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Using a fine-tuned large language model
for symptom-baseddepressionevaluation
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Recent advances in artificial intelligence, particularly large languagemodels (LLMs), show promise for
mental health applications, including the automated detection of depressive symptoms from natural
language. We fine-tuned a German BERT-based LLM to predict individual Montgomery-Åsberg
Depression Rating Scale (MADRS) scores using a regression approach across different symptom
items (0–6 severity scale), based on structured clinical interviewswith transdiagnostic patients as well
as synthetically generated interviews. The fine-tunedmodel achieved amean absolute error of 0.7–1.0
across items, with accuracies ranging from 79 to 88%, closely matching clinician ratings. Fine-tuning
resulted in a 75% reduction in prediction errors relative to the untrained model. These findings
demonstrate the potential of lightweight LLMs to accurately assess depressive symptom severity,
offering a scalable tool for clinical decision-making, andmonitoring treatment progress, particularly in
low-resource settings.

Major depressive disorder is a leading global health concern1. Recent
research has explored language-based behavioral markers to assess
depressive symptoms focusing on prosodic, lexical, and (morpho)
syntactic features2, as well as written language in contexts of medical
notes or social media posts3,4. In parallel, artificial intelligence (AI)
advancements have contributed significantly to the field, particularly
in improving the performance of predictive models of depressive
symptom-related factors, even though its superiority over other
methods has not yet been proven5,6. While conventional AI techni-
ques have proven valuable for neuroscience and psychiatric research,
they might still struggle with long-range dependencies of language-
based data - or in other words: the semantic context. The recent
development of large language models (LLMs) - with their ability to
extract information from natural language and to generate human-
like texts - revolutionized the AI field and quickly adapted to diverse
medical domains7, including mental health8–10. While LLMs excelled
at tasks like depression detection10 or automatizing discharge
summaries8, current research indicated that they cannot - at this
stage - fully replicate specialized clinical reasoning as required, for
example, in depressive symptom assessments.

However, despite these new advances in natural language processing
(NLP) andAI, one of the greatest challenges in detecting andunderstanding
clinical symptoms lies in capturing and accurately interpreting the nuanced,
subjective nature of depressive symptoms expressed in natural language11.
In the clinical daily routine, one way of quantifying depressive sympto-
matology is the Montgomery-Åsberg Depression Rating Scale (MADRS12),
a structured clinical interview in which the clinician asks about ten different
items representing core symptoms of depression. The patient’s narratives
basedon free speechmake theMADRSclinical interviewaperfect candidate
for LLM-based automatization. In this study, we aimed to train and evaluate
a German BERT (Bidirectional Encoder Representations from Transfor-
mers)-based model for predicting MADRS scores using a regression
approach that captures the continuous nature of symptom severity. We
compared the performance of the fine-tuned model with the base model to
accurately predict MADRS subscores, highlighting that pre-trained
models often exhibit unspecific predictions when applied to specia-
lized data. In contrast, fine-tuning allows the model to adapt to a
specific context, such as clinical data, which might be under-
represented or absent in the training datasets of general LLMs. This
study contributes to the clinical and research applications of LLMs,
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particularly for the automated assessment and monitoring of
depressive symptomatology in everyday life.

Results
Data acquisition and preprocessing
For fine-tuning and evaluation of ourMADRS-BERTmodel, we prepared a
structured, item-level dataset derived from transcribed and segmented
patient interviews, focusing on nine core depressive symptom domains
assessed by the MADRS while excluding “Apparent Sadness”, which
requires non-verbal cues. To ensure a balanced score distribution, we
combined real patient interviews with synthetically generated interviews.
An overview of the data collection, preprocessing, and model fine-tuning
pipeline is provided in Fig. 1. The dataset consisted of a total of 126MADRS
interviews (65 patient transcripts, 61 synthetic interviews; see Supplement
for demographics). The 126 interviews resulted in 1’242 item-level samples
for training and validation. The distribution of scores across real and syn-
thetic data is presented in Fig. 2.

Model performance
To evaluatemodel performance in predicting depressive symptom severity,
we applied a regression-basedfine-tuning approachon item-level data using
a fivefold cross-validation approach. We assessed performance using mean
absolute error (MAE) as ameasure of predictionprecision and accuracy, the
latter computed by rounding continuous predictions to the nearest integer
for comparison to clinician-assigned scores. Additionally, we applied a
flexible evaluation criterion that considers predictionswithin±1point of the
true label as correct, reflecting clinical tolerance for minor rating
discrepancies.

First, in Table 1, we compared the regression performance of the fine-
tuned model (MADRS-BERT) to the mean regression model (baseline
prediction). Fine-tuning the model led to anMAE ranging from 0.7 for the
item “inner tension” to 1.0 for the item “emotional numbness” across the
nine items. Compared to the mean regression model (baseline predictor),
fine-tuning reduced the MAE in average by 0.9 points. Second, we com-
pared the performance of the fine-tunedmodel (MADRS-BERT) to the base

Fig. 1 | Workflow. Data Engineering. A MADRS clinical interviews were video-
taped, and audio files were extracted. B Automatic speaker diarization was con-
ducted using pyannote to segment audio files into hypothesized sequences of the
individual speakers. C Individual segments were then transcribed using Whisper-
large-v3. Transcripts were proofread, and items and scores were manually assigned.
D To account for the unbalanced score distribution, further interviews were gen-
erated, including the underrepresented scores across the nine items. LLM Training:

E Real patient transcript data and synthetic data were merged, tokenized, and used
for training the pre-trained BERT-base-german model. A flexible evaluation metric
was included to account for predictions within the ± 1 score deviation of the true
label reflecting the practical application of theMADRS scoring in the clinical setting.
LLM Evaluation: F The model was evaluated for each item individually using
accuracy andmean absolute error (MAE), and confusionmatrices were generated to
illustrate strict and flexible predictions. Created in https://BioRender.com.
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model (BERT-base-German-cased; “BERT-base”) with no further task-
specific fine-tuning. Accuracies under flexible evaluation criteria ranged from
79% to 88% across the nine items forMADRS-BERT. As expected, the base
model exclusively predicted a score of 0 across all items and scores (Sup-
plementary Fig. 4–5), indicating a complete lack of specificity for the task,
that is, inability to differentiate between different levels of symptom severity.

Table 2 shows the accuracies across items for the fine-tuned (MADRS-
BERT) and base (BERT-base) models under strict and flexible criteria.
Figures 3 and 4 depict the corresponding confusion matrices for the fine-
tuned model (MADRS-BERT) under strict and flexible criteria showing a
clear distribution along the diagonal indicating the ability to differentiate
between different symptom severity levels based on linguistic data (see
Supplementary Figs. 4-5 for the confusion matrices of BERT-base). Each
matrix reflects model predictions at the item level (that is, per text segment
corresponding to a specific MADRS item) aggregated across all five vali-
dation sets from cross-validation. Overall, MADRS-BERT achieved high
predictive accuracy across all nine items, significantly outperforming
baseline models in capturing item-specific severity.

Error Analysis
Overall, the fine-tuned models outperformed the base models significantly.
By focusing on errors beyond the±1 range from thediagonal (flexiblemodel
evaluation),fine-tuning themodel resulted in anoverall 75.38%reductionof
errors compared to the base model, and 30.29% reduction for the strict
evaluation criteria. Under flexible evaluation criteria, the fewest prediction
errors were observed in the item “inner tension”. Conversely, the highest
error rate occurred in the item “loss of appetite.” Under strict evaluation
criteria, the fewest errors were observed in the item “inner tension” and the
highest error rate in the item “emotional numbness”.

Scaling Model Performance with Data Availability
To assess how performance scales with data availability, we performed a
fivefold cross-validation across the full dataset. In each fold, we trained
models on increasing fractions of the entire dataset (from 5 to 80%) and
evaluated them on the fixed outer validation set (20%). As shown in Fig. 5,
the learningcurve forflexible accuracy showeda rapidperformance increase
up to approximately 50–80% of the data, after which improvements

Fig. 2 | Distribution of MADRS scores across patient transcript data and
synthetic data.The first item (“apparent sadness”) was excluded from the analysis as
its rating depends not only on language but also on body language, posture, and

facial mimics. Patient transcript data are shown in purple, and synthetic data is
shown in light teal. Barplots represent counts of unique scores per item and subject.
Abbreviations: MADRS: Montgomery-Åsberg Depression Rating Scale.
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plateaued across most topics. This trend suggests that the model learns
efficiently from the initial training data, but further gainsmay require either
significantly more data or architectural adjustments.

Discussion
In this study, we evaluated the prediction performance of a BERT-based
LLM fine-tuned on GermanMADRS interview data and its corresponding
scoring. Following fine-tuning, the model exhibited excellent performance
with an averageMAE of 0.7 to 1.0 and accuracies ranging from 79% to 88%
across the nine items, resulting in a 75.38% error reduction. This demon-
strates the fine-tuned model’s ability to match the clinicians’ ratings con-
sistently. First,MADRS-BERT achieved an average reduction inMAE of 0.9
compared to the baseline predictor, highlighting its ability to generate
precise and clinically meaningful severity estimates. Furthermore, as
expected, when randomly initializing the linear output of BERT (BERT-
base), themodel is unable to correctly predict the labels showing a complete
lack of specificity for the different levels of symptom severity. Thesefindings
demonstrate the substantial improvements resulting from fine-tuning,

underscoring the model’s increased specificity, tailoring it to the require-
ments of the MADRS scoring, and substantially decreasing MAE and
improving prediction accuracy.

Our approach stands in contrast to previous research that either pre-
dicted overall MADRS depression scores13,14 or employed broader binary
classification mechanisms to detect general depression risk15–17. Notably,
only a few studies have explored the use of LLMs in the context of structured
clinical interviews using the MADRS scale. For instance, models evaluated
on Italian MADRS interviews using prompt engineering achieved a max-
imum item-level accuracyof 30% to 60%, strugglingwith consistency across
individual symptoms13. Similarly, in a Japanese dataset, LLMs trained on a
large corpus of MADRS dialogs demonstrated strong correlation with total
clinician-assigned scores (r = 0.86), yet focused exclusively on overall
severity rather than themore granular symptom-level predictions central to
our approach14.

Other studies have largely relied on alternative depression assessments
such as the patient health questionnaire (PHQ-918) or general risk detection
frameworks. For example, binary classification approaches applied to
unstructured text or diary entries achieved high accuracy (~90%)whenfine-
tuned, but base models without adaptation often failed to detect depressive
signals reliably15,16. While promising, these methods generally lack the
clinical specificity and interpretability afforded by structured rating scales.
Similarly, zero-shot approaches using LLMs to estimate depression severity
from clinical notes or patient narratives - such asmapping free-text input to
PHQ-9 scores - have shown only moderate agreement with human ratings
and inconsistent item-wise performance19,20. In contrast, MADRS-BERT
was explicitlyfine-tuned to predict continuous scores for eachMADRS item
based on expert clinical-ratings, enabling a structured assessment of
depressive symptoms. This allows for the detection of nuanced changes in
mood and behavior across specific domains such as pessimistic thoughts,
inner tension and suicidal ideation - features that might be overlooked in
broad binary frameworks. By aligning predictions with the MADRS
structure, our model mirrors psychiatric practice and offers more clinically
interpretable outputs. This item-level-based approach addresses key gaps in
existing work by providing fine-grained, symptom-specific insights that
could support both research applications and real-world clinical symptom
assessment and monitoring. Moreover, it enhances the transparency and
utility of LLM-based systems by mapping outputs onto a validated psy-
chiatric instrument - a feature highlighted as essential for clinical trust and
decision making in recent reviews21,22.

Beyond these improvements in predictive performance, our study also
addresses broader methodological and implementation challenges dis-
cussed across recent literature, particularly regarding generalizability,
explainability, and clinical scalability21,23. Generalizability remains a critical

Table 1 | Comparison ofMADRS-BERT andBaseline Predictor
(Mean RegressionModel) Performance AcrossMADRS items

MADRS Item Mean
MADRS Score

MAE ↓ (±std)

Baseline
predictor

MADRS-BERT

Reported sadness 3.0 1.7 0.9 (±0.04)

Inner tension 3.0 1.5 0.7 (±0.15)

Sleep disturbances 2.9 1.7 0.9 (±0.16)

Loss of appetite 2.8 1.8 0.8 (±0.08)

Difficulties
concentrating

2.9 1.7 0.8 (±0.22)

Lassitude 2.8 1.8 0.8 (±0.21)

Emotional numbness 2.8 1.8 1.0 (±0.26)

Pessimistic thoughts 2.9 1.6 0.8 (±0.14)

Suicidal ideations 2.9 1.7 0.8 (±0.16)

Total 2.89 1.70 0.83

The table reports theMeanScore, andMeanAbsolute Error (MAE) for the baseline predictor and the
fine-tunedmodel (MADRS-BERT) across all nine MADRS items. The baseline predictor assigns the
mean MADRS score per topic as the predicted value, serving as a naive statistical reference. MAE
quantifies the prediction error, with lower values indicating better performance. Bold numbers
highlight the best results.

Table 2 | Performance metrics of the fine-tuned MADRS-BERT and BERT-base models under strict and flexible criteria for
accuracy

MADRS-BERT BERT-base

MADRS Item Accuracy ↑ [%] Flexible Accuracy ↑ [%] Strict Accuracy ↑ [%] Flexible Accuracy ↑ [%] Strict

Reported sadness 80 ( ± 0.03) 40 ( ± 0.07) 29 ( ± 0.04) 14 ( ± 0.03)

Inner tension 88 ( ± 0.06) 49 ( ± 0.10) 25 ( ± 0.04) 12 ( ± 0.07)

Sleep disturbances 82 ( ± 0.08) 44 ( ± 0.09) 30 ( ± 0.07) 17 ( ± 0.07)

Loss of appetite 79 ( ± 0.04) 43 ( ± 0.12) 33 ( ± 0.06) 20 ( ± 0.07)

Difficulties concentrating 83 ( ± 0.08) 40 ( ± 0.14) 31 ( ± 0.06) 15 ( ± 0.06)

Lassitude 86 ( ± 0.07) 46 ( ± 0.16) 31 ( ± 0.09) 19 ( ± 0.08)

Emotional numbness 80 ( ± 0.12) 35 ( ± 0.11) 33 ( ± 0.11) 20 ( ± 0.08)

Pessimistic thoughts 85 ( ± 0.07) 41 ( ± 0.10) 26 ( ± 0.04) 14 ( ± 0.05)

Suicidal ideations 83 ( ± 0.10) 44 ( ± 0.10) 32 ( ± 0.05) 17 ( ± 0.04)

Mean and standard deviation of accuracies across five folds. Strict evaluation for accuracy considers exact score predictions, while flexible evaluation allows a deviation of ±1 from the actual score. Bold
numbers highlight the best results.
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issue in mental health AI, especially when models are trained on small or
imbalanced datasets. To avoid overfitting, we employed a K-fold cross-
validation, a strategy endorsed for psychiatric NLP applications where large
held-out test datasets are rarely available23. Moreover, MADRS-BERT was
designed to generate a more fine-grained prediction of symptom severity
estimates, moving beyond the limitations of traditional binary classification
models that often oversimplify depression into a present-absent dichotomy.
In linewith recent efforts byLau et al.24whomodeleddepression severity as a
continuous regression task using parameter-efficient tuning, we similarly
adopted a continuous scoring framework based on a regression model and
evaluated the model performance using MAE, a clinically interpretable
metric. Both approaches highlight the clinical relevance of moving beyond
binary classification toward more nuanced, symptom-level assessments.
Additionally, Lau et al. conducted a learning curve analysis,which - like ours

- demonstrated substantial performance gains up to 80% of the training
data, followed by a plateau24. Similarly, recent work by Huang et al. using a
regression framework on self-supervised voice-based pretraining models
illustrated that lightweight, modality-specific models can offer strong per-
formance for depression assessment25. This convergence across indepen-
dent studies suggests that even lightweight models, when fine-tuned with
high-quality clinical data, can achieve robust performance and that addi-
tional performance gains may depend on further modality integration or
more complex model architectures. In line with our efforts, Lorge et al.
showed that training an LLM with synthetic clinical text can effectively
bypass data scarcity and privacy limitations26 - a strategywe also adopted by
generating interviews to supplement underrepresented MADRS classes.
Their BERT-based span extraction model for difficult-to-treat depression,
trained on synthetic data, provided strong evidence that synthetic data

Fig. 3 | Confusion matrices for MADRS-BERT model. The confusion matrices
illustrate the model performances and errors across the nine items using the fine-
tuned MADRS-BERT model by comparing the predicted (x-axis) versus the actual

(y-axis) MADRS scores. The intensity of the color represents the count of predic-
tions, with darker shades indicating higher values. Diagonale entries represent
correctly classified instances, while off-diagonal entries indicate errors.

https://doi.org/10.1038/s41746-025-01982-8 Article

npj Digital Medicine |           (2025) 8:598 5

www.nature.com/npjdigitalmed


augmentation is a scalable solution for LLM training in mental health care
settings26. Overall, these findings underscore the growing consensus around
building interpretable, generalizable, and deployment-ready AI tools opti-
mized for real-world use21,23,27.

Our findings also speak to ongoing calls for more transparent and
explainable AI in psychiatry28. As highlighted in recent reviews22, clinicians
and researchersmust be able to interpret and trustmodel outputs.Ourwork
supports the scalability of structured, language-based assessments by gen-
erating clinically aligned outputs that are both interpretable and repro-
ducible. By integrating the structured nature of the MADRS interview,
MADRS-BERT generates interpretable and standardizedoutputs that canbe
used consistently over time for longitudinal tracking - thus supporting both

clinical workflows and research designs. Consistent with prior discussions23,
such systematic tools can reduce stigma, cost, and time barriers in mental
health services, while improving diagnostic assessments in remote or low-
resource mental health care settings.

Several promising directions may further improve model robustness
and broaden real-world applicability. Recent advances inmultimodal LLMs
have already demonstrated the feasibility of combining linguistic and facial
features for depression detection29, and previous work has highlighted the
role of prosodic, spectral, and voice-quality cues in improving model
performance23. Their clinical validation and integration into real-world
psychiatric workflow remain an important next step30. Particularly in the
care of depression, LLMs become increasingly useful not only for screening

Fig. 4 | Confusion matrices for MADRS-BERT-flexible model. The confusion
matrices illustrate themodel performances and errors across the nine items using the
fine-tunedMADRS-BERTmodel by comparing the predicted (x-axis) versus the true
(y-axis) MADRS scores. The intensity of the color represents the count of

predictions, with darker shades indicating higher values. Diagonale entries represent
correctly classified scores, while off-diagonal entries indicate errors. The model’s
performance is shown under the flexible criteria, with predictions within ±1 of the
true label considered as a correct prediction.
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and diagnosing, but also for patient management and monitor depressive
symptomatology over time21,23,31,32. Beyond structured symptom tracking,
several emerging strategies could further enrichLLM-basedassessments like
MADRS-BERT. For instance, retrieval-augmented generation has recently
been used to support psychiatric decision-making by grounding model
outputs in contextualized patient data from electronic health records33.
While such systems are still in early stages, they illustrate how augmenting
LLMs with individualized context could enhance clinical relevance without
sacrificing interpretability. Likewise, incorporating free-text rationales
alongside item-level predictions has been proposed as a way to increase
transparency and model robustness, offering clinicians insight into how
scores are derived34. While not prerequisites for clinical deployment, these
strategies may complement symptom-focused models like MADRS-BERT
in the future, especially as explainability becomes a growing priority in
clinical AI.

In summary, integrated into digital screening or patient monitoring
technologies35, LLMs offer new, scalable directions for assessing symptoms
in a standardized manner in research studies and in the clinical routine.
They may provide diagnostic support, assist in symptom monitoring over
time, andultimately contribute to reducing treatment costswhile improving
accessibility30,35. However, as recent studies highlighted21,36, LLMs in mental
health care must be deployed with caution, particularly in high-risk sce-
narios. Structured tools like MADRS-BERT, which focus on fine-grained,
clinician-aligned assessmentswithindefined rating instruments,may offer a
more controlled and interpretable starting point for real-world imple-
mentation than general-purpose models. Building on this foundation,
future research should explore hybrid systems that balance automationwith
human oversight, while continuing to evaluate explainability and safety in
diverse clinical populations.

Our study has several limitations. We applied a novel approach by
integratingflexibility into themodel’s prediction, a feature that aligns closely
with clinical practice,where slight discrepancies between raters are common
due to human interpretation and variability37. Bridging the gap between
strict data-driven analyses and real-world clinical practice, allowing the
model a ± 1 deviation enhances the model’s clinical applicability and aligns
with previously reported practical flexibility, where intra-class correlation
values ranged between 0.866 and 0.978 for each item of the MADRS37.
However, while this brings practical benefits, it also introduces the risk of
clinically significant misclassification, which we must account for when
interpreting model performance. Further limitations may include our
handling of discrepancies between the two raters. Additional limitations
concern how rater disagreements were handled. When disagreements
exceeded ±1 on individual ratings or four points on the total score occurred,
a consensus rating was applied. Since the model was evaluated on the
individual items, the consensus procedure for broader disagreements
between raters could not be incorporated. Furthermore, we could not report
formal inter-rater reliability metrics as individual rater scores before the
consensus procedurewere not consistently stored for retrospective analyses.
However, we assume that the consensus rating reflects shared clinical
judgment and is thus appropriate as ground truth for model training and
evaluation. Although the sample size seemed adequate, a larger dataset may
increase the generalizability of the model. We addressed this by generating
additional synthetic data tobalance theuneven class distributions.However,
this approach also reduces the baseline difficulty, as a mean-regression
model can achieve reasonable performance by predicting the average score,
limiting its clinical relevancewhen thedatadistribution is balancedacross all
severity levels. An important limitation to our approach is that repeat
interviews from the same participant were treated as independent samples

Fig. 5 | Learning curves for nine MADRS topics under the flexible accuracy
criterion. Each line corresponds to one MADRS item. For each outer cross-
validation fold, models were trained on increasing fractions (5–80%) of the entire
dataset, with evaluation always performed on a fixed validation set comprising 20%
of the full dataset. The x-axis indicates the proportion of the full dataset used for

training, while the y-axis shows the mean flexible accuracy ( ± 1) across outer folds.
Error bars indicate the standard error of the mean (SEM) across folds. Flexible
accuracy considers predictions correct if they fall within ±1 of the true score,
reflecting clinically acceptable variation.
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and not grouped during fold assignment. As a result, data points from the
same individual may appear in both training and validation folds, which
could introduce a small degree of dependence. However, as these follow-up
interviewswere conductedweeks apart and reflect distinct clinical states, we
considered them to provide non-identical information relevant to the
generalizationof themodel.Ourdesign choice allowed formore efficientuse
of the available dataset and reflects realistic clinical variability.Moreover, the
MADRS interview format focuses on symptom description rather than
personal narrative. Thus, repeated samples rarely contain personally iden-
tifying content, and item-level modeling further reduces the risk of the
modelmemorizing individual language patterns.While our approach offers
a light-weight solution, future work should explore the use of larger gen-
erative models, which offer the capabilities of in-context learning or few-
shot adaptations that might eliminate the need for task-specific fine-tuning.
Moreover, while proven powerful, LLMs lack the ability to focus on non-
verbal cues (as required for item 1: “Apparent sadness”), and the integration
of multimodal LLMs for clinical purposes must be explored30. Lastly, the
pretraining data might introduce a bias potentially favoring “WEIRD”
populations (westernized, educated, industrialized, rich, and democratic),
which affects the model’s performance in more diverse or non-Western
contexts38. Along that line, we did not include any details on gender, age,
sociodemographic heterogeneity, or cultural or hereditary differences in our
analyses.

In conclusion, our study demonstrates the potential of LLM-based
tools in accurately predicting MADRS scores for the individual items,
offering a novel approach to assess depressive core symptoms in clinical
practice and research suitable for deployment in low-resource environ-
ments such as healthcare settings. The high accuracy in predicting indivi-
dual subscores might allow the assessment of depressive core symptoms
using digital health technologies35, which could substantially help monitor
treatment response or implement preventative measures. However, inte-
grating state-of-the-art AI technologies into the clinical routine must be
cautiously approached21,36,39. These technologies should aim to complement
and not replace mental health care providers, prioritizing ethical con-
siderations such as data privacy and security, which are key to optimal
patient handling and well-being21,40.

Methods
Data acquisition and preprocessing
A total of 65 interviews were conducted in German or Swiss German.
Twenty-one patients were interviewed twice with a 4–5 week interval
between the two sessions (as a result of a follow-up interview after hospital
discharge), and 23 participants were interviewed once. All interviews were
videotaped and explicitly covered the past seven days. The items of the
MADRS covered 0: apparent sadness, 1: reported sadness; 2: inner tension,
3: sleep disturbances, 4: loss of appetite, 5: difficulties concentrating, 6:
lassitude, 7: emotional numbness, 8: pessimistic thoughts, and 9: suicidal
ideations. The interviews followed the structure of the MADRS clinical
interview12. For each item, the interviewer used a standardized probe
question (e.g., “How has your sleep been this past week?”), and the patient
was encouraged to respond freely in narrative form. Follow-up questions
were asked to address the severity, duration or persistence of the symptoms,
focusing on symptom description rather than personal narratives. Ratings
were then assigned by the interviewers based on the open-ended responses
(rating from 0 = ‘no symptoms’ to 6 = ‘most severe symptoms’ per item).
The video-taped MADRS interviews were conducted by trained clinical
researchers, including a certifiedpsychotherapist (SH), a seniorpsychologist
(AM), and trained psychologymaster’s students. The rating of those videos
was done by the lead interviewer and second clinical researcher. Ratings
were assigned independently and discussed immediately after the interview.
If a disagreement of more than one point on the individual ratings or
more than four points on the total score occurred, a consensus rating
was decided upon. These consensus ratings were used for model
training and evaluation. For further analysis, the first item (“0:
apparent sadness”) was excluded as the scoring thereof depended not

only on language, but also on facial mimics, body language, posture,
and the patient’s general appearance.

Audio files and automatic speech recognition
The audio was extracted from the video recordings using Python with
moviepy libraries. To ensure consistency across recordings, the audio was
subsequently processed using pydub to standardize to a single channel,
reducing variability and ensuring compatibility with subsequent analysis
workflow.We thenperformed speaker diarization to segment the audio into
hypothesized sequences of the individual speakers within each interview
using a pre-trained pipeline from pyannote.audio version 3.1(https://
huggingface.co/pyannote/speaker-diarization-3.1) with default parameter
settings. Segmenting the audio file based on speaker turns allowed the
identification of individual speakers across the recordings. Then, each dia-
rized segment was transcribed subsequently using Whisper-large-v3
(OpenAI; https://huggingface.co/openai/whisper-large-v3), which has
been proven to be a viable speech recognition system for the Swiss German
language41. This method allowed for the automated reconstruction of the
interviews in a structured dialog format, distinguishing between clinician
and patient contributions. Filler and non-lexical words occurring naturally
in spontaneous speech (e.g., “mmh”) were filtered out from the transcrip-
tions. Given the challenges posed by Swiss German dialect variations and
technical limitations of the diarization and automatic speech recognition,
each transcription was then manually reviewed and corrected where
necessary. Following transcription, interviews weremanually segmented by
item, based on the structure of the MADRS interview. For each item, the
corresponding segment - comprising the relevant question and the patient’s
response - was isolated and annotated. This manual segmentation ensured
that each data sample used in later modeling corresponded precisely to one
MADRS item. Lastly, each item-specific segment was then paired with its
corresponding numeric score (0–6), based on the prior clinical rating by the
trained interviewers.

Generation of synthetic interviews
Synthetic interviews were generated to balance the score distribution by
simulating interviews that includedunderrepresented scores across the nine
items. This approach aims at improving the robustness and generalizability
of the model evaluation (see Model fine-tuning and performance evalua-
tion). The synthetic interviews were generated using a combination of
manual creation by researchers and prompting of ChatGPT-4o to produce
clinical interview texts. Interview texts where ChatGPT-4o was used, were
further adapted and refined by researchers to ensure context sensitivity
where needed. Overall, a total number of 61 synthetic interview transcripts
were generated, which, together with the 65 interviews derived from real
patient transcripts, allowed for a minimum of 15 interviews per score and
item. To evaluate the similarity between real and synthetic data, we used
cosine similarity (Supplementary Material).

Model fine-tuning and performance evaluation
For MADRS score prediction, we fine-tuned a BERT-base-German-cased
(https://huggingface.co/google-bert/bert-base-german-cased) model using
a regression approach. This approach was selected based on the following
rationale: First, although theMADRSproduces discrete ratings, these values
reflect a continuous spectrum of depressive symptom severity - capturing
subtle variations in mood and behavior that can be clinically meaningful.
Modeling symptomseverity as a continuumusing a regressionoffers amore
nuanced approach than treating the scores as strictly categorical. Second,
BERT-base-German-cased42 is a state-of-the-art, open-source model
known for its strong performance in NLP classification tasks. We selected
this model due to its effectiveness in capturing context, its availability in a
pre-trained version suitable for our language-specific tasks and its relatively
lightweight architecture (110 million parameters). Each data point in our
model corresponds to a single MADRS item from an interview, treated
independently of the full interview structure. We modeled each item
separately to reflect item-level severity, resulting in 1’242 samples. As such,
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we did not use the full interview as input; rather, each model input was a
single item-specific segment, paired with the previously assigned item-
specific score. This item-level structure enabled symptom-specific predic-
tion and aligned with the original interview format (an example of the data
set structure can be found along with the published code and the model
weights; seeDataAvailability Statement). To reflect the item-specific nature
of the task, we retained the shared BERT encoder across all samples but
added nine separate linear regression heads on top of the <CLS> token, that
is, one for each MADRS item. This architecture enabled the model to
specialize in scoring each symptom dimension while sharing contextual
language knowledge across items. Notably, 21 participants contributed to
two interviews, conducted as a follow-up interview 4–5 weeks after hospital
discharge. These repeated interviews were treated as independent samples,
reflecting potentially different symptom states.

The model was fine-tuned to predict MADRS subscores as a con-
tinuous variable (0–6) using a mean squared error (MSE) loss function,
which penalizes larger deviation from true scores more strongly. Each
regression head linearly projected the <CLS> token embedding to a single
output neuron representing the predicted score. A BERT tokenizer was
applied to the dialog-based input data, truncating and padding sequences to
a maximum length of 512 tokens. We adapted a fivefold cross-validation
approach using stratified K-fold splitting with random shuffling to ensure
robust generalizability across items. Thus, each fold used approximately
80% of the data for training (~993 samples) and 20% for testing
(~248 samples). Sessions were not grouped by participant IDs during fold
assignment - meaning that samples from the same individual could appear
in both training and test folds. Both real and synthetic interviews were
included in training and evaluation.While these design choices increase the
available sample size per fold and allows for symptom-specific evaluation,
we acknowledge it may introduce a degree of non-independence and
address this in the limitations. For each fold, a new instance of the BERT
model was reinitialized. The model was fully fine-tuned (that is, no
parameter-efficient approaches such as LoRAwere used) using theAdamW
optimizer with the following parameters: Learning rate=2e-5, weight
decay = 0.01, batch size = 4, epochs = 15, gradient clipping = 0.5, warmup
steps = 500, learning rate schedular = linear decay, early stopping = patience
of five epochs (evaluated on validation loss). Training and evaluation were
conducted locally on two NVIDIA GeForce 4090 GPUs, each with
24 GB VRAM.

We evaluated the model performance using the MAE (MAE; average
absolute deviation betweenpredicted and true score) and accuracy across all
cross-validation folds (averaged) as an intuitive measure for overall per-
formance. As the output of the regression model provides continuous data,
accuracy was computed by first rounding it to the nearest integer. In
addition to the standard evaluation metrics across the seven severity labels
(0–6), we included a flexible evaluation criteria accounting for predictions
within the ± 1 score deviation of the true label as acceptable. This approach
serves two key purposes: First, MADRS scoring remains a subjective and
noisy process, even among trained clinicians, so small deviations are often
considered acceptable and described as commonly occurring in clinical
practice37. Second, although the regression objective is designed to
approximate the true score as closely as possible, a strict exact-score eva-
luationmay not fully capture the practical utility of near-correct predictions
in real-world clinical practice. Performance metrics were computed at the
item level (that is, per sample) and averaged across all folds. Confusion
matrices were constructed by aggregating item-level predictions across all
five validation sets from cross-validation, separately for eachMADRS topic,
to visually represent the item-level performances and errors (Figs. 3–4). To
assess the impact of fine-tuning, we compared the performance of our fine-
tuned model (MADRS-BERT) against two benchmarks: First, to con-
textualize the performance of our fine-tunedmodel, we compared it against
a naive baseline predictor (mean regression model) that assigns the mean
MADRS score per topic as the predicted value and further calculate the
MAE based on the true label and the artifically selected predicted value.
While this approach does not involve any language understanding, it serves

as a lower bound for performance - indicating the expected error if a model
would simply rely on statistical tendencies based on the distribution of the
data rather than meaningful linguistic patterns. Second, we compared it to
the pre-trained base model (BERT-base-German-cased) without task-
specific fine-tuning (that is, zero-shot evaluation). Doing so, we can assess
whether fine-tuning successfully adapted the model to the clinical domain.

Error analysis
We conducted an error analysis by comparing the number of incorrect
predictions made by the base and fine-tuned models. The percentage error
reduction was calculated by comparing the total errors of the base model to
the total errors of the fine-tuned model to quantify the percentage decrease
in misclassification achieved by the fine-tuned model.

Error Reduction %ð Þ ¼ TotalErrorsBERT�base�flexible � TotalErrorsMADRS�BERT�flexible

TotalErrorsBERT�base�flexible

 !
× 100

The methodological workflow is illustrated in Fig. 1.

Scaling model performance with data availability
We examined how model performance scaled with training data size. For
this, we conducted a fivefold cross-validation on the full dataset. In each
outer fold, 80% of the data served as training pool and 20% as validation set.
We created progressively larger subsets ranging from 5 to 80% of the entire
dataset, ensuring that smaller fractions were strict prefixes of the larger ones
to maintain consistency in sampling. Each subset was used to fine-tune a
separate model, which was evaluated on the same fixed validation set of the
corresponding fold. The resulting learning curve (Fig. 5) illustrates how
performance scaled with data availability. The incremental performance for
the strict evaluation criteria aswell as the training and evaluation lossfigures
can be found in the Supplementary Figs. 1–3. Lastly, we performed the full
experiment using real data only to assess the model’s generalizability to
authentic clinical material only, independent of synthetic data augmenta-
tion (Supplementary Figs. 10 and 11, Supplementary Table 5).

Declaration statements (1) Data availability
Real data derived from patient interview transcripts cannot be shared to
ensure patient privacy. The synthetically generated data are available under:
https://github.com/webersamantha/MADRS-BERT/data.

Ethical considerations and participants
The study was carried out at the Psychiatric University Hospital Zurich,
Switzerland, within the framework of a more extensive study on the iden-
tification of predictive markers for suicidal thoughts and behavior in a
transdiagnostic cohort following discharge from inpatient psychiatric care
(https://multicast.uzh.ch/en.html). The study was approved by the Ethics
Committee of the University of Zurich (22.9.19) and conducted according
to the Declaration of Helsinki. All participants provided written informed
consent. Until December 2024, 66 patients were enrolled in the study.
Inclusion criteria were 1) age between 18 to 65 years, 2) current or past
suicidal thoughts and/or behaviors, and 3) being fluent inGerman or Swiss-
German. Exclusion criteria were 1) a cognitive impairment due to acute
psychoses, an intellectual disability, or dementia, 2) self- or other-directed
aggression or violence, 3) pregnancy or breastfeeding, and 4) undergoing
electroconvulsive therapy.

Data availability
Real data derived from patient interview transcripts cannot be shared to
ensure patient privacy. The synthetically generated data is available under:
https://github.com/webersamantha/MADRS-BERT/data. The code used
for data preprocessing and fine-tuning is available under: https://github.
com/webersamantha/MADRS-BERT. The model weights can be down-
loaded under: https://huggingface.co/webesama/MADRS-BERT.
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Code availability
Real data derived from patient interview transcripts cannot be shared to
ensure patient privacy. The synthetically generated data is available under:
https://github.com/webersamantha/MADRS-BERT/data.
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