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Evaluating the performance of general
purpose large language models in
identifying human facial emotions
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Benjamin W. Nelson1,2 , Ari Winbush3, Steven Siddals1, Matthew Flathers1, Nicholas B. Allen3,4 &
John Torous1,4

We evaluated the ability of three leading LLMs (GPT-4o, Gemini 2.0 Experimental, and Claude 3.5
Sonnet) to recognize human facial expression using theNimStimdataset. GPTandGeminimatchedor
exceeded human performance, especially for calm/neutral and surprise. All models showed strong
agreement with ground truth, though fear was often misclassified. Findings underscore the growing
socioemotional competence of LLMs and their potential for healthcare applications.

Generative artificial intelligence (GenAI) based on large language models
(LLMs) is becoming central to human–computer interactions (HCIs),
demonstrating impressive capabilities in interpreting human intentions1,2

and understanding human cognitive, social, and emotional processes. Facial
expressions are a key aspect of social–emotional functioning and provide
valuable informationabouthumangoals, emotions, andpsychological states3.

LLMs have expanded their capabilities beyond traditional text-based
tasks, enabling them to process and integrate multimodal inputs such as
vision, speech, and text. They have shown promise in social cognition such
as “theory of mind” tasks, sometimes matching or exceeding human per-
formance onmentalistic inference2.However, these results are largely based
on text-only examples and are less robust in assessments where context is
critical2,4,5. Studies evaluating LLMs' visual emotion recognition havemixed
results, with some models performing no better than chance6.

GenAI’s ability to interpret facial expressions holds promise for HCI
applications, particularly in behavioral healthcare7–9. Subtle expression
changes may indicate mental health conditions like depression, anxiety, or
even suicidal ideation10,11. AI-powered systems trained to recognize these
nuanced expressions could potentially enable earlier diagnosis, real-time
monitoring, and adaptive interventions.

Facial expressions and interpretation can vary by culture12 and
context13, highlighting the importance of using diverse stimuli with vali-
dated ground truth labels and normative human performance data.
Moreover, the need to evaluate performance across diverse actors (i.e., sex/
racial/ethnicity) is well recognized6,14.

Results
Agreement
Cohen’s Kappa (κ) across all stimuli and expressions was 0.83 (95% CI:
0.80–0.85) for ChatGPT 4o, 0.81 (95% CI: 0.77–0.84) for Gemini 2.0

Experimental, and 0.70 (95% CI: 0.67–0.74) for Claude 3.5 Sonnet. Specific
Kappas by emotion class can be found in Table 1 and Fig. 1b.

Confusion matrix
Overall accuracy across all actors and expressions was 86% (95% CI:
84–89%) for ChatGPT 4o, 0.84% (95% CI: 81–87%) for Gemini 2.0
Experimental, and 74% (95%CI: 71–78%) for Claude 3.5 Sonnet. Accuracy
by emotion class can be found in Table 1 and Fig. 1a. For ChatGPT 4o and
Gemini 2.0 Experimental, there was little variability in the performance
across different emotion categories, except for fear, which was misclassified
as surprise 52.50% and 36.25% of the time, respectively (see Figs. 2a-b
and 3a-b). For Claude 3.5 Sonnet, there was more variability in the per-
formance across different emotion categories with sadness being mis-
classified as disgust 20.24% of the time and fear being misclassified as
surprise 36.25% of the time (see Figs. 2c and 3c).

Lastly, there were no significant differences in model performance for
accuracy, recall, or kappa based on the sex or race of the actor (see Table 2).

Discussion
This study evaluated three leading LLMs, ChatGPT 4o, Gemini 2.0
Experimental, and Claude 3.5 Sonnet, on facial emotion recognition using
the NimStim dataset. ChatGPT 4o and Gemini 2.0 Experimental demon-
strated “almost perfect”15,16 agreement and high accuracy with ground truth
labels overall, with ChatGPT4o andGemini 2.0 Experimental performance
comparable to or exceeding human raters on some emotions. Claude 3.5
Sonnet exhibited lower overall agreement and accuracy as compared to the
other two models.

There was significant variability in Cohen’s Kappa and Recall within
and between emotion classes. All models performed relatively well on
Happy, Calm/Neutral, and Surprise, but showed difficulty recognizing Fear,
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often misclassifying it as Surprise. ChatGPT 4o achieved the best perfor-
mance across emotions and significantly outperformed Claude 3.5 Sonnet
on several emotions, including Calm/Neutral, Sad, Disgust, and Surprise.
Gemini 2.0 Experimental also outperformed Claude 3.5 Sonnet for Calm/
Neutral, Disgust, and Surprise. When comparing these models’ perfor-
mance to human observers in the NimStim dataset, the overall 95% con-
fidence intervals for kappa overlapped for humans, ChatGPT, and Gemini,
indicating similar levels of reliability across all emotion categories. In con-
trast,Claude’s 95%CIdidnot overlapwith that of humans, suggesting lower
overall reliability. At the level of individualmodel-by-emotion comparisons,
most 95% CIs overlapped; however, three exceptions emerged such that
ChatGPT 4o showed higher reliability than humans for Surprise and Calm/
Neutral, Gemini 2.0 Experimental outperformed humans for Surprise, and
Claude 3.5 Sonnet was less reliable than humans for Calm/Neutral.

Literature has previously shown LLM biases, but current findings
indicate that facial emotion recognition did not differ by sex or race. Fur-
thermore, prior CNN models on this dataset achieved moderate classifi-
cation performance (42% accuracy overall, with large emotion-specific
variability17. In contrast, zero-shot vision-language models without train-
ing, fine-tuning, or architectural customization may offer stronger
generalization.

Although these findings show promise for foundation models in
affective computing, limitations remain. All stimuli featured static
images18, actors aged 21–30, and most images were European Amer-
ican, whichmay limit generalizability. The context of verbal signals can
modify facial expression meaning, highlighting the need for future
multimodal emotion classification with auditory stimuli19.

Furthermore, although we selected the NimStim dataset because it is
accessible only to researchers upon request and has not appeared in
LLMpublications, therebyminimizing the likelihood it was included in
model training and positively biasing results, relying on a single dataset
may limit the generalizability of our findings. While we tested three
general-purpose models, specialized large models designed for facial
expression andmicro-expression recognition (e.g., ExpLLM,MELLM)
are also available. Future research should evaluate these models on this
dataset to compare their performance with general LLMs. Prompt
wording varied slightly across models due to interface constraints,
potentially affecting results. Specific healthcare applications may want
to fine-tune models or incorporate the Facial Action Coding System
into retrieval-augmented generation frameworks to improve recog-
nition of more subtle or complex emotions, such as fear. Under-
standing when and why models succeed or fail will be critical for
guiding responsible integration. Future research should evaluate open-
weight models like Llama or DeepSeek, which can support more
transparent evaluation, local deployment, and stronger privacy pro-
tections, important model considerations for clinical applications.

Overall, this study provides an initial benchmark for evaluating LLMs’
socioemotional capabilities. Although ChatGPT and Gemini demonstrated
reliability comparable to human observers across emotion categories, cau-
tion iswarrantedwhen translating thesefindings andusing general-purpose
LLMs in applied settings, as Claude, by contrast, showed lower overall
reliability. Further testing with ecologically valid, multimodal, and demo-
graphically diverse stimuli is essential to understand their limitations and
potential.

Table 1 | Description of validity ratings for LLM emotional expression estimates across all emotions

LLM Emotion Cohen’s Kappa
(95% CI)

Accuracy
(95% CI)

Recall
(95% CI)

Precision
(95% CI)

F1
(95% CI)

ChatGPT 4o Overall 0.83 (0.80–0.85) 0.86 (0.84–0.89) 0.85 (0.82–0.87) 0.86 (0.83–0.88) 0.83 (0.80–0.85)

Angry 0.88 (0.82–0.93) 0.88 (0.81–0.95) 0.94 (0.88–0.99) 0.91 (0.87–0.95)

Calm/Neutral 0.96 (0.95–0.99) 0.98 (0.96–1.00) 0.95 (0.92–0.98) 0.97 (0.95–0.98)

Disgust 0.85 (0.78–0.92) 0.85 (0.78–0.93) 0.91 (0.84–0.97) 0.88 (0.83–0.93)

Fear 0.45 (0.36–0.54) 0.42 (0.32–0.53) 0.87 (0.77–0.98) 0.57 (0.47–0.67)

Happy 0.93 (0.90–0.96) 0.93 (0.88–0.97) 1.00 (1.00–1.00) 0.96 (0.94–0.99)

Sad 0.84 (0.78–0.91) 0.87 (0.8–0.94) 0.88 (0.81–0.95) 0.87 (0.82–0.92)

Surprise 0.91 (0.89–0.93) 1.00 (1.00–1.00) 0.45 (0.35–0.55) 0.62 (0.53–0.71)

Gemini
Experimental 2.0

Overall 0.81 (0.77–0.84) 0.84 (0.81–0.87) 0.83 (0.8–0.85) 0.84 (0.82–0.87) 0.81 (0.79–0.84)

Angry 0.76 (0.69–0.84) 0.76 (0.67–0.85) 0.93 (0.87–0.99) 0.84 (0.78–0.9)

Calm/Neutral 0.90 (0.87–0.93) 0.95 (0.91–0.98) 0.86 (0.82–0.91) 0.9 (0.87–0.93)

Disgust 0.87 (0.82–0.93) 0.89 (0.82–0.96) 0.85 (0.77–0.92) 0.87 (0.82–0.92)

Fear 0.58 (0.49–0.69) 0.56 (0.45–0.67) 1 (1–1) 0.72 (0.63–0.81)

Happy 0.94 (0.91–0.98) 0.94 (0.89–0.98) 1 (1–1) 0.97 (0.94–0.99)

Sad 0.68 (0.60–0.77) 0.7 (0.6–0.8) 0.79 (0.69–0.88) 0.74 (0.67–0.81)

Surprise 0.91 (0.89–0.94) 0.98 (0.93–1) 0.48 (0.38–0.58) 0.64 (0.55–0.73)

Claude 3.5 Sonnet Overall 0.70 (0.67–0.74) 0.74 (0.71–0.78) 0.74 (0.7–0.77) 0.72 (0.69–0.75) 0.71 (0.69–0.74)

Angry 0.86 (0.81–0.91) 0.88 (0.81–0.95) 0.83 (0.76–0.91) 0.86 (0.81–0.91)

Calm/Neutral 0.69 (0.64–0.74) 0.71 (0.64–0.78) 0.92 (0.88–0.97) 0.8 (0.76–0.85)

Disgust 0.70 (0.63–0.77) 0.73 (0.64–0.83) 0.72 (0.63–0.82) 0.73 (0.66–0.8)

Fear 0.52 (0.44–0.61) 0.54 (0.43–0.65) 0.62 (0.51–0.74) 0.58 (0.5–0.66)

Happy 0.88 (0.85–0.91) 0.91 (0.85–0.96) 0.88 (0.83–0.94) 0.89 (0.86–0.93)

Sad 0.53 (0.45–0.63) 0.58 (0.48–0.69) 0.65 (0.55–0.76) 0.62 (0.54–0.69)

Surprise 0.72 (0.63–0.81) 0.82 (0.71–0.93) 0.39 (0.29–0.49) 0.53 (0.44–0.62)

Cohen’s Kappa = The agreement between ground truth and estimation; Accuracy = The proportion of correctly classified samples out of the total dataset; Recall = The fraction of samples belonging to a
given emotion that themodel correctly identifiesas that emotion; Precision = The fractionof samplespredicted asagiven emotion that truly belong to that emotion; F1 = Theharmonicmeanof precision and
recall, providing a single measure that balances both. At the class level, accuracy and recall are identical, therefore accuracy is only calculated across all classes overall.
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Methods
Study design
The current study was IRB-exempt from Beth Israel Deaconess Medical
Center (2025P000198).

Facial expression stimuli. The NimStim, a large multiracial image
dataset, was used as facial expression stimuli15. The NimStim Set of
Facial Expressions is a comprehensive collection of 672 images
depicting facial expressions posed by 43 professional actors (18
female, 25 male) aged between 21 and 30 years. The actors represent
diverse racial backgrounds, including African-American (10 actors),

Asian-American (6 actors), European-American (25 actors), and
Latino-American (2 actors). Each actor portrays eight distinct emo-
tional expressions: neutral, happy, sad, angry, surprised, fearful,
disgusted, and calm. Psychometric evaluations with naive observers
have demonstrated a high proportion correct at 0.81 (SD = 0.19; 95%
CI: 0.77–0.85), high agreement between raters (kappa = 0.79, SD =
0.17; 95% CI = 0.75–0.83), and high test-retest reliability at 0.84
(SD = 0.08; 95% CI: 0.82–0.86)15. This dataset has been extensively
utilized in various research studies with over 2000 citations20–23. The
authors have obtained written consent to publish images of models
#01, 03, 18, 21, 28, 40, and 45.

Fig. 1 | LLM model. a Agreement with NimStim human performance benchmark and b overall accuracy and recall by emotion class. Pink = NimStim Benchmark;
Blue = ChatGPT 4o; Green = Gemini 2.0 Experimental; Red = Claude 3.5 Sonnet.
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The NimStim dataset provides an independent benchmark, as it is
proprietary and restricted to authorized research institutions through
licensing agreements that explicitly prohibit public distribution. Our ver-
ification process, including extensive web searches, found no public

availability of the NimStim data, suggesting it was unlikely to have been
included in LLM training datasets. NimStim calm and neutral expressions
were recoded as calm_neutral, consistentwithTottenhamet al.15, whonoted
minimal perceptual differences between the two and treated either label as
correct. Results separating calm and neutral are provided in the Supple-
mentary Table 2.

Large language models
OpenAI GPT-4o Google Gemini 2.0 Experimental, and Anthropic Claude
3.5 Sonnet were used for facial expression recognition.

Procedures. All NimStim 672 images were individually uploaded twice to
eachLLMmodel for facial emotionprocessingusing theuser-facing interface,
rather than the API, due to the fact that at the time of testing, only OpenAI
offered the ability to batch multiple image inputs through the API for the
selected models. Standardizing the methodology with the user interface
ensured that the model’s response remained grounded in the initial
instruction. Prompts varied slightly across LLMmodels due to initial model
responses indicating an inability to follow the prompt, likely due to built-in
constraints and safety barriers (see Supplementary Table 1).

Analyses
All analyses were conducted with R v 4.3.1.

Agreement. We assessed agreement between each LLMmodel output and
the ground truth label by calculating a stratified bootstrap analysis of Cohen’s
kappa (κ), to address repeated measures within participants and imbalances
in emotion categories via oversampling. For eachof 1000bootstrap iterations,
participantswere sampledwith replacement, andwithin-participant emotion
categories were balanced via oversampling. We report mean κ and 95%
confidence intervals and interpreted agreement using standard thresholds
(moderate: 0.4–0.6, substantial: 0.6–0.8, and almost perfect: ≥0.815,16. We
applied the same oversampling bootstrap method to calculate κ for emotion
class, sex, and race categories separately. Finally, we benchmarked model
performance against κ values reported in the NimStim dataset by comparing
95% confidence interval overlap15.

Confusionmatrix, accuracy, recall, precision, and F1. To evaluate the
classification performance of each LLM, we computed confusion
matrices and derived standard metrics including accuracy, precision,
recall, and F1-score for eachmodel across emotion categories. Thematrix
quantifies the performance of the classification model by showing the
count of samples for each combination of actual and predicted emotions,
as well as the corresponding row and column totals to reflect the total
occurrences of each actual emotion across the dataset, the number of
times each emotion was predicted by the model represented by the
diagonal elements, and a grand total representing the overall number of
samples in the analysis. Note that the per-class balanced accuracy was
equivalent to recall, a common metric in multi-class classification.
Metrics were calculated per class and overall, with 95% confidence
intervals estimated. κ and accuracy were also stratified by sex and race.

Methods of model comparison to NimStim
We benchmarked the performance of LLM models against the κ reported
for untrained human observers in the NimStim dataset. However, it is
important to note that the original authors did not specify how they cal-
culated κ. Tottenhamet al. 15 presented κ for each emotion bymouth state of
mouth open and closed. To obtain a single κ estimate per emotion category
to allow for comparability to results in the current study, we aggregated κ
from the twomouth-states. First, κ and their associated standard deviations
(SD) were extracted separately for mouth open and closed. The mean κ for
each emotion was computed as the arithmetic average of the κ values from
mouth-states. To account for variability across mouth-state conditions, we
calculated the pooled SD using the square root of the mean of squared SD

Fig. 2 | Confusionmatrix. aChatGPT 4o, bGemini 2.0 Experimental, and cClaude
3.5 Sonnet.
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Fig. 3 | Alluvial plot. a ChatGPT 4o, b Gemini 2.0 Experimental, c Claude 3.5 Sonnet. Left column in ground truth and right column is model.

Table 2 | LLM agreement by sex and race

Model Variable Subgroup Cohen’s Kappa (95% CI) Accuracy (95% CI)

ChatG-
PT 4o

Sex Male 0.82 (0.79–0.85) 0.86 (0.83–0.9)

Female 0.83 (0.78–0.89) 0.87 (0.83–0.91)

Race European
American

0.81 (0.77–0.85) 0.85 (0.81–0.88)

African American 0.85 (0.79–0.90) 0.88 (0.83–0.93)

Asian American 0.87 (0.82–0.92) 0.91 (0.86–0.97)

Latino American 0.83 (0.67–0.96) 0.87 (0.75–0.99)

Gemini
2.0
Experi-
mental

Sex Male 0.79 (0.75–0.83) 0.83 (0.8–0.87)

Female 0.82 (0.77–0.87) 0.85 (0.81–0.89)

Race European
American

0.81 (0.77–0.86) 0.84 (0.8–0.87)

African American 0.78 (0.73–0.84) 0.83 (0.77–0.89)

Asian American 0.82 (0.71–0.92) 0.87 (0.8–0.94)

Latino American 0.81 (0.58–0.96) 0.84 (0.71–0.97)

Claude
3.5
Sonnet

Sex Male 0.72 (0.67–0.77) 0.77 (0.73–0.81)

Female 0.67 (0.62–0.72) 0.71 (0.66–0.76)

Race European
American

0.67 (0.62–0.72) 0.72 (0.67–0.76)

African American 0.72 (0.65–0.80) 0.77 (0.7–0.83)

Asian American 0.76 (0.65–0.85) 0.8 (0.72–0.88)

Latino American 0.75 (0.62–0.88) 0.74 (0.59–0.9)
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values, ensuring equal weighting across conditions. This approach provided
a single, representative estimate of κ for each emotion while preserving the
contributions from both facial configurations. Finally, to determine if the
LLMmodels performed similarly, we assessed whether the 95% confidence
intervals of theseκvalues overlap, indicating comparable (or different) levels
of agreement.

Data availability
TheNimStimdata is available to researchers upon request at https://danlab.
psychology.columbia.edu/content/nimstim-set-facial-expressions.

Code availability
All code is available on Open Science Framework at https://osf.io/dhkuy/.
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