorpo-
rated a cosine similarity loss function to maintain certain linear correlation
properties among the codes.Moreover, the embedded layer contains amean
and standard deviation parameter, making this a variational autoencoder.
We experimented with several different hyperparameters and selected the
model with three layers that demonstrated the best performance, particu-
larly in reconstruction loss and KL loss, to ensure that sampling closely
resembles the original data (Supplementary Table 3).We trained thismodel
usingAdamoptimizer57withdefault parametersof beta1 andbeta2, learning
rate 1e−7, and batch size of 64 (Fig. S1, left). During the training, 5% of the
training data is split and used as a validation set to evaluate the loss. The
model is trained for 100 epochs, reaching a steady reconstruction loss and
similarity loss. The embedded50-dimensional codes serve as vocabularies in
the transformer model to construct patient vectors.

Transformer models structure
We utilize the transformer model, incorporating an attention mechanism
to create patient vectors26,27. Our model employs a standard transformer
model architecture (Fig. S1, middle), except that we did not include the
positional embeddings for each code. As diagnoses do not always indicate
the exact time of disease onset. It only denotes the starting point of
potential treatment and systemic awareness of the presence of diseases, as
many chronic diseases indeedhappenway earlier than a hospital diagnosis.
Thus, all events documented in the hospital within a specific year do not
suggest the absolute sequential relationship in real life. Therefore, we
aggregated all patient codes occurring within a year sequentially into a
single vector, without requiring specific positional encoding for the codes
within that year. The distribution of codes and patient longitudinal data is
included in Supplementary Figure 2. After testing several setups with
various hyperparameters, we selected L = 6,H = 10, dff = 2048, and d = 50
as they yielded the best results (Supplementary Table 4). The pre-trained
embeddings of codes from the autoencoder serve as vocabularies. In the
preprocessing step, we bin each patient’s codes by year, and for each year,
we create a vector of codes to represent the temporal patient vector. The
maximum vector length is set to be 250, considering that in one year, most
patients should receive <250 codes from the hospital. For all 102,740
available patients, only 0.25% havemore than 250 codes in a year, which is
rare and likely only occurs in extremely severe cases. For patients having
codes <250, we apply zero padding to the sequence andmark it as a special
padding token. In total, there are 1,046,649 patient vectors for 102,740
patients. The goal of this transformer model is to use the current year’s
codes to predict the future year’s codes, therefore, learning the relationship
and progression longitudinally. Thus, we fit longitudinal patient event
codes at year i as input, and the patient events at year i+ 1 as output.
During the training process, we masked 20% of the codes in each vector
and let the model reconstruct the full sequence of vectors. We trained this
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model with Adam optimizer with beta1 = 0.9, beta2 = 0.98, epsilon = 1e
−9, and a scheduled learning rate that gradually decreased to 0.002 at step
10,000. The batch size is set to 32, reducing the computationmemory load.
Again, 5% of the data is split and used as validation to evaluate the loss
during the training.

Sentence model structure and training detail
Inspired by the sentence embedding method58, we build a similar model
architecture that takes two patients as input and gives two binary outputs.
The first binary output indicates whether the two vectors of patients belong
to the same patient (is_same_patient task). The second one assesses if one
vector is the subsequent event of another vector (is_next_event task). We
first use the global averagepool of the embedding layer fromthe transformer
model to represent patients as numerical vectors (Fig. S1, right). We then
added a feed-forward structure of a pre-embedding layer and a 50-
dimensional embedding layer to compute the complex interactions of the
embedded sequence (Fig. S1, right). We use two different loss functions to
optimize the two tasks mentioned above. The goal of the is_same_patient
task is to minimize the mean square distance between two 50-dimensional
embedded vectors, as an evaluation of the vector distance in geometric
space. While the is_next_event task is optimized by a 2-layer feed-forward
neural network constructed by concatenating the embedding of two vectors,
this approach facilitates the learning of complicated relationships between
two vectors. We only used two layers of feed-forward structure to avoid
overfitting and to ensure it learned meaningful functions according to the
theory that two layers of neural networks can simulate any form of con-
tinuous function59. We also found that there is limited performance
improvement (only seen in is_next_event tasks) when having more layers
(SupplementaryTable 5). During the training, we randomly formed pairs of
patient vectors as input and trained until saturation (no loss decrease). We
found the model performance peaked at 5000 steps during training with a
learning rate of 3e−4.

Mapping of diagnosis code to phecodes
Themappingbetween ICD9and ICD10diagnosis codes tophecodes is done
by referencing the PheWASwebsite https://phewascatalog.org/ through the
phecodesmapping panel, counting at least one presence of a diagnosis code
as a qualifying phenotype.

Converting patient-year embeddings into patient embeddings
The patient-yearly embeddings (or longitudinal embeddings) are con-
catenated into patient embeddings by simply taking the average. This
approach represents the sumof all patients’ yearly embedding vectors into a
single vector that represents the current patient status, with normalization
by the number of steps (the total number of vectors). For example, for a
patient k, we sumall the year-embeddings from t = 1 to t = n, thenwe divide
the sumby the number of stepsn to get themean vector, which is the patient
embedding vector.

Mean vectork ¼
P

t¼1;...npatient vector
t
k

n
ð1Þ

Disease onset prediction and bulk phenotyping
Both disease onset prediction and bulk phenotyping are classification tasks
in this work. In the disease onset prediction, for each phenotype, we col-
lected all longitudinal vectors of patients and split them into before the
onset versus after the onset group. The “before onset” longitudinal vectors
comprise all patient longitudinal embeddings from one year before the
onset age of a given phenotype. The “after onset” group includes patient
longitudinal embeddings from the year of onset and subsequent years for
that phenotype. We then used the longitudinal vectors to build a logistic
regression classifier to perform classification tasks for the two groups of
vectors. For example, for each disease i, for j in 1…50, xj represents
numerical features drawn from the embedding (embedding size of 50), the

logistic regression prediction whether the disease i is already presented in
the longitudinal vector or not:

onseti ¼
1

1þ eΣ�βjxj
ð2Þ

Bulk phenotyping is less complicated. For each phenotype
(phenotypei), we computed the mean of vectors (meanVectork) across all
time point (twithin individual patients (patientk), resulting in a single vector
for each patient (as oftentimes referenced as patient embedding).

Logistic regressionmodelswere then applied to these vectors to discern
whether patients exhibit a specific phenotype or not, as defined byphecodes.

phenotypei ¼
1

1þ eΣ�βjxj
ð3Þ

Regarding both disease onset prediction and bulk-phenotyping, for
each phenotype, we used 80% of the sample for training and evaluated the
model performance on the 20% unseen data.

Comorbidity cluster analysis
Weperformed comorbidity analysis within a single phenotype to reflect the
heterogeneity. The Gaussian mixture model is used to first group samples
into clusters. We chose the number of clusters based on the Bayesian
information criteria (BIC). Then, within individual clusters, we performed
logistic regression for each comorbidity (defined by phecodes), including
the cluster (using one versus the rest), age of onset, sites, gender, ethnicity,
and race as covariates to predict the comorbidity. e.g.

phenotypei ¼
1

1þ eβ0þβ1ageþβ2sexþβ3sitesþβ4genderþβ5ethnicityþβ6cluster
ð4Þ

Adjusting for multiple tests (n = 1855 comorbidities), we used
Benjamini–Hochberg adjusted p-values < 2e−5 as the significance level.

Model evaluation
We evaluated the external performance of the model on both the
eMERGE dataset (internal) and the UW EHR data (external). As
described in the model architecture session, there are 1,046,649 patient
vectors for 102,740 patients for the eMERGE dataset. Externally, we
pulled available de-identified UWEHR data from the year 2000 to 2020,
including n = 840,000 patients.We evaluated the transformermodel and
the patient-vector model output. For eMERGE data, we randomly
selected 32,000 events (1000 steps with batch size 32) for the evaluation
task. For UW data, the evaluation of the transformer model utilized
randomly drawn 5000 patients, consisting of n = 66,776 events in total.
The goal was to investigate the ability of the model to reconstruct the
original codes given the patient vector. Performance for the eMERGE
dataset is included in the “Results” section andTable 1. The performance
for the UW dataset is shown in Table 3. The S-BERT model evaluation
used 500 randomly drawn patients in 5 iterations (100 randomly drawn
patients in each iteration), consisting of 34,633 and 29,587 events for
eMERGE (Table 2) and UW datasets (Table 4), respectively. Note that
the evaluation process is based on the number of events, not the number
of patients. Thus, though the number of patients is relatively small
compared to the total sample size, the number of events already reflects
consistent and robust performance. Moreover, the summary statistics of
the evaluation metrics demonstrated extremely low variance, suggesting
robustness against large numbers of patients.

Benchmarking disease onset prediction
We performed benchmarking against two previous models, Deep Patient
and BEHRT. To our knowledge, Deep Patient is one of the initial patient
embeddings in the early field that achieved greater performance than the
traditional matrix decomposition method in future disease prediction.
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BEHRT is the state-of-the-art model built upon the BERT model in pre-
dicting future diseases30. We trained the Deep Patient model and the
BEHRT model based on the proposed model architecture and hyper-
parameters reported in their original paper until they converged. We
benchmarked our model (PatientEmbedding) and the transformer model
(PatientEmbedding model without S-BERT fine-tuning) against these
other models. To compare embedding quality and benchmark results, we
extracted embeddings from eachmodel and applied logistic regression (as
described in the “Disease onset prediction” section) to predict future dis-
ease onset. For BEHRT, a contextual model with six embedding layers, we
used the last layer, as it is commonly regarded as themost effective layer for
downstream tasks. All models were trained on the eMERGE dataset and
evaluated on an unseen dataset (UW EHR), ensuring robust performance
validation. The detailed results are shown in Supplementary Table 6.
Among the four models, BEHRT achieved the best performance. Our
transformer model (without fine-tuning with S-BERT) achieved close
results, with 0.022 lower median AUROC and 0.012 lower meanAUROC.
Although BEHRT achieved a slightly better performance than the
PatientEmbedding model, we reason that the PatientEmbedding model
after S-BERT fine-tuning is optimal for downstream tasks, such as het-
erogeneity analysis. The outstanding and stable performance on
heterogeneity analysis could be due to the tuning of the
PatientEmbedding model.

Longitudinal comorbidity analysis
For each patient, the longitudinal vectors after the disease onset are col-
lected. We used 10 years as the endpoint of disease progression, meaning
that we collected 10 longitudinal vectors for each available patient (n = 110),
using CRC as an example. We again computed the average of the vectors
within individual patients and used them to perform the PCA (Fig. 7b).We
defined the occurrence of phenotypes as phenotypes that only occur after
the onset of diseases, which did not exist before the disease onset. The new
phenotypes were first counted and then normalized by the number of
patients within each cluster, represented as frequency.We then selected the
top 15 phenotypes within each cluster and represented them in the plot
(Fig. 7c).

Software versions and code availability
The patient embedding model is implemented through tensorflow version
2.3.0, and the high-level API tensorflow.keras, version 2.4.0. Models were
trained using an NVIDIA 2060-Super GPU with 8 GB RAM. The code for
running themodel and synthetic data is available at theGitHub repo https://
github.com/suxian06/language-model-based-patient-embedding/tree/
main. Data analysis using TSNE, PCA, GMM, and BIC was implemented
through the scikit-learn version package 0.24.2 in Python. Logistic regres-
sion and analysis of variance (ANOVA) were implemented using stats-
models, version 0.12.2. Plots were generated usingMatplotlib version 3.4.3,
Seaborn 0.11.2. The online interactive charts were generated using Altair
version 5.0.1. Survival analyses (Kaplan–Meier plot and Log-rank test) were
performedusing the scikit-survival packages in Python, version 0.14.0. Log-
rank test used in differentiating the subgroup survival was also based on the
scikit-survival package (compare_survival function). Standardization,
numerical operations, and data cleaning are done with numpy version
1.23.0 and scipy version 1.6.2.

Data availability
The data used for this study are available upon request at the eMERGE
Network.

Code availability
Code to reproduce the results is posted on the GitHub page: https://github.
com/suxian06/language-model-based-patient-embedding/tree/main.
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