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Optimizing long term disease prevention
with reinforcement learning: a framework
for precision lipid control
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The prevention of chronic disease is a long-term combat with continual fine-tuning to adapt to the
course of disease. Without comprehensive insights, prescriptions may prioritize short-term gains but
deviate from trajectories toward long-term survival. Here we introduce Duramax, an evidence-based
framework empowered by reinforcement learning to optimize long-term preventive strategies.
Duramax learned from real-world treatment trajectories involving over 200 lipid-modifying drugs
across more than 3.6 million months, becoming specialized in cardiovascular disease (CVD)
prevention. Duramax demonstrated a superior performance in model validation using an independent
cohort encompassing over 29.7 million treatment months. Specifically, Duramax achieved policy
value of 93, outperforming clinicians with value of 68. When clinicians’ decisions aligned with
Duramax’s suggestions, CVD risk reduced by 6%. Moreover, post hoc analysis confirmed that
Duramax’s decisions were transparent and reasonable. Our research showcases how tailored
computational analysis on well-curated health records can achieve high nuance in personalized
disease prevention.

Early prevention is one of themost effective and cost-efficient approaches to
reducing the global disease burden1. Effective prevention typically involves
two steps: identifying patients who require preventive measures and indi-
vidualizing follow-up preventive strategies for these patients2. With
advancements in artificial intelligence (AI) for healthcare, numerous
prognostic tools have been developed, offering higher accuracy and
adaptability3. These tools have been extensively used to assist in identifying
patients at elevated risk for early prevention4. However, there has been
limited progress to assist the subsequent step, i.e., individualizing long-term
dynamic preventive strategies.

Cardiovascular disease (CVD), the leading cause of global mortality1,
underscores the critical need for precision in long-term preventive care.

Amongmodifiable risk factors, dyslipidemia stands out as a primary target,
with lipid-modifying drugs (LMDs) forming the cornerstone of evidence-
based CVD prevention5. Clinical guidelines6–8 recommend personalized
lipid control strategies to achieve risk-specific targets, yet a persistent gap
remains: while prognostic tools4,9–13 effectively identify high-risk patients,
clinicians lack robust decision-support systems to dynamically optimize
LMD regimens over years or decades of care. This gap contributes to
widespread variability in real-world practice14, where static protocols and
delayed adjustments often fail to account for individual patient trajectories,
resulting in suboptimal lipid control and preventable CVD events15.

Reinforcement learning (RL)16, a branch of AI that learns sequential
decision-making policies by maximizing future rewards17, offers a
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transformative solution to this challenge. In recent years, RL has already
shown strength in several healthcare scenarios18–20, particularly in the
optimization of patient outcome in the short-term, such as in inpatients21

and intensive care units22 settings.AlthoughRLhas demonstrated success in
short-term healthcare tasks, its application to chronic disease management
(e.g., long-term lipid control) remains limited. In lipid control, RL could
enable adaptive dose titration, drug selection, and timing adjustments based
on evolving patient factors—such as lipid response variability and comor-
bidities—that are poorly addressed by current guideline-driven protocols.
However, deploying RL for long-term prevention requires overcoming key
barriers: (1) modeling delayed rewards (e.g., avoiding a CVD event decades
later), (2) ensuring safety in high-stakes, irreversible decisions (e.g., esca-
lating statin doses), and (3) aligning recommendations with clinical inter-
pretability and local practice constraints.

WepresentDuramax, aRL frameworkdesigned to optimize long-term
lipid-modifying therapy for CVD prevention. Trained on granular real-
world data from millions of patients—spanning 20 years of serial lipid
measurements, drug titration sequences, and CVD outcomes—Duramax
addresses a critical gap in current care: the inability of static protocols to
adapt therapies to individual trajectories of lipid response, comorbidities,
and treatment tolerance. By modeling the delayed impact of each ther-
apeutic decision on long-term CVD risk, Duramax learns dynamic dosing
policies that proactively balance three competing priorities: (1) achieving
risk-specific lipid targets, (2) minimizing short-term harms (e.g., avoid
unnecessary prescriptions) and long-term risk, and (3) aligning with
guideline-recommended escalation hierarchies. Unlike traditional rule-
based systems, Duramax embeds physiological realism through a
mechanistic model of LDL-C metabolism, enabling interpretable predic-
tions of how various LMDs alter lipid dynamics. In validation against real-
world clinician decisions, Duramax demonstrates not only superior CVD
risk reduction but also interpretable decision logic, bridging the gapbetween
AI-driven precision and real-world clinical utility.

Results
Dataset preparation
Our study leveraged the data source provided by the Hong Kong Hospital
Authority (HA), the largest public healthcare provider responsible for
capturing over 70% of all hospitalizations in Hong Kong for more than two
decades23. The HA also provides outpatient services in primary, secondary,
and tertiary settings. All medical records were linked with an anonymized
unique patient identifier. We collected patient disease diagnoses, prescrip-
tion records, clinical lab tests, andhealthcare utilizationdata from theperiod
spanning 2004 to 2019. From a pool of around one and a half million
patients under primary prevention of CVD since 2024, we selected around
one-third of patient trajectories with high completeness of lipid test and
LMD prescription records. The inclusion and exclusion criteria are in
Methods and Supplementary Fig. 1. Specifically, the development cohort
comprised 62,870 patients fromHongKong Island, encompassing a total of
3,637,962 treatmentmonths.Within this cohort, we identified 214 different
types of lipid-modifying drugs and combinations, providing a rich selection
pool for the RL agent to potentially choose from (Fig. 1a). Furthermore, the
validation cohort consisted of 454,361 patients from Kowloon and New
Territories, covering a total of 29,758,939 treatment months (Fig. 1d). The
patient demographics and clinical characteristics are in Supplementary
Table 1. This curation, to the best of our knowledge, represents one of the
largest and the most comprehensive data sources to investigate LMD
effectiveness in the primary prevention of CVD.

Modeling lipid dynamics
Developing a reliable RL agent for LMD prescriptions requires a compre-
hensive understanding of the complex lipid dynamics associated with dif-
ferent LMD use in real-world clinical settings. To fill this gap, we present a
systematic analysis conducted on our development cohort. There are two
primary objectives: 1) identify patterns and factors driving changes in lipid
profiles, leading to a rational framework to represent complex patient

trajectories observed in clinical practice, and 2) assess the long-term real-
world efficacy of different LMD types, providing evidence that can guide
treatment decisions for clinicians and the RL agent alike.

First, we analyzed the LDL-Cdynamicsover time (Fig. 2a).Onaverage,
patients onLMDtreatment experienced an initial sharp reduction inLDL-C
levels, with the median decreasing from 3.2mmol/L to 2.2 mmol/L. Sub-
sequently, a stable and gradual reduction ratewas observed to helpmaintain
consistently lowLDL-C levels, resulting in amedianLDL-C levelof 2mmol/
L after a 60-month follow-up period. Patients not currently taking LMD(no
LMDor stop LMD) showed a gradual reduction in LDL-C levels over time,
with the median LDL-C level decreasing from approximately 3mmol/L at
the first visit to 2.8mmol/L after a 60-month follow-up. This may be
attributed to lifestyle modifications implemented during regular lipid test-
ing. Consequently, we defined four distinct treatment categories between
lipid tests: no LMD, initiate LMD, continue LMD, and stop LMD (details
elaborated in Methods). The distribution of follow-up interval lengths also
varied significantly among the four treatment categories (Fig. 2b). For
patients who initiated LMD treatment, the next follow-up visit of lipid test
had amedian interval of 4months. In contrast, patients not prescribed with
LMD had a median follow-up interval of 12 months. This suggests that
clinicians prioritize monitoring for patients starting LMD to assess the
effectiveness whilst those who were not prescribed LMD were likely con-
sidered to have a lower CVD risk and require less frequent monitoring.
These observations further distinguished the four treatment categories,
where the variability in follow-up times indicates distinct clinical practices. It
also highlights the importance of aligning our proposed RL agent with the
clinician and healthcare system practice regarding follow-up intervals in
real-world settings.

We further analyzed the effectiveness of commonly used first line and
second line LMDs in reducing LDL-C levels in terms of different treatment
categories. Besides, we examined the relative reduction separately for dif-
ferent ranges of baseline LDL-C levels, aligning with the clinical guideline
thresholds. Detailed results can be found in Fig. 2c, d. It was confirmed that
high-potency LMDs (e.g., rosuvastatin 10–20mg and atorvastatin 40mg)
tend to yield a higher relative reduction compared to low-potency LMDs24.
Interestingly, patients with higher baseline LDL-C levels generally experi-
enced a higher reduction rate from LMD treatment, particularly
when initiating therapy. Notably, even with low-potency LMDs (e.g.,
simvastatin 10–20 mg), patients with elevated baseline LDL-C levels
achieved significant reductions. For instance, patients with baseline
LDL-C levels as high as 5 mmol/L who initiated treatment with a
lowest potency LMD, simvastatin 10 mg, can achieve an LDL-C level
of approximately 2.8 mmol/L, which is considered acceptable for
patients with modest baseline CVD risk. Conversely, patients with
lower baseline LDL-C levels tended to have lower reduction rates
from LMDs, particularly during drug continuation. For instance, in
cases where patients had already received LMD treatment and
achieved considerable LDL-C reduction, individuals with a higher
baseline CVD risk may require further reductions. High-potency
LMDs, particularly rosuvastatin 10 mg, demonstrated effectiveness in
these scenarios.

In summary, we observed that the use of LMD exhibited two distinct
phases in LDL-C reduction: drug initiation and continuation. This obser-
vation motivated us to distinguish four treatment categories which capture
the complexity of different patient trajectories. These treatment categories
exhibited unique follow-up times and patterns of LDL-C reduction, indi-
cating that they are independent drivers of patients’ lipid responses in
addition to the efficacy of different LMDs. Apart from all the factors
investigated, it was also important to treat patients’ baseline CVD
risk as a separate factor from LDL-C levels when personalizing real-
world prescriptions. Consequently, for the rational design of a RL
agent for LMD prescription, it becomes essential to address two key
considerations: 1) informing the agent about the patient’s prior LMD
usage, and 2) enabling the agent to comprehend the patient’s baseline
CVD risk.
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Model design
Long-termCVDprevention can be abstracted as aMarkov decision process
(MDP) framework17,25. The goal is to develop a digital prescription guideline
(policy) that recommends LMDs (actions) based on individual risk profiles
(states). The objective is to continuously reassess these risk profiles and

adapt the recommendations over time (sequential decision-making),
aiming to minimize the long-term risk of CVD occurrence while
avoiding too high a dose of LMDs to prevent dose-related adverse
effects (rewards and penalties). We use RL to solve the formulated
MDP. Starting from a random policy, The RL agent iteratives its
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Fig. 1 | Overview of the study. a Initially, a time series dataset of approximately 3.6
million treatment months was prepared for model development, encompassing an
action space of 214 different types of lipid-modifying drugs (LMDs) and LMD
combinations. b Feature selection identified 10 key risk factors with quantified
hazard ratios (HR) on cardiovascular disease (CVD) occurrence, which were inte-
grated to represent patient states in a risk-based manner. c The reward function
penalizes unnecessary LMD treatments and final CVD occurrences, facilitating
unconstrained exploration of optimal solution paths. Patient states, actions, and
rewards were organized into transition matrix and fed into the reinforcement

learning (RL) agent. Policy iteration, an offline model-based RL algorithm based on
dynamic programming (DP), was chosen for its interpretability, stability, and
guaranteed convergence to optimal solutions, making it particularly advantageous
for high-risk applications like medicine. d The RL agent was then validated using an
independent cohort comprising approximately 30 million treatment months from
0.4million patients. Validation results indicated that the RL agent exhibited superior
performance compared to clinicians, with lower CVD risk observed as clinicians’
actions aligned more closely with the RL agent’s suggested actions.
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policy by exploring if adjustments in the prescription strategies
(action-state designations) can yield a better policy with higher
expected rewards. The detailed settings of the MDP are illustrated in
the Methods section.

Ideally, the MDP should succinctly capture the dynamics of patient
responseswhile preserving the interpretability in each of its components. To
this end, we presented patient state in a risk-based manner, where the
contribution of each risk factor was explicitly quantized in the state number

c ea

b d f

g

h

No
LMD

Initiate
SIMV 10

Continue
ATOR 20

Stop
LMD

90 135 130 + 200 100 + 200

12
mo

9m
o

8m
o

4mo

State

RL action

Distinguish risk states from prior LMD influence

Follow up time

Fig. 2 | Analysis of lipid dynamics shaped RL environment design. Patients’ prior
LMD usage had impact on future treatment effect on LDL-C reduction. As a result,
the RL environment design distinguished four treatment categories: no LMD, stop
LMD, continue LMD, and initiation of LMD. a The estimation of the LDL-C
dynamics on three distinct scenarios: 1) patients who did not receive any LMD
treatment (no LMD), 2) patients who initiated and continued LMD treatment (on
LMD), and 3) patients who discontinued LMD treatment (stop LMD). Specifically,
we selected patient trajectories that consistently followed the same actions during
consecutive LDL-C tests over a period of up to 60 months. We calculated the
populationmedian of LDL-C levels for each quarter of observation time. The shaded
area represents the standard error of the mean. b Distribution of treatment period
duration across different treatment categories. The central line and the value indicate
the median. The bottom and top edges of the box indicate the 25th and 75th per-
centiles, respectively. The whiskers extend to 1.5 times the interquartile range.
c, dMedian relative reduction of LDL-C based on different original LDL-C ranges,

the most common 9 LMD types, and different treatment categories. Thicker shades
of blue indicate a higher reduction rate, while thicker shades of orange indicate a
higher increase rate. LDL-C levels were classified into six groups as indicated on the
x-axis. “NA” indicates not applicable due to the absence of data points in that
category. e–gMean one-year CVD risk, mean LDL-C, and number of states across
different risk states and different treatment categories. h Schematic illustration of the
RL environment design. State numbers range from 0 to 199, representing risk states
calculated for patients who had not taken LMDs before. After LMD initiation, state
numbers are the original risk states plus 200, differentiating risk states influenced by
prior LMD usage. Follow-up times were determined based on RL-suggested actions,
using the median treatment period duration specific to each treatment category in
(b). SIMV 10 simvastatin 10 mg. SIMV 20 simvastatin 20 mg. SIMV 40 simvastatin
40 mg. ATOR 10 atorvastatin 10 mg. ATOR 20 atorvastatin 20 mg. ATOR 40
atorvastatin 40 mg. ROSU 10 rosuvastatin 10 mg. ROSU 20 rosuvastatin 20 mg.
EZET 10 ezetimibe 10 mg.
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(Fig. 1b, details in Supplementary Fig. 2 andMethods). In such way, patient
state served as a reliable indicator of CVD risk for both states with prior
LMD usage and those without (Fig. 2e). Conversely, although patients on
LMD generally had higher risk (Fig. 2g), these patients did not exhibit
positive association between LDL-C and state compared to patients not on
LMD (Fig. 2f). This observation further supported that drug continuation
generally had lower LDL-C reduction rate (Fig. 2a), which motivated us to
encapsulate the original risk-based patient state with the additional infor-
mation of prior LMD usage (details in Methods). Such a design also dis-
tinguishes four treatment types (noLMD, initiate LMD, continueLMD, and
stop LMD) in the action space that we previously confirmed essential. The
resulting patient trajectory with sequences of successive states and actions is
illustrated in Fig. 2h.

The primary objective of CVD prevention is to promote effective
prevention while minimizing unnecessary treatments. We translated this
objective into the design of our reward function. Specifically, patients either
receive ahighpenalty if they experience aCVDeventwithin a year or receive
a high reward if they remain event-free in the final state. Additionally, small
penalties are imposed for each LMD taken (Fig. 1c). This design allows for

comprehensive control over the ultimate outcome and internal side effects,
without imposing excessive constraints, and eventually empowers the RL
agent to explore the optimal solution paths to a full extent. More details
about the reward function design can be found at Methods.

We employed policy iteration22,26, an offline, model-based, and dynamic
programming (DP) RL method. For healthcare settings, offline RL is
required as it can be trained exclusively from historical data27, eliminating the
need for real-time exploration of random prescriptions on patients required
by online RL algorithms. Furthermore, in contrast to model-free techniques,
model-basedmethods can offer the rationale behind prescriptions28, a feature
highly valued by clinicians for ensuring safety21. Additionally, the guaranteed
convergence to optimal solutions inherent in DP methods renders them
particularly advantageous for high-risk applications like medicine. We
trained the RL agent and named it Duramax and described with details
about the setting and training of the RL algorithm in Methods.

Interpretation of the RL policy
We summarized the logic that Duramax (the RL agent) recommended
patient treatments using data from the development cohort (Fig. 3).

b ca

Fig. 3 | The RL agent policy demonstrated a comprehensive perspective on risk
profile in specifying LMDs for patients compared to the clinician policy. a The
population median values for continuous risk factors and event rates for dichot-
omized risk factors, (b) the distribution of state number in violin plots, and (c) the
proportion of the target patients for whom the RL agent and clinicianmade different
prescription choices. The treatments on the y-axis are sorted based on the median of
the risk clusters in the RL agent policy. The medians in the violin plots are indicated

by grey dots. LDL-C low-density lipoprotein cholesterol. HDL-C high-density
lipoprotein cholesterol. DM diabetes mellitus. AE Accident and emergency visits
within the last one year. Total Rx concurrent medication records the number of
drugs prescribed within one month. CKD chronic kidney disease. AF atrial fibril-
lation. HTN hypertension. GEMF 300 gemfibrozil 300 mg. GEMF 600 gemfibrozil
600 mg. GEMF 300 and GEMF 600 were prescribed twice a day.
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Duramax primarily recommended three types of actions for initiating LMD
therapy: simvastatin 10mg, simvastatin 20mg, or no initiation of LMDs if
the patient’s risk is deemed modest by Duramax. For follow-up treatment
decisions, Duramax suggested a wider range of options and higher intensity
of LMDs based on patient state, including simvastatin 10–40mg, atorvas-
tatin 10–20mg, and rosuvastatin 10mg. Duramax also suggested to dis-
continue treatment if it feels safe about the patient’s current risk profile.
Interestingly, gemfibrozil 300–600mg was frequently suggested by
Duramax.

One major advantage of model-based RL is the transparent decision-
making process.We visualized the decision-making process and plotted the
average decision threshold that influenced the agent’s choices (Fig. 3a).
Comparisons weremade between theDuramax’s decisions and thosemade
by clinicians, considering population median and event rates. In summary,
Duramax demonstrated higher specificity and a more comprehensive
perspective on patient risk profiles compared to clinician decisions in pre-
scribing LMDs. The clinician’s treatment decision primarily relied on LDL-
C levels, whereasDuramax considered ten risk factors, resulting in a grading
relationship among them. This comprehensive evaluation allowed Dur-
amax to exhibit better specificity for patients with different states, and CVD
risk alike (Fig. 3b). Consequently, the target patient group differed in clin-
ician policy and the RL policy (Fig. 3c).

The RL agent suggested initiating treatment with lower-potency sta-
tins, such as simvastatin 10-20mg, aligning with our previous conclusion

that even low-potency statins can have good treatment effect when initiated
(Fig. 2c). For patients in themodel development cohort being considered of
whether initiating LMD therapy or not, only 4% of patients received pre-
scription fromclinicians,whileDuramax suggested that 48%of themshould
initiate.However, the lowproportionof actual statin takersmight stem from
patient concerns regarding side effects. Regarding LMD continuation,
atorvastatin 10–20mg was more frequently prescribed by Duramax (44%)
compared to the clinician policy (13%), whereas simvastatin 10–20mg was
less commonly prescribed by Duramax (28% vs. 54%). Notably, fibrates
were used more frequently for very high-risk patients as suggested by
Duramax (10% vs. 5%), with a highermedian risk state of 189 compared to
148 in the clinician policy. The RL agent’s rationale behind these recom-
mendationsmaybe attributed to themultiple comorbidities present inhigh-
risk patients and the limited room for further LDL reduction given their
already low LDL-C levels. In this context, incorporating HDL-C may be a
sensible approach.

Model validation
We conducted model validation using an independent large-scale time
series dataset from the Kowloon and New Territories cohort, comprising
half a million patients and spanning 30 million treatment months with 3
million intermediate states. The validation results, illustrated in Fig. 1d and
further elaborated in Fig. 4, exhibited excellent performance of the model.
Specifically, Duramax exhibits superior accuracy in prescribing specific
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Stop
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c ea

b d f

Fig. 4 | Model validation. The RL agent demonstrated superior accuracy in pre-
scribing specific lipid-modifying drugs (LMDs) and determining the optimal time to
initiate LMDs or stop LMDs. a The RL agent’s policy value exceeded the clinician’s
policy as estimated by importance sampling. The clinician policy value was repre-
sented by the 95% upper bound, while the RL policy, random LMD policy, and no
LMD policy were represented by the 95% lower bound, using bootstrapping with
1000 resampling. b Patients whose last state matched the action suggested by the RL
agent exhibited lower CVD risk. Actions with a minimum of 50 matched cases were

selected for comparison to ensure statistical reliability. The error bars represent the
95% confidence interval. c–f The more actions the clinician aligned with the RL
suggestion, the lower the CVD risk is. Specifically, higher CVD risk was observed in
patients with higher early cessation, delayed initiation, and overall divergence. Only
8% of patients did not delay LMD treatment according to the RL agent’s estimation.
The darkened lines in (d, e) represent smoothed results derived from the original
consecutive bars. The unit in the x axis is the number of actions.
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LMDs and determining the optimal timing for initiating, switching, or
stopping LMD therapy.

To evaluate the model’s performance, we first performed a gold stan-
dard check called off-policy evaluation using importance sampling (Fig. 4a,
details inMethods). The estimated value of theRLpolicy (93) surpassed that
of the clinician policy (68), where higher policy value is observed to be
associatedwith reducedCVDrisk (Supplementary Fig. 3).Additionally, two
comparison policies, random drug policy (57) and no drug policy (10), had
lower values than the clinician policy. Furthermore, we examined the pre-
scription differences between the RL agent and clinicians.We observed that
patients who received treatments suggested by the RL agent had the lowest
CVD rate. We delved into the correctness of each specific action proposed
by the RL agent (Fig. 4b). For each type of action, we discovered that when
the clinician’s action aligned with the RL agent’s recommendation, it
resulted in lower CVD risk compared tomisalignment. Notably, the greater
the alignment between the clinician and RL agent actions, the lower the
CVDrisk for the patient (Fig. 4e). TheRLagent also accurately identified the
optimal time for patients to discontinue LMD therapy (Fig. 4d) and initiate
LMDtherapy (Fig. 4f). This capabilitymakes theRLagenthighly suitable for
preliminary screening of patient groups eligible for primary prevention. It
was estimated that only 8% of patients not delaying LMD treatment
according to the RL agent’s estimation.

Discussion
Approximately 50 years ago, the Framingham Heart Study investigators
developed multivariable CVD risk prediction equations to assist in perso-
nalizing CVD treatment planning13. Since then, there have been continuous
efforts to advance risk prediction models4,9–12,29–31 and refine clinical
guidelines6,7 for improved nuance. Our study made a significant contribu-
tion to the field by creating the first fully data-driven evidence-based
guideline with high nuance to individualize long-term treatment for CVD
prevention.Through comprehensive validation, ourRLagentdemonstrated
superior efficacy in reducing CVD risk compared to clinician consensus. In
leveraging Duramax, we address the uneven distribution of healthcare
resources by tapping into the wealth of treatment experiences documented
in EHR. Our aim is to bolster healthcare support, particularly in regions
where resources are scarce. Duramax can be use by junior clinicians during
follow-up visits. By harnessing the insights provided by Duramax, these
clinicians can better understand patients’ health trajectories and make
informed decisions based on evidence-based suggestions generated by the
system. Moreover, pharmacists and nurses can seamlessly integrate Dur-
amax into theirmonitoring protocols. This integration allows them to track
patients’ progress more effectively and intervene promptly when necessary.
We envision that even a modest reduction in CVD risk by partially con-
sidering the suggestions from the RL agent has the potential to savemillions
of lives annually around the world.

While RL has been applied in various medical contexts32, our study
significantly advances its utilization in long-term chronic disease preven-
tion. This research contributes to the expanding body of knowledge on AI
applications in preventive medicine and sheds light on the computational
management of other chronic diseases, such as diabetes, hypertension, and
obesity. Looking ahead, a promising future application lies in the develop-
ment of personalized digital twins that optimize long-termhealth outcomes
across multiple chronic disease domains. Extended from Duramax, the
complex digital twin can monitor simultaneous the variations of key index
tests e.g., glucose, blood pressure, BMI, as well as the lipid levels. The
complex RL agent can monitor the health status and suggest preventive
suggestions by incorporating a more multifaceted reward function design
that penalizes the occurrence ofmultiple diseases and considering treatment
options such as metformin and ACE inhibitors. This direction would
contribute to the advancement of holistic management for chronic diseases
but also warrant a more sophisticated curated EHR data that aligns enough
clinical lab tests for monitoring.

To simulate a realistic lipid dynamic model for hosting the RL agent,
our study undertook one of the most extensive and comprehensive

investigations to date, exploring the intricate relationship between lipid
levels, drug interventions, and screening practices in real clinical settings.
Unlike previous studies in this field that primarily focused on randomized
controlled trials33–37 of single drugs in small populations with similar risk
profile, our study examines lipid dynamics across various LMDs using a
large-scale, long-term observational approach. By adopting this approach,
we were able to uncover significant patterns in lipid metabolism and
treatment response, which bridged the gap between controlled trials and
real-world lipid management. This comprehensive analysis provided a
practical model for understanding lipid dynamics under the influence of
different LMD types in real-world scenarios. Importantly, it offers clinicians
and researchers a valuable resource to comprehend the dynamics and
expected treatment efficacy over time, enabling informed decision-making
when formulating lipid management strategies.

Our research presents a practical approach to develop AI-based
complex decision support systems using EHRs, which achieves both
interpretability and accuracy in its design. In recent years, deep learning
methods have gained prominence in healthcare AI applications38–40, being
positioned as end-to-end solutions where the model takes in the original
input and produces the output through a series of complex computations41.
While this approach has shown comparable performance, it often lacks
interpretability41. In medical applications, understanding the decision-
making process is as important as the outcome itself, particularly in sce-
narios without prior knowledge42. In contrast, we adopted a combination of
classical approach to ensure the controllability of the intermediate steps.We
employed a risk-based state representation and a model-based dynamic
programming framework, enabling the development of transparent and
interpretable AI solutions for sequential decision-making tasks. Further-
more, it turned out that the accurate representation of the patient’s dynamic
lipid environment further facilitated the exceling performance of our agent.
Looking forward, we identify several promising avenues for future research.
These include the collection and integration of informative yet unstructured
features, such as genomic data, medical imaging, or clinical free-text notes.
By incorporating these elements into our state definition, we anticipate a
significant enhancement in themodel’s sensitivity and overall performance.
In such scenarios, a separate deep learning component would be necessary
to process and interpret these unstructured data sources41, while preserving
the interpretability of the core decision-making process.

Our study presents a fully evidence-based approach to clinical
decision-making that can be integrated into routine patient care through
multiple avenues. One primary application is the incorporation of our RL
agent into clinical guidelines as a reference tool for clinicians, providing
evidence-based recommendations to support decision-making processes.
Looking ahead, we envision the potential for enhanced human-AI inter-
actionwithin this framework43. In this scenario, the RL agent would offer an
initial treatment recommendation, which the clinician could then review
and comment on. The RL model would subsequently refine its recom-
mendation based on clinician’s comments, creating a dynamic and
responsive system. This interactive approach holds significant promise,
particularly if coupled with a large corpus of clinical free-text notes as a
training set. By utilizing advanced techniques in deep learning, such as
sophisticated language models, there is potential to enhance the system’s
ability to interpret and respond to nuanced clinical feedback. Furthermore,
our approach introduces a novel method for screening potential candidates
for primary CVD prevention. Unlike traditional methods that rely on
predefined thresholds6,7, our analysis is entirely based on long-term CVD
prevention outcomes. This data-driven screening approach has the poten-
tial to identify at-risk individuals whomight be overlooked by conventional
criteria, thereby improving preventive care strategies. By providing these
innovative tools and insights, our research aims to support clinicians in
making more informed, personalized decisions while maintaining the cri-
tical role of human expertise in patient care. As these methods are refined
and validated in clinical settings, they have the potential to significantly
enhance the precision and effectiveness of CVD prevention and manage-
ment strategies.
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While our study demonstrates the feasibility of RL for optimizing lipid
control, challenges persist in deploying RL for real-world chronic disease
management. First, RL’s capacity for long-term prevention hinges on access
to granular, high-dimensional longitudinal datasets that capture time-
varying states (e.g., lipid profiles, comorbidities), treatment sequences (e.g.,
dose adjustments), and delayed outcomes (e.g., CVD events decades post-
intervention). Conservative data filtration to mitigate safety risks (e.g.,
excluding ambiguous treatment trajectories) further reduced sample
diversity, underscoring RL’s dual dependency on high-confidence action-
outcome linkages and sufficient data density to explore complex decision
spaces. The success of Duramax relied on Hong Kong’s uniquely compre-
hensive, decades-long digital health infrastructure—a rarity in most
healthcare systems. Until such infrastructure becomes widespread, the
development andvalidationof long-termRLmodelswill remain confined to
narrow, well-curated cohorts—limiting their generalizability and clinical
adoption.Moreover, beyond technical and infrastructure issues, Translating
RL into clinical practice still face significant barriers. These challenges reflect
the complex realities of implementing AI into the dynamic, human-
centeredworkflows of healthcare. Critical factors such as clinician expertise,
patient preferences, and institutional workflows demand a phased, colla-
borative approach to integration. Systems like Duramax must coexist with
existing clinical practices over an extended period, allowing researchers to
gather structured feedback from clinicians on effective and ineffective use
cases. This iterative feedback loop is essential for refining howRL tools align
with clinical needs, ensuring their adaptation to the nuanced realities of
patient care while maintaining trust and utility in real-world settings.
Withoutphasedadoptionand international standardizationofdigital health
records, RL’s impact will remain constrained to research settings. Besides,
Duramax focuses on lipid-modifying drug optimization currently, but
future iterations will incorporate complementary therapies such as anti-
hypertensives and antiplatelets, alongside unmeasured factors (e.g., genetic
risk, dietary patterns), to refine CVD risk stratification. This expansion will
require collaboration with health authorities to integrate external datasets
capturing these variables.

Methods
Study design and participants
This study included patients who had utilized public healthcare services
provided by theHongKongHospital Authority (HA) since 2004. HA is the
largest public healthcare provider in Hong Kong, offering government-
subsidized primary, secondary, and tertiary care to all residents. It accounts
for over 70% of all hospitalizations in Hong Kong23. Previous research has
confirmed the reliability of theHA’s data source which has been extensively
used in multinational collaborative studies44, including research on CVD
and CVD drug studies45, with a positive predictive value of 85% for myo-
cardial infarction and 91% for stroke46.

Two patient cohorts were identified based on their primary location of
residence in Hong Kong: Hong Kong Island (Hong Kong West Cluster,
HKWC) and Kowloon and New Territories. The Hong Kong Island
(HKWC) cohort was utilized for model development, while the Kowloon
andNew Territories cohort served formodel validation, ensuring there was
no overlap between the development and validation groups. Specifically, the
Hong Kong Island (Hong KongWest Cluster) cohort consisted of patients
aged 18 or above who had undergone a lipid test at a hospital within the
HongKongWest Cluster between January 1, 2004, andDecember 31, 2019,
as identified by the Hospital Authority. The Kowloon and New Territories
cohort included patients aged 35 or above whose blood pressure was
recorded in theHospital Authority’s database between January 1, 2005, and
December 31, 2019. Patients who predominantly sought healthcare on
Hong Kong Island and those without a lipid test record during the study
period were excluded. The cohort entry date was defined as the date of their
first lipid test in any inpatient or outpatient setting since 2004. Patientswere
censored at the earliest occurrence of the first recorded CVD diagnosis,
registered death, or the study’s end date (December 31, 2019). Patients who
experienced a CVD event before the first lipid test or who died on the same

day as the test were excluded from the cohort. The primary outcomewas the
initial diagnosis of CVD, as defined by the International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. The
outcome was a composite measure encompassing coronary heart disease,
ischemic or hemorrhagic stroke, peripheral artery disease, and congestive
heart failure (see Supplementary Table 2).

Patient trajectory selection and formalization
To formalize patient trajectories, we defined states as the time steps of each
lipid test and actions as the choice of LMDprescription between states. The
trajectory consisted of repeated state-action pairs until reaching the cohort
enddate, with afinal state indicating the occurrence ofCVDwithin one year
after the last state.

We selected representative real-world patient trajectories by applying a
filtration process. (1) We excluded patients with fewer than two lipid test
records during the study period to ensure consecutive trajectories. (2)
Considering clinical guidelines and common practice, we excluded trajec-
tories with visit intervals of less than one month or more than two years to
align with real-world reliability. (3) Trajectories with incomplete lipid
profiles (missing LDL-C, HDL-C, or triglyceride measurements) were
excluded. Each patient state included a risk profile comprising 90 features,
such as disease history, laboratory test results, healthcare utilization, and
medication count. Disease history encompassed any previous diseases
recorded before the state, identified using ICD-9-CM codes (refer to Sup-
plementary Table 3 for details). Laboratory test results were obtained on the
same date as the state. Healthcare utilizationwas determined by the number
of visits within one year prior to the state’s date. Medication count referred
to the number of different drugs with different British National Formulary
(BNF) codes prescribed within one month prior to the state’s date (refer to
Supplementary Table 4 for different drugs identified).

Representing the actions, which involve the specific LMDs or combi-
nations of LMDs taken by patients during each interval between two con-
secutive states, poses significant challenges. The task becomes even more
demanding when attempting to identify a series of actions from a sequence
of LMD records associated with lipid tests, as the prescribed medications
and laboratory records often do not align perfectly. A typical scenario
involves lipid tests occurring at the 0th, 3rd, 6th, and 18th months of a
patient’s trajectory, while a particular LMD is prescribed from the 3rd to the
9thmonth. In this case, the action for the first interval (0–3months) is clear,
indicating no LMD was taken. The action for the second interval
(3–6 months) is also evident, representing the specific LMD prescribed
during that period. However, the third interval (6–18 months) presents
ambiguity, as the prescription only covers (9 - 6) / (18 - 6) = 25% of the
interval. Determiningwhether to consider the third action as a continuation
or discontinuation of the LMD becomes uncertain and deciding whether to
include trajectorieswith such ambiguous actions poses a challenging choice.
The complexity further escalates when multiple types of LMDs need to be
considered simultaneously.

To prioritize representative and high-confidence trajectories, we
implemented an empirical strategy consisting of the following steps:
1. Calculating LMD Coverage. We calculated the coverage of LMDs for

each interval between two consecutive lipid tests. For instance, if a
patient had a total prescription of simvastatin 10mg covering half of a
six-month interval, the coverage for simvastatin 10mg would be 50%.
We performed this calculation formultiple types of LMDs recorded in
the database, considering each interval within the patient trajectory.

2. Excluding Ambiguous Trajectories. To ensure the quality of included
trajectories, we considered any trajectory that had intervals with LMD
coverage ranging from 1% to 50% as ambiguous in terms of drug
continuation and discontinuation. Consequently, we excluded the
entire trajectory if any intervals fell within this coverage range. If an
interval hadmultipleLMDsprescribedwith coverage above50%, itwas
considered a combination of LMDs. Thus, we only considered tra-
jectories that were unambiguous in terms of no drug, drug initiation,
continuation, and discontinuation throughout their entire trajectory.
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3. Handling False Combination of LMDs. Consecutive intervals might
exhibit false combinations of LMDs, e.g., representing early transitions
between drugs where the prior prescription was long enough to cover
the next interval by more than half. To mitigate these artifacts, we
examined the prescriptions in the last interval of each patient trajec-
tory, which are generallymore stable as they approach the end. The set
of prescriptions in the last interval was considered the final set of
actions. We removed patient trajectories that had prescriptions not
matching the defined set of actions.

By following this approach, we were able to define patient actions in
terms of LMD types, ensuring representative and reliable trajectories.

Risk-based state representation
In order to incorporate the overall CVD risk level into each state, we aimed
to quantify the contribution of individual features within the states. To
achieve this, we performed survival analysis on the development cohort,
considering the start time of their last state until the observation of CVD
occurrence. Initially, we conducted a robust feature selection process to
identify significant features associatedwithCVDoccurrence30. For statistical
reliability and clinical relevance, we selected features withoutmissing values
(e.g., clinical laboratory tests) and an event rate above 1% (e.g., disease and
medication history). The Cox proportional hazards model (CPH)47 with
least absolute shrinkage and selection operator (LASSO) regularization48

was employed to identify statistically significant features (p-value < 0.05).
The CPH model is widely used for survival analysis, and its regression
coefficients can be interpreted as hazard ratios, facilitating better decision-
making by clinicians. LASSO is a robust feature selection method that
chooses a representative and independent set of features, ensuring reliability
for downstream manual prioritization. The final set of features was also
determined based on current clinical evidence to ensure comprehensiveness
and relevance to CVD prognosis. Subsequently, we applied CPHwith ridge
regularization on the final feature set to quantify the contribution of each
identified feature to CVD occurrence. Ridge regularization, a widely used
stabilizer of regression coefficients, provided reliable estimates of hazard
ratios for the risk variables. The contributionof each featurewas represented
as the natural logarithm of the hazard ratio. The calculation details for the
state number are provided in Supplementary Fig. 2. SHAP value49 of the
contribution of each feature was in accordance with each corresponding
hazard ratio (Supplementary Fig. 4). The feature selection results are pre-
sented in SupplementaryTables 5–7. To assess the overall risk,we calculated
a prognostic index (PI) for each patient by summing the contributions of
individual features. The PI allowed us to unify the overall risk of different
patients on the same scale. Next, we sorted the PIs of patients in the
development cohort and divided them proportionally into clusters, with
each cluster corresponding to a state number. Consequently, the state
number now incorporates information about CVD risk, and its increase
reflects an increasing CVD risk in an interpretable and transparentmanner.
It is important to note that the specific number of clusters (i.e., states) was
determined through manual prioritization based on qualitative evaluation
of the RL policy decision boundary during model development. We added
200 to the state number to indicate states after the initiation of LMDs
(ranging from 200 to 399), distinguishing them from states without prior
LMD usage (ranging from 0 to 199). This state representation, which
accurately captures the patient’s overall CVD risk, enables the RL agent to
make more informed decisions. Furthermore, an added advantage of this
state representation is that actions consideredwithin the same state number
pool share a similar baseline CVD risk, which helps mitigate selection bias.
Selection bias, a significant concern in retrospective studies, occurs when
higher-risk patients are more likely to be prescribed high-intensity LMDs
andmay still experience a higher risk of CVDcompared to low-risk patients
using low-intensity LMDs. This approach also facilitated a direct compar-
ison of the safety line for LDL-C. For example, by accounting for the
coefficients of 0.43 for diabetes and 0.18 for LDL-Cper unit increase,we can
determine that patients with diabetes and an LDL-C level of 3 mmol/L have

an approximate CVD risk similar to patients without diabetes but with an
LDL-C level of 5mmol/L.

Formalization of the computational model
We formulated the patient trajectory and treatment decision-making pro-
cess as a Markov decision process (MDP)17. The MDP was defined by the
tuple [S, A, T, R, γ], where:
• S is a finite set of states representing the risk states of patients during

their healthcare visits for lipid tests (as described in the previous
section).

• A is the finite set of available actions representing the chosen LMDand
LMD combinations (as described in the previous section).

• T(s’ | s, a) is the transition matrix, which determines the probability of
transitioning from state s at time t to state s’ at time t+ 1 givenaction a.
We estimated the transition matrix by counting the observed transi-
tions in the development cohort and converting the counts to a sto-
chastic matrix. To enhance safety, we limited the set of actions to
frequently observed choices made by clinicians, excluding transitions
with fewer than twenty occurrences. This approach ensures that theRL
policy will learn from treatment options with high safety22.

• R(s’, s, a) is the immediate reward received for a transition. Transitions
to desirable states yield positive rewards, while reaching undesirable
states incurspenalties. Inourmodel, if s’ is thefinal state and thepatient
experiences no CVD occurrence within one year, a high positive
reward is given; conversely, a high negative reward is assigned if CVD
occurs22. For patient actions involving LMD, a small penalty is applied
to account for potential side effects20. The specific penalty values were
determined through manual prioritization based on qualitative eva-
luation of theRLpolicy decision boundary duringmodel development.

• γ is the discount factor, which accounts for the decreasing importance
of future rewards compared to immediate rewards. The common
practiceofγ in healthcare applications typically ranges between0.9 and
0.9918,19,21,22.We chose a γ value of 0.99, indicating that we assign nearly
equal importance to late and early occurrences of rewards18,22.

After defining and calculating the components of MDP, we employed
policy iteration22,26, an offline model-based dynamic programming algo-
rithm in RL. This algorithm learns a state-action value function Qπ, which
quantifies the expected long-term reward of choosing an action in a given
state, and a policy π that selects the actionwith the highest reward according
to Qπ

17.
The policy iteration process beganwith a randompolicy and iteratively

evaluated and improved it until convergence to an optimal solution50.
1. Policy evaluation on the expected reward of policy Vπ sð Þ:

Vπ sð Þ ¼
X

s02S
T s0ð

��s; aÞ½R s0; s; að Þ þ γVπðs0Þ� ð1Þ

2. Policy improvement on the state-action value function Qπ :

Qπ s; að Þ ¼
X

s02S
T s0ð

��s; aÞ½R s0; s; að Þ þ γVπðs0Þ� ð2Þ

π sð Þ ¼ argmax
a2A

Qπ sð Þ ð3Þ

Until reaching the convergence of π sð Þ.

Model validation
We evaluated the policy value of the trained RL agent using a large inde-
pendent validation time series dataset. To provide a comprehensive com-
parison, we introduced and evaluated two additional policies: the “no drug”
policy, where the RL agent always chose not to prescribe any LMD, and the
“randomdrug”policy,where theRLagent randomly selected anaction from
the available pool of actions. These policies served as baselines for
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comparison, allowing us to assess the performance of the RL agent against
alternative decision-making strategies22.

We utilized our validation cohort C = [Ji, i = 1,2,…,n]. Each trajectory
Ji = [(si,t, ai,t, ri,t), t = 1,2,…,τi] represented a sequence of transitions (si,t, ai,t,
ri,t, si,t+1) from step t to step t+ 1, where τ denotes the trajectory length.
Within each trajectory, si,t represented the current state, ai,t denoted the
action taken, and ri,t represented the immediate reward. The policy value of
the clinicians’ policy is:

Vπ0
¼ 1

n

Xn

i¼0

Xτi

t¼1

γt�1ri;t ð4Þ

In order to ensure reliable estimates of the new policy’s performance
before its deployment in real-world clinical settings, we engaged in off-
policy evaluation (OPE)17. This process aimed to evaluate the RL policy’s
performance using patient trajectories generated by the clinicians’ policy, as
observed in the validation dataset. Formally, within the context of OPE, we
defined π0 as the behavior policy (the clinicians’ policy) and π1 as the RL
policy. To account for the discrepancy between these two policies and
estimate their policy value, we employed importance sampling17,21. Impor-
tance sampling is a widely recognized method in RL policy estimation,
allowing us to correct for the differences between π0 and π1 and obtain
accurate estimates of their respective policy values.

For trajectory i at time step t, the importance ratio is calculated as:

ρi;t ¼ π1ða1;t=s1;tÞ=π0ða1;t=s1;tÞ ð5Þ

The weight of the trajectory is:

wi ¼
Yτi

t¼1

ρi;t ð6Þ

And the estimated value of the RL policy is:

VIS ¼
Xn

i¼0

Xτi

t¼1

γt�1ri;t ð7Þ

The same procedurewas applied to the no drug policy and the random
drug policy to estimate their policy value.

Data Availability
Sensitive patient data is not available. Restricted access for validation is
available upon request. Please write to R.L. (rbluo@cs.hku.hk) and C.S.L.C.
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Code availability
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