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Abstract 
While artificial intelligence (AI) models have been developed to support coronary 

revascularization decision-making, health economic evaluation of such models has been rare. 

We conducted a retrospective health economic simulation modeling study using real-world 

data from 25,942 adult patients with obstructive coronary artery disease in Alberta, Canada to 

evaluate the economic value of an AI-enabled coronary revascularization decision support 

system. Clinicians deciding among medical therapy only, percutaneous coronary intervention, 

and coronary artery bypass grafting were simulated to be provided with AI predictions of 3- and 

5-year major adverse cardiovascular events and all-cause mortality. At a willingness-to-pay of 

$50,000 per quality adjusted life year (QALY), as many as 72.4% of all actual treatment 

decisions shifted to a different health economically optimized treatment, resulting in an 

average cost saving of $22,960 and a QALY gain equivalent to up to $22,439 per patient. Even in 

a conservative scenario where clinicians’ AI adoption was assumed to be limited, 53.2% of the 

actual decisions shifted, resulting in an average QALY gain equivalent to up to $32,214 per 

patient. AI can potentially optimize the health system level economic value of treatment 

decisions in the form of reduced costs stemming from fewer future complications and 

improved patient outcomes. 
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Introduction 
There are typically three treatment options for patients with coronary artery disease (CAD): 

percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), and medical 

therapy only (MT). Although several large-scale randomized controlled trials have been 

conducted to compare these treatment options (e.g., SYNTAX1 – PCI vs. CABG in left main or 3-

vessel disease; EXCEL2 – PCI vs. CABG in left main disease; FREEDOM3 – PCI vs. CABG in 

multivessel disease with diabetes; COURAGE4 – PCI vs. MT in stable CAD) to inform the clinical 

practice guidelines from the American College of Cardiology and the European Society of 

Cardiology,5 clinical equipoise remains in this treatment decision-making because each real-

world patient case is unique and the generalizability of the findings from these trials with strict 

inclusion and exclusion criteria is limited (e.g., a woman from an underrepresented minority 

group with a unique combination of co-morbidities may not adequately fit any of these trials). 

The CAD treatment decision becomes particularly challenging when complex disease and 

unique patient characteristics preclude a straightforward application of clinical practice 

guidelines. Previous studies have investigated and discussed the treatment decision-making 

challenges associated with left-main or multivessel disease, co-morbidities, complex coronary 

anatomies, and patient preference.5–8 

When evidence-based coronary revascularization decision-making is difficult, artificial 

intelligence (AI) can potentially present a viable alternative by providing personalized, data-

driven insights. Several studies have demonstrated promising performances of AI models that 

predicted mortality and major adverse cardiovascular event (MACE) outcomes for patients with 

CAD at various time points ranging from 30 days to 10 years.9–12 Their patient cohorts varied 
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substantially, ranging from patients who received coronary revascularization to those 

diagnosed with acute coronary syndrome to those with suspected CAD. Despite their 

heterogeneity in patient cohort, predictor variables, and predicted outcomes, these studies 

collectively demonstrate the potential of personalized AI-enabled outcome prediction for 

patients with CAD. 

While AI prediction performance has been investigated in the context of CAD and 

coronary revascularization, little is known about the economic value that AI can potentially 

bring to CAD care. Given that economic benefits are crucial to AI adoption in healthcare 

settings, particularly for health system administrators and payors who would require economic 

benefits as an important factor in their procurement or reimbursement decisions, this study 

aimed to perform health economic analysis of an existing AI-enabled clinical decision support 

system (CDSS) for coronary revascularization. Using a Markov chain simulation model and 

retrospective patient data, this study assessed the potential economic value of improving 

coronary revascularization decisions made by interventional cardiologists following diagnostic 

coronary angiography. 

Results 

Primary Analysis 

Table 1 shows that the net impact of pursuing health economically optimal treatments in 

Scenario 1, as recommended by Revaz AI, in the test set patients based on lifetime simulations. 

Revaz AI would have led to a net increase of 4,216 CABG procedures, with a decrease in MT (-

597) and PCI (-3,619). Overall, 2,151 of the 7,794 patients (27.6%) remained with their initial 
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treatment, while the remainder shifted. Although shifts occurred in all possible directions, shifts 

toward CABG were pronounced.  

Figure 1a illustrates the net change in system cost and quality adjusted life years (QALY) 

experienced (valued at the maximum willingness-to-pay of $50,000/QALY) in Scenario 1. The 

average impact was a cost saving of $22,960 and a QALY gain of 0.449 corresponding to a 

maximum willingness-to-pay of $22,439. However, the range of shifts was broad and for most 

patients whose treatment changed the impact was either an increase in costs that was cost 

effective given an improvement in outcomes or a decrease in costs greater than the willingness-

to-pay to avoid a decrease in health-related quality of life (HRQoL). Overall, applying Revaz AI 

was dominant over standard care as long as it was cost saving and outcome improving (i.e., at 

any price below $22,960 in this Scenario since Revaz AI improved outcomes on average). 

Table 2 and Figure 1b present the results from Scenario 2. As with Scenario 1, patients 

shifted in all possible directions, but the net flow from MT and PCI to CABG was exaggerated. 

Consequently, costs increased by $11,644, which included both immediate costs from shifting 

towards more intensive initial treatments as well as long-term costs due to increased survival. 

The average QALY gained increased significantly to 0.846, with an acceptable incremental cost-

effectiveness ratio of $13,764/QALY. 

Table 3 and Figure 1c show the results from Scenario 3. Compared to Scenarios 1 and 2, 

more patients retained their original treatment but Revaz AI still shifted 4,149 (53.2%) of all 

treatment decisions even in this conservative Scenario. The decision rule in Scenario 3 was also 

slightly cost decreasing ($1,910/patient) and resulted in greater QALY gains (0.644 
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QALY/patient) compared to strict adherence to the economically optimal treatment (Scenario 

1) but less than the impact of simply maximizing QALYs gained (Scenario 2). 

Secondary Analyses 

Figure 2 and Tables 4-6 show the results from the secondary analysis involving all patients in 

lifetime simulations. All results were similar to the primary analysis results, with the majority of 

treatment shifts favoring CABG. Scenario 1 led to a cost saving of $25,798 and a QALY gain of 

$21,072 on average. Scenario 2 resulted in greater QALY gains at the expense of increased 

costs. Scenario 3 led to substantial QALY gains with small cost savings. 

 Figure S1 and Tables S1-S3 report the results from the secondary analysis involving test 

set patients only in 5-year simulations. In Scenarios 1 and 3, Revaz AI caused the number of 

CABG procedures to decrease, whereas Scenario 2 led to a pronounced increase of CABG and 

decreases of MT and PCI. Five years was too short to observe substantial QALY gains across all 

Scenarios. Because of this, most patients (85%) did not shift to a different treatment in Scenario 

3. Similar results were found in the secondary analysis involving all patients in 5-year 

simulations, as shown by Figure S2 and Tables S4-S6. 

Table 2Figure 2Table 33Discussion 
Our results show that Revaz AI can improve the cost-effectiveness of actual CAD treatments in 

most cases, and that even with conservative assumptions regarding the probability of switching 

treatment decisions (Scenario 3), more than a half of the patients would have their course of 

treatment altered if Revaz AI were applied. The specifics of the shift will depend on the AI 

adoption criteria by which physicians weigh cost versus HRQoL for their patients, and the extent 
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to which they are, in practice, willing to allow Revaz AI’s recommendations to alter their 

judgement. Prospective clinical trials are required to determine that willingness in real-world 

conditions. 

 Previous Markov simulation-based health economic studies tended to focus on 

screening tools with a binary diagnostic decision.13–15 On the contrary, the present study 

assessed which of the three competing treatment paths was optimal in the presence of 

considerable uncertainty. As a result, we opted for extensive empirical simulations for each 

patient to accurately quantify the economic value of Revaz AI, at the expense of substantially 

increased computational costs. Our work demonstrates that more sophisticated computational 

techniques can enable health economic analysis of complex health care technologies such as AI-

based clinical decision support. 

The economic simulation model used treatment costs faced by a typical US healthcare 

system, and a standard US willingness to pay threshold of $50,000/QALY was used to represent 

the cost-HRQoL tradeoff decision-making in the US. Different jurisdictions would have different 

costs as well as different cost effectiveness thresholds, which would change the optimal 

therapy as recommended by the model in some cases and would alter the willingness to pay for 

benefits created. While the $50,000/QALY threshold has been common in the literature, higher 

thresholds ranging from $100,000 to $150,000/QALY have been increasing used in recent 

years.16 

Although the treatments shifted in all directions, CABG resulted in the greatest net gains 

across all three Scenarios in lifetime simulations, in line with the findings from our previous 

study that applied reinforcement learning to the same data set as this present study.17 
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However, in Scenarios 1 and 3 in 5-year simulations, treatments shifted away from CABG 

because 5 years was too short to observe improved outcomes relative to the increased upfront 

costs of CABG. This agrees with many of the major randomized controlled trials previously 

conducted, including SYNTAX,18 FREEDOM,19 BEST,20 and NOBLE.21 These trials reported lower 

costs for CABG than PCI mainly due to fewer repeat revascularizations and rehospitalizations in 

the long-term, despite CABG’s higher upfront costs. To support this finding, Table S7 shows 

temporally broken-down costs for nine example patients from the primary analysis for whom 

CABG was cost-minimizing. 

Our simulation model can be used in a real-world situation for a new live patient to 

project the costs and QALYs for the rest of their life or a specific time horizon for each of the 

three treatment options, since it does not ingest any future data. By comparing the costs and 

QALYs of each treatment, it is possible to select the health economically optimal treatment in 

the real-world. Such decision support information can provide an insightful perspective that 

complements Revaz AI which focuses on patient outcomes rather than economic value. 

Despite the rapidly increasing interest in AI innovations in healthcare, there has been a 

paucity of economic evaluations of health AI technologies in the literature.22,23 The few studies 

that have examined the economic value of AI in healthcare tended to focus on medical imaging 

rather than clinical decision support, and on cost reduction rather than long-term impact.22 It 

has also been acknowledged that health economic evaluation of AI is challenging due to its 

rapid technological advances, lack of generalizability, need for reconfigured clinical workflows, 

and potential to exacerbate health disparities.24 The present study makes meaningful 

contributions to this understudied area of health AI research. Furthermore, health economic 
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evaluations like this present study can potentially facilitate adoption and implementation of AI 

innovations in healthcare by supporting economic rationale, which is as important as the 

technology itself for real-world procurement decisions. 

This study has several limitations. First and foremost, Revaz AI outcome probabilities 

were assumed to be a correct representation of the future outcomes for the patient for whom 

they were generated. Although Revaz AI was trained using a large-scale multi-center data set 

and its prediction performance is state-of-the-art,25 any inaccuracy or bias in Revaz AI 

predictions would reduce the value of Revaz AI in directing care. Additionally, Revaz AI was 

trained on a data set where clinicians incorporated comprehensive clinical factors and patient 

preference to arrive at a defined revascularization strategy, which could influence its 

applicability in a prospective cohort. Given the reliance on the model’s accuracy, the results 

presented here should be interpreted as a ceiling for Revaz AI’s potential value. 

Second, the results assume that Revaz AI could and would be applied in all cases, and 

that its optimal treatment recommendations would be followed. In practice, physicians and 

patients may diverge from Revaz AI’s recommendations for several reasons. For example, from 

a general health system perspective, Revaz AI recommended an overall shift towards increasing 

CABG volumes, primarily at the expense of PCI, based on lifetime simulations. In practice, this 

may not be feasible because: 1) the patient may not be a good surgical candidate (e.g., older 

frail patients) or prefer less invasive procedures; 2) CABG may not be technically feasible due to 

the coronary anatomy or lesion locations; 3) patients and physicians may choose to weigh the 

risks of CABG differently than Revaz AI for reasons not discernable in the data ingested by 

Revaz AI; or 4) the surgical capacity of the health system may be limited. As with the previous 
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limitation, the results from this study should be considered a ceiling, with each case in which an 

‘optimal’ strategy is not pursued reducing the potential overall value of Revaz AI. 

Third, while the econometric simulation model relied on trial data (primarily SYNTAX,1 

FREEDOM,3 and EXCEL2) which covered a broad range of populations, the data on which Revaz 

AI was trained and the population for whom the benefit estimates were calculated represented 

specifically the population of the province of Alberta, Canada.  

Fourth, the trials on which the simulation model was based are more than a decade old, 

and the more recent ISCHEMIA trial26 has not yet published economic evaluation results. Any 

significant developments in MT, PCI, or CABG procedures would also change the economic 

results.  

Fifth, there were many underlying assumptions in the simulation model and three 

Scenarios (e.g., proportionality of cause-specific deaths to baseline all-cause mortality risk, the 

QALY threshold of 0.2 in Scenario 3). The computational costs associated with the extensive 

simulation modeling in this study prohibited complete sensitivity analysis on all assumptions, as 

each new combination of assumptions and model parameters would require a repeat of the 

entire simulation. 

Sixth, our lifetime simulations assumed that treatment effects would persist for the 

remainder of each patient’s lifetime, beyond the 5-year prediction horizon of Revaz AI. In fact, 

the vast majority of our patient cohort survived beyond 5 years as depicted in Figure S3 that 

shows the survival curves for actual and health economically optimal (Scenario 1) treatments in 

the primary analysis. This is why we censored simulations at 5 years in the secondary analyses, 

but this unrealistically underestimated the economic benefits of Revaz AI since most patients 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 
 

would survive beyond the first 5 years to experience long-term benefits. Given these respective 

limitations, the lifetime and 5-year simulations collectively provide complementary findings. 

Lastly, this study only focused on the economic value at the patient level stemming from 

optimized revascularization decisions. Initial infrastructure investments and operational costs 

related to using Revaz AI at the point of care could be substantial but were excluded. 

All these limitations should be addressed with further research, particularly through 

clinical trials of Revaz AI to observe real-world impacts on clinical decision-making and any 

changes in patient outcomes as Revaz AI is introduced to clinical practice. 

This retrospective health economic simulation modeling study showed that AI-enabled 

clinical decision support can optimize many coronary revascularization decisions, leading to 

substantial cost savings and improved patient outcomes, even when limited clinicians’ AI 

adoption was assumed. The findings from this study demonstrate that the economic value of 

utilizing AI-based decision support can be substantial. Randomized clinical trials are warranted 

to validate the real-world impacts of Revaz AI on clinician decision-making, costs, and patient 

outcomes. 

Methods 

AI-enabled CDSS 

We conducted health economic analysis on an existing AI-enabled CDSS named Revaz AI, the 

development and prediction performance evaluation of which have been described 

previously.25 In this study, we evaluated the Revaz AI models that predict the likelihoods of 3- 

and 5-year all-cause mortality and 3-point MACE (heart failure, myocardial infarction [MI], and 
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stroke) post-diagnostic coronary angiography. These models were developed using a 

comprehensive data set from over 42,000 patients who underwent coronary angiography at 

one of the three hospitals with cardiac catheterization labs in Alberta, Canada (Foothills 

Medical Centre, University of Alberta Hospital, and Royal Alexandra Hospital) from 2009 to 

2019, constructed using linked patient data from the APPROACH Registry27 and administrative 

health databases. Revaz AI is designed to help decide among PCI, CABG, and MT for patients 

with obstructive CAD (defined as at least 50% or 70% stenosis in the left main or other coronary 

vessels, respectively). Patients presenting with ST elevation MI (STEMI) are ineligible for Revaz 

AI due to its emergent nature that requires immediate PCI.  

Patient Cohort 

Our economic analysis was based on real-world data from 25,942 patients who underwent 

diagnostic coronary angiography in Alberta, Canada between 2009 and 2019. This was a subset 

of the data set used to develop Revaz AI with the following inclusion criteria: 1) 5-year follow-

up to enable all outcome predictions, 2) age ≥ 18 years, 3) presentation of non-ST elevation MI 

(NSTEMI), stable angina, or unstable angina (STEMI was excluded since Revaz AI cannot be used 

for patients presenting with STEMI, as described in the previous section), and 4) Alberta 

residents. Table S8 tabulates the patient characteristics used in the simulation model. 

The data set of 25,942 patients was randomly partitioned at the patient level into a 70% 

training set and a 30% test set (7,794 patients). The training set was used to train prediction 

models, and the primary analysis only utilized the patients in the test set to focus on Revaz AI 

predictions for patients unseen during model development. The secondary analyses used all 

25,942 patients to leverage the larger sample size. 
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Health Economic Simulation Overview 

The simulation model assumed that patients undergoing diagnostic coronary angiography have 

the possibility of receiving any of the three treatment options: PCI, CABG, and MT. In practice, 

as shown in Figure S4, there would be multiple decision points and factors which might 

influence treatment choice. For simplicity, however, this study condensed the decision process 

to one hypothetical point in which diagnostic angiography has been performed and a treatment 

decision must now be made.  

For each patient in the data set, Revaz AI predicted a set of outcome probabilities 

conditioned on treatment. Those outcome probabilities were then fed to a Markov simulation 

model (see Figure S5 for the model structure) with a quarter year cycle length and a lifetime 

horizon. Each of the three treatment paths was simulated 500 times with the same base 

outcome probabilities. Once all 1,500 (500 iterations/treatment x 3 treatments) simulations of 

each patient were completed, we averaged the rest of life costs and QALYs across all 500 

iterations for each of the three treatments. The treatment with the best average net monetary 

benefit when valuing gained quality adjusted life years (QALYs) at $50,000 per QALY, a 

commonly used willingness-to-pay threshold in health care cost-effectiveness analysis,28 was 

deemed 'optimal'. If the optimal treatment was not the treatment actually pursued, the patient 

was recommended to switch from the actual to the optimal treatment, and the difference in 

net monetary benefit was the value that could potentially have been created, had Revaz AI 

been used in selecting the patient's treatment. 
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Health Economic Simulation Model Details 

Patients entered the model at their actual age at the time of angiography and with their 

actual indication for angiography (stable angina, unstable angina, or NSTEMI), history of MI, and 

extent of CAD (single vessel [SV], multivessel [MV], or left main [LM]). Event probabilities not 

directly taken from Revaz AI were extracted from the literature and are shown in Table S9.  

The first cycle of the model involved the patient’s initial treatment and follow-up. PCI 

and CABG patients had a risk of peri- or immediate post-operative death, while patients with 

MT were assumed to survive diagnostic catheterization. Patients could also experience a MACE 

or death from cardiac or non-cardiac causes in the first cycle. 

Following initial treatment, surviving patients were assigned to a stable post-treatment 

state. From that state, in each subsequent cycle, they could require new or repeat 

revascularization without an MI (assumed to be due to new or recurrent stable angina), 

experience a MACE, remain stable, or die of non-cardiac causes. Overall MACE and death 

probabilities were individual and taken from the Revaz AI predictions for that patient and the 

selected treatment modality. Patients experiencing a MACE were randomly assigned to one of 

MI (which could also result in repeat revascularization), stroke, or hospitalization for a new 

onset of heart failure. Repeat revascularization probabilities were taken from the literature and 

varied depending on the patient’s initial treatment. 

Patients assigned to MACE or to revascularization without MI also had a risk of death 

resulting from that event, in which case they were assigned directly to the death state at the 

conclusion of the current cycle. Individuals who survived a MACE were assigned back to the 

stable condition but with altered ongoing costs and quality of life (see next subsections). 
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Each patient’s probability of death concurrent with another event was scaled based on 

their death risk in that cycle relative to the population average risk in that cycle: 

P (Death from MACE i,c) = P (Cardiac death) x P (Death i,c) / P (Death c) 

P (Peri-operative death i,c) = P (Peri-operative death) x P (Death i,c) / P (Death c) 

where P (Death from MACE i,c) is the probability of dying conditional on having suffered a MACE in that 

cycle, where i indicates that a risk is particular to an individual, and c indicates that it is 

particular to a model cycle. P (Cardiac death) is the expected proportion of all deaths in the cohort 

based on literature reports of the proportion of PCI or CABG study patients whose proximate 

cause of death is MI, stroke, or heart failure. P (Peri-operative death) is the population level probability 

of death either during a revascularization procedure or before discharge from hospital 

following such a procedure. P (Death i,c) is all-cause death probability for that individual in a given 

model cycle, and P (Death c) is the average death probability of all patients in that cycle. P (Death from 

MACE i,c) and P (Peri-operative death i,c) were capped such that their sum could not be greater than 95% 

of P (Death i,c) . The probability of death from other causes was calculated as: 

P (Death other i,c) = P (Death i,c) - P (Death from MACE i,c) + P (Peri-operative death i,c) 

so that the overall probability of all cause death in the cycle was preserved as initially 

forecasted by Revaz AI.  

It was assumed that MACE, death, and non-MI-related revascularization rates were 

higher during the first model cycle, as observed in the Kaplan–Meier curves of SYNTAX1 and 

other trials. A higher proportion of 3-year MACE and mortality risks was assigned to the first 

model cycle, covering initial treatment and short-term recovery. Remaining 3-year mortality 

and MACE probabilities were then divided evenly across the remaining 11 cycles in that period.  
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Probabilities from cycles 13 through 20 were calculated by subtracting the individuals’ 

Revaz AI-derived 3-year probability from their 5-year probability and assigning the difference 

evenly across those 8 cycles. In some cases, Revaz AI’s estimated 5-year probabilities of either 

mortality or MACE were similar to or marginally lower than the same individual’s 3-year 

probabilities. To account for this, lower bound mortality probabilities were calculated based on 

the annual death risk for members of the Canadian general population aged 65-70, translated 

into a quarterly probability. Lower bound MACE risks were calculated based on the annual 

incidence of MI or stroke among Canadians aged 65-70, again translated into quarterly 

probabilities. Individuals faced the higher of either the lower bound risk or their individual 

predictions from Revaz AI in each cycle.  

In cycles beyond 20, cycle 20 risks were repeated, adjusted based on the change in 

relative risk of mortality between the patient’s starting and current age in the Canadian general 

population.29 For example, the annual death probabilities for a 65-69 year old, 70-74 year old, 

and 75-79 year old in Canada are 1.14%, 1.77%, and 2.90%, respectively. An individual who 

entered the model at age 65 would have their cycle 20 death risk multiplied by 1.77/1.14 = 1.55 

in cycle 21 when they would be 70, and 2.90/1.14 = 2.54 in cycle 41 when they would be 75. 

Death risk was set to 100% in individuals older than 100 years to account for the lack of quality 

risk data at extreme ages. This had a minimal impact on overall results, as the probability of 

surviving to 100 was very low for all patients. 

The risk of revascularization without MI was based on initial treatment modality, 

occlusion type, and observed rates in the literature. Risks were assumed to be tripled in the first 
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cycle. Individuals who required repeat revascularization without MI were returned to their 

previous state following treatment if they did not experience death in the short term.  

In patients assigned to repeat revascularization, either with or without MI, treatment 

modality was randomly assigned to be one of either PCI or CABG. This assignment was random 

because updated Revaz AI predictions would depend on changes in patient health state 

between the initial and repeat treatments, which were not available.  

Individual-level Revaz AI risks were consistent across model iterations, but all other 

parameters were randomly sampled from a normal distribution. Standard deviations were set 

relative to mean values; for example, a 30% probability with a relative standard deviation of 0.2 

had a standard deviation of 6%. Time-related probabilities are reported as annual but were 

converted into quarterly by the model. 

For clarity, Table S10 shows example simulation-level data for five patients from the 

primary analysis. Table S11 shows the results from five simulation runs for one of the five 

patients.  

Costs 

Table S12 reports all costs used in the simulation model in 2024 US dollars. Where necessary, 

costs were converted to US dollars at purchasing power parity30 and inflated to 2024 prices 

using the Bureau of Labor Statistics’ Consumer Price Index for Medical Care.31 

Initial treatment cost and the cost of repeat revascularization during follow-up were 

based on trial data averaged across the EXCEL, SYNTAX, and FREEDOM trials.2 MT patients were 

assumed to receive diagnostic catheterization. Additionally, PCI procedures incurred a 

consumable cost for second generation drug eluting stents, with the number of stents 
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determined by the type of occlusion. Acute procedure costs were assumed to be gamma 

distributed, with variance equal to 5 times the mean. Values were simulated at the individual 

procedure level. 

Ongoing post-procedure management costs were taken from the literature and included 

outpatient care, rehabilitation where necessary, and physician fees. Additionally, patients were 

assumed to follow a drug regimen for the remainder of their lives based on their diagnosis and 

treatment. Patients who presented with stable angina and received revascularization were 

assigned aspirin 325mg, a statin (atorvastatin 40mg), and an ACE inhibitor (lisinopril 5mg). If 

those patients were assigned to MT, a beta blocker (metoprolol 100mg) and a calcium channel 

blocker (amlodipine 5mg) were added. For patients who presented with unstable angina or 

NSTEMI, regardless of treatment, clopidogrel 75mg was added. 

Patients who suffered a MACE had additional costs applied. Each MACE had an initial 

cost of treatment, as well as an ongoing follow-up cost for the remainder of the patient’s life. 

Patients could suffer repeated MACEs of the same type and would accrue acute treatment 

costs each time, but ongoing costs did not increase with repeat episodes of the same MACE 

type.  

All ongoing costs varied randomly at the simulation level. Draws were normally 

distributed with a standard deviation equal to 10% of the mean. Half-cycle corrections were 

applied to ongoing costs in cycles where the patient died.  

Utilities 

Health related quality of life (HRQoL) was estimated based on a model calibrated using the 

English general population.32 Base HRQoL utility was estimated based on patient age and sex, 
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representing a typical utility value for a healthy adult (Figure S6). Modifiers were then applied 

based on the individual’s health conditions and treatment history. Patients could have multiple 

modifiers applied at once to reflect a history of multiple conditions and the impact of 

treatment. Cardiac health states were assumed to include MT, and no treatment modifier was 

applied for patients receiving MT for their condition. 

The base utility was multiplied by modifiers indicating whether the patient had received 

either PCI or CABG in the cycle before or in the past, relative to expected HRQoL under MT (it 

was assumed that no patient received no intervention). Modifiers were based on reported 

changes in HRQoL post-treatment for patients in the EXCEL trial.33 Table S13 summarizes the 

utility modifiers used in the model. 

Base utilities were retained across simulations, but health state modifiers were 

randomly simulated with a normal distribution and standard deviation equal to 1% of mean. 

Treatment modifiers were simulated with a normal distribution and a standard deviation equal 

to 0.5% of the mean. 

Primary and Secondary Analyses 

The primary analysis focused on the test set patients with lifetime simulations. The 

secondary analyses investigated: 1) the test set patients with 5-year simulations; 2) all patients 

with lifetime simulations; and 3) all patients with 5-year simulations. Although the training set 

had been used to train the prediction models, all patients were used to produce more stable 

results based on the larger sample size since the focus of this study was health economic 

simulation rather than accurate estimation of prediction performance. Five-year simulations 

were conducted to exclude the assumed long-term effects of the selected treatment beyond 
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the longest prediction horizon of Revaz AI, although this would underestimate the true QALY 

and cost benefits since most patient would survive longer than 5 years, as shown by Figure S3. 

Simulation Scenarios 

For each primary or secondary analysis, three scenarios were simulated. The same 1,500 

simulation runs per patient were used in all three Scenarios to allow for a direct comparison 

among the Scenarios.  

In Scenario 1, physicians were assumed to make the health economically optimal 

decision while adhering to a maximum willingness-to-pay threshold of $50,000 per QALY. 

Scenario 2 assumed that physicians maximized patient expected QALY with no cost threshold, 

because, in practice, physicians are likely less sensitive to health economic measures and 

primarily interested in maximizing benefit for their individual patients. Scenario 3 was an 

investigation of AI adoption where physicians pursued their originally selected treatment unless 

Revaz AI recommended an alternative which added at least 0.2 QALY to the patient’s expected 

rest of life HRQoL. As in Scenario 2, physicians never opted for a treatment that resulted in 

worse outcomes. 

Research Ethics and Reporting Guidelines 

This study was conducted in accordance with the Declaration of Helsinki and approved by the 

Conjoint Health Research Ethics Board at the University of Calgary (REB20-1879). The need for 

informed consent was waived due to the large number of patients involved in the study.  

This study followed the Consolidated Health Economic Evaluation Reporting Standards 

for Interventions that Use AI (CHEERS-AI)34 checklist (see Supplementary Information). 
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Tables 
Table 1: Actual treatment compared to economically optimal treatment in Scenario 1 in the 

primary analysis (test set patients only, lifetime simulations). Of the total of 7,794 patients, 

5,643 (72.4%) had their actual treatments altered. MT: medical therapy only, PCI: percutaneous 

coronary intervention, CABG: coronary artery bypass graft. 

  Actual Treatment 

  MT PCI CABG 

Optimal 
Treatment 

MT 253 701 142 

PCI 226 970 108 

CABG 1,214 3,252 928 

Net Gain/Loss -597 -3,619 +4,216 

 

Table 2: Actual treatment compared to QALY maximizing treatment in Scenario 2 in the primary 

analysis (test set patients only, lifetime simulations). Of the total of 7,794 patients, 6,107 

(78.4%) had their actual treatments altered. MT: medical therapy only, PCI: percutaneous 

coronary intervention, CABG: coronary artery bypass graft.  

  Actual Treatment 

  MT PCI CABG 

QALY 
Maximizing 
Treatment 

MT 4 9 0 

PCI 104 550 45 

CABG 1,585 4,364 1,133 

Net Gain/Loss -1,680 -4,224 +5,904 

 

Table 3: Actual treatment compared to ‘sticky’ physician treatment decisions in Scenario 3 in 

the primary analysis (test set patients only, lifetime simulations). Of the total of 7,794 patients, 

4,149 (53.2%) had their actual treatments altered. MT: medical therapy only, PCI: percutaneous 

coronary intervention, CABG: coronary artery bypass graft. 

  Actual Treatment 

  MT PCI CABG 

Decision Rule 
Treatment 

MT 271 13 0 

PCI 214 2,204 8 

CABG 1,208 2,706 1,170 

Net Gain/Loss -1,409 -2,497 +3,906 
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Table 4: Actual treatment compared to economically optimal treatment in Scenario 1 in the 
secondary analysis that analyzed all patients in lifetime simulations. Of the total of 25,942 
patients, 18,579 (71.6%) had their actual treatments altered. MT: medical therapy only, PCI: 
percutaneous coronary intervention, CABG: coronary artery bypass graft. 

  Actual Treatment 

  MT PCI CABG 

Optimal 
Treatment 

MT 860 2,417 470 

PCI 881 3,464 428 

CABG 4,009 10,374 3,039 

Net Gain/Loss -2,003 -11,482 +13,485 

 

Table 5: Actual treatment compared to QALY maximizing treatment in Scenario 2 in the 

secondary analysis that analyzed all patients in lifetime simulations. Of the total of 25,942 

patients, 20,200 (77.9%) had their actual treatments altered. MT: medical therapy only, PCI: 

percutaneous coronary intervention, CABG: coronary artery bypass graft.  

  Actual Treatment 

  MT PCI CABG 

QALY 
Maximizing 
Treatment 

MT 20 51 0 

PCI 464 1,987 202 

CABG 5,266 14,217 3,735 

Net Gain/Loss -5,679 -13,602 +19,281 

 

Table 6: Actual treatment compared to ‘sticky’ physician treatment decisions in Scenario 3 in 

the secondary analysis that analyzed all patients in lifetime simulations. Of the total of 25,942 

patients, 13,451 (51.9%) had their actual treatments altered. MT: medical therapy only, PCI: 

percutaneous coronary intervention, CABG: coronary artery bypass graft. 

  Actual Treatment 

  MT PCI CABG 

Decision Rule 
Treatment 

MT 930 35 1 

PCI 830 7,655 30 

CABG 3,990 8,565 3,906 

Net Gain/Loss -4,784 -7,740 +12,524 
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Figure Legends 
 

Figure 1: Impact of Revaz AI on individual cost and health related quality of life outcomes in the 

primary analysis that analyzed the test set patients only in lifetime simulations for: a) Scenario 1 

where the treatment that resulted in the maximum net monetary benefit created over the 

lifetime of the patient (i.e., QALYs valued at $50,000/QALY minus cost) was deemed optimal, b) 

Scenario 2 where the treatment that maximized QALY without a cost threshold was deemed 

‘health maximizing’, and c) Scenario 3 where the ‘decision rule’ was that physicians followed 

Revaz AI only when there was a QALY gain of at least 0.2.  Each point represents an individual 

patient. The x-axis represents the lifetime QALYs of the selected treatment in each Scenario 

minus that of the actual treatment, valued at $50,000/QALY. The y-axis represents the lifetime 

cost of the selected treatment minus that of the actual treatment. The net monetary benefit 

per patient under a given scenario is equal to mean QALY gain times $50,000/QALY minus mean 

cost difference (i.e., the two values shown at the blue diamond). WTP: willingness to pay, QALY: 

quality adjusted life year. 

 

Figure 2:  Impact of Revaz AI on individual cost and health related quality of life outcomes in the 

secondary analysis that analyzed all patients in lifetime simulations for: a) Scenario 1 where the 

treatment that resulted in the maximum net monetary benefit created over the lifetime of the 

patient (i.e., QALYs valued at $50,000/QALY minus cost) was deemed optimal, b) Scenario 2 

where the treatment that maximized QALY without a cost threshold was deemed ‘health 

maximizing’, and c) Scenario 3 where the ‘decision rule’ was that physicians followed Revaz AI 

only when there was a QALY gain of at least 0.2.  Each point represents an individual patient. 

The x-axis represents the lifetime QALYs of the selected treatment in each Scenario minus that 

of the actual treatment, valued at $50,000/QALY. The y-axis represents the lifetime cost of the 

selected treatment minus that of the actual treatment. The net monetary benefit per patient 

under a given scenario is equal to mean QALY gain times $50,000/QALY minus mean cost 

difference (i.e., the two values shown at the blue diamond). WTP: willingness to pay, QALY: 

quality adjusted life year. 
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