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Abstract

Understanding causal mechanisms in deep learning is essential for clinical adoption,
where interpretability and reliability are critical. Most existing AI systems act as
black boxes, limiting transparency in medicine. We propose a causal inference
framework integrated into neural networks to assess the influence of individual
features on predictions. Using a prospective pediatric ophthalmology cohort of
over 3,000 children with longitudinal follow-up, our method estimates direct and
indirect causal effects through intervention. Applied to myopia progression in
children, our approach not only achieved good performance but also identified
clinically plausible causal pathways. Refutation experiments with multiple fal-
sification strategies confirm the robustness and reliability of causal effects. The
approach is model-agnostic and suitable for digital health interventions requiring
explainability. By incorporating unit-level causal reasoning into deep learning,
this work advances transparent and reliable AI systems aligned with the goals of
precision medicine and equitable healthcare.

Keywords: Causal Inference, Neural Network Attribution , Interpretable Deep
Learning, Digital Health, Pediatric Ophthalmology

1 Introduction

Myopia has become the most prevalent refractive disorder and a leading cause of

vision impairment globally [1, 2]. In East Asia, the adolescent myopia rate has reached

alarming levels of 80–90%, with up to 20% developing high myopia—associated with

sight-threatening complications such as retinal detachment and macular degeneration [3–

5]. The increasing incidence in younger populations calls for a deeper understanding of

the multifactorial etiology of myopia [6–8].

Traditional statistical methods, such as linear and logistic regression, have been

widely used to explore myopia-related risk factors [9, 10]. However, these models

primarily capture correlations and often fail to represent the complex, nonlinear

interactions inherent in biological systems [11–13]. Furthermore, few studies incorporate

causal frameworks, limiting mechanistic insight and weakening the translational value

for designing targeted interventions [14].

With the rise of digital medicine, artificial neural networks (ANNs) offer an oppor-

tunity to leverage large-scale, real-world health data for predictive modeling [15–18].

Nevertheless, deep learning models are frequently criticized for their ”black-box” nature,

making it difficult to explain predictions or guide clinical action [19–23]. To address

this limitation, post-hoc interpretability techniques such as SHAP (SHapley Addi-

tive exPlanations) have been widely adopted to attribute model outputs to input

features [24, 25]. While such methods improve transparency, they primarily provide
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correlation-based explanations and do not fully capture the underlying causal mech-

anisms. Interpretability and reliability are particularly essential in medical settings,

where clinical decisions must be transparent, justifiable, and safe.

To bridge this gap, there is growing interest in combining causal inference with

neural architectures, enabling not only accurate predictions but also insight into the

underlying mechanisms [26–29]. Such approaches are especially valuable for digital

interventions, where understanding the impact pathways of behavioral, physiological,

or environmental factors can inform scalable and personalized healthcare strategies.

In this study, we propose a causal modeling framework that integrates intervention-

based causal attribution within deep neural networks. Using a prospective pediatric

ophthalmology cohort tracking over 3,000 children longitudinally, our framework disen-

tangles both direct and indirect causal effects of input features on myopia progression,

enhancing model transparency and clinical interpretability.

To achieve this, we categorize input neurons into three functional types—Isolated,

Pure, and Confounded Units—based on their positions in the learned causal structure.

We design targeted attribution strategies for each, including a domain-adaptive meta-

learning approach for estimating causal effects under confounding bias. In addition to

robust predictive performance, our model enables the reconstruction of interpretable

causal pathways within the network, offering a mechanistic view of how input signals

propagate through the architecture.

Importantly, our approach is model-agnostic and can be generalized to other clinical

contexts that demand trustworthy, explainable AI. By integrating deep learning, causal

reasoning, and real-world validation, our work contributes to the development of

reliable digital interventions that meet the interpretive and ethical standards of modern

healthcare.

2 Results

2.1 Neurons’ Causal Structure Reveals Functional Categories

of Input Neurons

The causal explanation framework proposed in this study is model-agnostic, requiring

that the prediction model be trained prior to causal analysis. We first constructed a

binary classification model for myopia prediction using a feedforward neural network (as

shown in Fig. 1b) trained on a pediatric ophthalmic cohort dataset collected via annual

surveys in City Anyang, Henan Province, China, from 2011 to 2017 (see Section 4.1).

As illustrated in Fig. 1a, the model input consists of 16 variables spanning behavioral,
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physiological, dietary, environmental, and genetic domains (Table 1). The result of

this model for myopia classification is summarized in Table 2, the model achieved an

accuracy of 0.933, indicating strong discriminative ability between the two classes.

This result confirms that the binary myopia classification outcomes provide a robust

foundation for subsequent causal attribution analyses, ensuring that the interpretability

of the model is built upon clinically reliable predictions.

To uncover the underlying causal relationships among input features, we applied

a constraint-based causal discovery algorithm combining the PC algorithm [30] with

Degenerate Gaussian Scoring and dimensionality reduction via PCA. PCA was used

solely as a preprocessing step to mitigate collinearity and improve numerical stability in

conditional independence testing, while ensuring that the final causal graph is defined

exclusively over the original 16 clinical and physiological variables (as shown in Fig. 1c,

d). The final causal graph was constructed using the TETRAD software suite [31].

As shown in Fig. 1e, the resulting directed acyclic graph (DAG) reveals 15 causal

edges connecting 10 of the 16 variables. Notably, six variables — parental myopia

(PWG), gender (GENDER), near and distance accommodative ability (NAR, DAR),

and corneal curvature (K1, K2) — were found to be direct causes of both axial length

(AL) and cycloplegic refraction (CR). Height and red meat consumption (REDM)

showed direct effects on AL only, while AL was identified as a direct cause of CR.

Based on Fig. 1f, we categorized the corresponding input-layer neurons in the

trained neural network into three structurally distinct types: Isolated Units, Pure

Units, and Confounded Units. This categorization is not merely descriptive; rather,

it enables a principled decomposition of causal contributions within the neural network.

By aligning unit types with distinct structural roles in the causal graph, we introduce

a unified framework to estimate causal effects under different confounding conditions,

thus bridging structural causal inference and neural attribution in a theoretically

grounded manner.

Isolated Units (Fig. 1f left one) are input neurons that do not have any causal

relation with other input features. Their contributions to the prediction model are

assumed to be independent. Six variables fall under this category: CB, EGG, NW,

PULSE, WHIM, and DTO.

Pure Units (Fig. 1f middle one) are input neurons that influence the output only

through downstream mediators. For example, variable A causally influences variable B,

which in turn affects the prediction output. This corresponds to a chain-like causal

path. Variables such as PWG, GENDER, NAR, DAR, K1, K2, HEIGHT, and REDM

are identified as Pure Units based on their positions in the causal graph.
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Confounded Units (Fig. 1f right one) are input neurons whose effect on the output

is entangled with that of another causally related variable, forming a v-structure or a

backdoor path. In our study, AL and CR are identified as Confounded Units, both

influenced by multiple upstream variables and interlinked causally.

This categorization is central to the subsequent causal attribution analysis. By

structurally disentangling how input neurons contribute to predictions, we establish a

scalable and interpretable framework for assessing causal roles within neural networks

in medical applications.

2.2 Causal Attribution Experiments on Isolated Units Reveal

Consistency and Deviation from Prior Knowledge

We performed causal attribution experiments on the six Isolated Units identified in

the causal graph to assess the individual causal effect of each input-layer neuron on

the output predictions of the trained neural network. In this context, attribution refers

specifically to estimating the average treatment effect (ATE) of a single input neuron

on each output class in the binary classification task (myopic vs. non-myopic).

Each Isolated Unit was treated as an intervention variable and directly input into a

causal attribution algorithm to quantify its effect. Since the model produced a binary

prediction for myopia status (Yes/No), we conducted separate interventional analyses

on both output classes.

Pulse rate (PULSE) has been previously reported to be negatively associated with

myopia risk [32–35], possibly due to increased ocular blood flow influencing eye growth.

As shown in Fig. 2a, increasing the intervention value of PULSE leads to a rising trend

in the ’No’ (non-myopic) output neuron’s ATE and a decreasing trend in the ’Yes’

(myopic) output neuron’s ATE. This suggests a negative causal relationship between

PULSE and myopia, in agreement with prior clinical findings and indicating that the

model has accurately captured this relationship.

In contrast, carbonated beverage consumption frequency (CB) and egg consumption

frequency (EGG) have been reported to be positively associated with myopia[36–39].

However, as shown in Fig. 2b, c, the model exhibits an inverted trend: CB shows a

positive effect on the ’No’ neuron and a negative effect on the ’Yes’ neuron, while

EGG shows the opposite pattern. These observations indicate that the model’s learned

causal behavior for these features is inconsistent with established domain knowledge.

A likely explanation is the uneven distribution of CB and EGG consumption across

subgroups in our dataset, which may have influenced the model’s learned patterns.
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In summary, among the six Isolated Units, the model correctly captures causal

trends for PULSE and DTO, but misrepresents those for NW, CB, and EGG. The

effect of WHIM appears negligible and is excluded from further interpretation [40–45].

Detailed attribution results of variables other than CB, EGG and PULSE are shown

in Supplementary material Figure S1-S3.

2.3 Causal Attribution on Pure Units Confirms Model

Reliability Across Mediated Paths

For Pure Units, causal attribution can be conducted without adjusting for additional

covariates, as their causal effects are either direct or fully mediated by identified inter-

mediate variables. The attribution process involves identifying all causal paths—both

direct and indirect—between the input neuron and the output neuron. Assuming linear

causal relationships among the variables in the dataset, we performed causal inference

using linear regression applied to the structure encoded in the causal graph. The result-

ing causal effect graph is shown in Fig. 3a,b, where solid lines represent positive causal

effects and dashed lines indicate negative effects.

Two representative examples are shown in Fig. 3c, d, where we analyze the effect

of height (HEIGHT) and gender (GENDER). As the intervention value of HEIGHT

increases, the response of the ’No’ (non-myopic) output neuron shows a decreasing

trend, while the ’Yes’ (myopic) output neuron shows an increasing trend. This trend is

consistent with previous research findings that people with greater height are more

likely to suffer from myopia[46–52]. It should be emphasized, however, that the causal

pathway identified by our framework is HEIGHT → AL → CR, rather than a direct

HEIGHT → Myopia link. This indicates that height acts indirectly through ocular

growth and refractive status, and should not be interpreted as a direct or modifiable

risk factor for myopia. The trend after the intervention on gender (GENDER) is the

same as previous findings, that is, among adolescents, the incidence of myopia in

females is higher than that in males[53–60]. However, such associations may vary with

individual-level heterogeneity.

Among the eight Pure Units, the model correctly reflects the causal trends for NAR,

DAR, K1, K2, HEIGHT, GENDER, and PWG[61–89]. Notably, while axial length

(AL) is widely recognized as the primary anatomical determinant of myopia and a

direct driver of cycloplegic refraction (CR), several clinical studies have reported that

accommodative function—including near and distance accommodative ability (NAR

and DAR)—may also contribute to AL elongation and myopia progression [90–93].

Therefore, the NAR/DAR→ AL path revealed by our framework should be interpreted
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as a data-driven attribution pattern that aligns with certain clinical observations,

while requiring further validation. Detailed attribution results of variables other than

HEIGHT and GENDER are shown in Supplementary material Figure S4-S7. The effect

of REDM remains inconclusive in the existing literature and is therefore not interpreted

in terms of fit correctness. However, our method revealed a weak but directional

causal path from REDM to AL (as shown in Fig. 3b S5 → S9), followed by a stronger

negative causal influence from AL to CR (as shown in Fig. 3b S9 → S10). Although

the direct effect of REDM on AL is marginal, as shown in Fig. 3e, the existence of this

indirect pathway suggests a potential mediating mechanism by which dietary patterns

might influence refractive development. This finding, uncovered through our causal

attribution framework, suggests a hypothesis-generating signal that warrants further

investigation in nutritional ophthalmology and longitudinal dietary studies.

2.4 Meta-Learning-Based Attribution for Confounded Units

Demonstrates Stable Causal Estimation

To robustly assess causal effects under confounding, especially in cases where input

neurons share common ancestors with output nodes, conventional regression-based

methods often yield biased estimates. To address this challenge, we introduce a domain-

adaptive meta-learning algorithm that leverages covariate balancing through propensity

scores. The key idea is to learn a causal representation that generalizes across input

distributions, enabling unbiased estimation even when confounders are present. This

framework not only corrects for selection bias but also enhances robustness under

covariate shift—making it well-suited for causal inference in complex medical prediction

tasks. Given that these input neurons are causally entangled with others and subject

to confounding with the output layer, we first identified and controlled for confounding

variables using the backdoor criterion, enabling the estimation of unbiased causal

effects.

To evaluate the performance of different causal effect estimation models, we adopt

the Rscore metric based on the R-Learner framework. The Rscore is defined as:

Rscore = 1− L̂R

Lbase
(1)

where L̂R is the R-loss obtained from cross-validation using the estimated treatment

effect model τ̂(x), and Lbase is the baseline loss computed using a constant average

treatment effect.
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This metric assesses the ability of the estimated individualized treatment effect

to explain residual variation, in comparison to a constant effect. A higher Rscore

indicates better performance in modeling heterogeneous treatment effects. Our proposed

meta-learning model achieved superior accuracy, with the best result obtained using

a GBDT-based estimator (Rscore = 0.3850). Further improvements were achieved

via an ensemble method combining GBDT and Random Forest with a 10:1 weight

ratio, yielding an Rscore of 0.6277, indicating strong attribution performance(see

Supplementary material for details).

To mitigate bias introduced by discretizing continuous variables, we applied both

equal-width and equal-frequency discretization strategies to the two Confounded

Units—axial length (AL) and cycloplegic refraction (CR)—and estimated their average

causal effects (ACE) on the model’s binary outputs (’No’ and ’Yes’). As shown in

Fig. 4a, c, AL exhibits a positive causal effect on myopia risk, consistent with established

clinical findings[94–96]. Similarly, CR shows a pattern where lower refractive power

corresponds to increased myopia risk[97–99]. Equal-width discretization provides a

clearer causal trend compared to equal-frequency discretization.

Importantly, the causal attribution trends for both AL and CR are aligned with

current medical understanding, indicating that the model correctly internalized known

relationships between these variables and myopia.

2.5 Refutation Experiments Validate Causal Robustness

To evaluate the internal validity and robustness of our estimated causal effects, we con-

ducted a series of refutation experiments inspired by the DoWhy framework [100]. These

experiments were designed to determine whether our results hold under systematic

perturbations to data and model assumptions.

Five types of intervention strategies were employed: bootstrap resampling, random

addition of artificial confounders, subset validation, placebo treatment, and dummy

outcome substitution.

The results of the Pure Units refutation experiment are shown in Fig. 3f. It can

be seen from the figure that the error rates (err%) obtained in the five refutation

experiments are all less than 10%, and there is no situation where the error rates of

the five refutation experiments are all higher than 1%.

The results of the Confounded Units refutation experiment are shown in Fig. 4b, d.

For AL, equal-frequency discretization produced lower refutation error, while CR showed

greater stability with equal-width discretization. These results collectively demonstrate
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that the model is capable of producing accurate and stable causal attributions even

under confounding conditions.

3 Disscusion

In this study, we present a causal learning–based interpretability framework for neural

networks, tailored to the clinical prediction of pediatric myopia. By abstracting a

feedforward neural network into a structured causal system, we quantify the causal

contribution of each input neuron to the model output and implement targeted

attribution strategies according to the neuron’s structural role in the learned causal

graph. Using a longitudinal dataset collected in City Anyang, Henan Province, China

(2011–2017), our method integrates causal discovery, mediation analysis, and domain-

adaptive estimation to produce interpretable and robust neural reasoning.

The inferred causal graph, constructed using a constraint-based algorithm (PC with

Degenerate Gaussian Scoring), revealed stable directed dependencies among the 16 input

features. Based on this structure, we categorized input neurons into three functionally

distinct types—Isolated, Pure, and Confounded Units—each representing a unique

causal configuration. Attribution results for Isolated Units aligned with established risk

factors in several cases: for instance, increased pulse rate and outdoor activity were

found to have protective effects against myopia, consistent with previous studies[101].

In contrast, misalignment was observed for some dietary variables (e.g., carbonated

beverage and egg consumption), suggesting either data limitations or prior model biases.

Pure Units, evaluated through linear path-based inference, demonstrated biologically

plausible effects—e.g., the positive causal influence of height on myopia risk was found

to be mediated through axial elongation. For Confounded Units such as axial length

(AL) and cycloplegic refraction (CR), our meta-learning–based estimation—guided by

the backdoor criterion—produced coherent and stable causal effects. This was further

validated by a suite of counterfactual perturbation experiments.

These results demonstrate that black-box neural networks can be decomposed into

biologically meaningful, causally interpretable substructures[102, 103]. The model’s

ability to internalize known physiological mechanisms, particularly around AL and

CR—which directly modulate the eye’s focal characteristics—confirms its biological

plausibility. Overall, the causal pathways identified by our framework demonstrate

strong biological plausibility and align closely with established clinical knowledge.

Throughout the study, we placed particular emphasis on clinical interpretability, and

for each major result we cross-referenced supporting ophthalmic literature to ensure

consistency with prior findings. We fully acknowledge the central role of axial length
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(AL) as the dominant anatomical determinant of myopia, and our model’s detection of

the AL→ CR relationship is fully consistent with this consensus. At the same time, our

framework is inherently data-driven: the causal paths it reveals should be understood

as internal attribution patterns within the predictive model, which require cautious

interpretation in light of existing clinical evidence. Notably, we found that many of

these data-driven paths are corroborated by previous studies, reinforcing the clinical

validity of our approach. Compared to conventional attribution methods like SHAP

or LIME[104–108], which often fail under confounding or produce unstable saliency

maps, our causal framework ensures interpretability by explicitly modeling conditional

dependencies and causal paths. This not only improves explanation reliability but also

enables insight into systemic bias or misattribution patterns—critical for deploying AI

safely in clinical settings.

Importantly, our method has direct implications for the design of digital interven-

tions and early prevention strategies. The identification of modifiable behavioral risk

factors, such as outdoor activity, as causal precursors to myopia progression suggests

that individualized lifestyle adjustments could be guided by our model outputs. Addi-

tionally, we identify discrepancies between learned model logic and medical consensus,

which could be used to iteratively improve neural architectures or training protocols,

enhancing both performance and clinical acceptability.

At the same time, we note that several features exhibited attribution patterns

that diverged from previously established clinical or epidemiological knowledge. These

discrepancies may, at least in part, arise from distributional characteristics of the

dataset—such as uneven representation of certain behaviors across age or socioeco-

nomic subgroups—which can shape the model’s learned associations. It is important

to emphasize that our causal framework is primarily intended to disentangle and

visualize the internal attribution logic of predictive models, rather than to fully cor-

rect for population-level confounding. Consequently, while the framework enhances

interpretability and highlights biologically plausible pathways, residual distributional

imbalances may still produce effects inconsistent with consensus knowledge. We regard

this as a constructive signal, since such mismatches can reveal potential data artifacts

or, alternatively, point to novel hypotheses warranting further validation.

Despite these promising findings, several limitations remain. First, the accuracy of

the causal discovery process relies on the completeness and quality of observational

data. In particular, the presence of missing covariates or unobserved confounders may

bias the inferred graph structure. Furthermore, our method was validated on complete

longitudinal data, which may not fully reflect real-world scenarios where data are often
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incomplete or irregularly sampled. Using complete cases may introduce selection bias

if missingness is not completely at random. To address incomplete data in future appli-

cations, our framework could be extended through multiple imputation techniques for

missing values before causal discovery, or through modified causal discovery algorithms

that handle missing data directly. Second, our mediation model currently assumes

linear causal effects, while robustness is verified through counterfactual tests, highly

nonlinear interactions may not be fully captured. Kernel-based or neural causal infer-

ence methods may be needed to improve generalizability. Third, while this study chose

a feedforward architecture, our framework is designed to be model-agnostic due to

the decoupling of causal discovery from neural attribution. In practice, extending this

method to other architectures would primarily involve substituting the attribution

module while maintaining the structural causal categorization logic. For instance, when

applying the framework to convolutional neural networks (CNNs) for retinal imaging,

input units could be defined as high-level features extracted from specific regions of

interest, and attribution could be estimated via Grad-CAM or Integrated Gradients.

For transformer-based models handling genomic sequences, the nodes could represent

token embeddings or attention heads, utilizing Attention Rollout or perturbation-based

attribution to quantify causal contributions.

Looking ahead, our work opens several directions for innovation. (1) Embedding

causal graphs into neural network training could lead to structure-aware architectures

that align model connectivity with known biomedical pathways. (2) Extending our

framework to cross-modal causal interpretation—bridging electronic health records with

imaging or sensor data—would further improve clinical relevance. Such an extension

would leverage the framework’s modularity, where the universal ”causal skeleton”

derived from data governs the interpretation of diverse neural components across

different sub-networks. (3) As causal attributions can highlight mislearned associations,

they may serve as real-time monitors for algorithmic fairness and bias. (4) With

temporally dense datasets, our framework can evolve into dynamic causal modeling,

enabling the simulation of patient-specific interventions for myopia prevention or

progression control.

In conclusion, we introduce a rigorous and generalizable framework for unit-level

causal attribution in neural networks, validated in a clinically relevant setting. By

focusing on the interpretation of the model in causal principles, we offer a pathway

toward more transparent, robust, and trustworthy AI systems for digital medicine.
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4 Methods

4.1 Dataset

We used the Dataset of a prospective longitudinal school-based cohort study—the

Anyang Childhood Eye Study(ACES)[109], one of the largest longitudinal studies of

myopia in school-aged children in China. The dataset was collected through annual

follow-up surveys from 2011 to 2017 and included 3,112 first-grade students at baseline,

who were followed through sixth grade (school grades 1–6, spanning six academic years).

Each year corresponded to a single visit per participant, with examinations conducted

once annually at their schools. At baseline, participants had a mean age of 7.1 years

(range: 5.7–9.3 years), and 57.8% were male. Data collection was conducted in collabora-

tion with local primary schools under the supervision of certified medical professionals

and epidemiologists. The study received ethics approval from the Institutional Review

Board of Beijing Tongren Hospital, Capital Medical University, and informed consent

was obtained from all participants and their guardians. Written informed consent was

obtained from all participants and their parents or legal guardians.

All children provided a written informed consent form signed by their parents,

and verbal consent was also obtained from each child. This study adhered to the

tenets of the Declaration of Helsinki. Ethics committee approval was obtained from the

Institutional Review Board of Beijing Tongren Hospital, Capital Medical University

(TRECKY2018-030).

The survey captured a broad range of data across behavioral, physiological, envi-

ronmental, dietary, and hereditary domains. After preprocessing, 2,748 records with

complete and valid longitudinal data were retained for analysis (88.3% of baseline par-

ticipants). These records spanned a 6-year follow-up period, enabling the construction

of a rich temporal feature space suitable for causal discovery and model training. In

this survey, myopia was classified as a binary outcome (0 = non-myopia, 1 = myopia)

according to cycloplegic refraction (CR > -0.5D for non-myopia, CR <= -0.5D for

myopia). The myopia classification was determined based on whether the child devel-

oped myopia at any point during the 6-year follow-up period, rather than solely at the

last visit, thereby capturing incident myopia cases throughout the study period.

To minimize potential methodological bias, different preprocessing strategies were

applied depending on the temporal characteristics of each variable. For dynamic

ophthalmic measures (e.g., CR), we derived annual progression rates rather than simple

averages. For behavioral and dietary variables (e.g., NW, DTO, CB, EGG, REDM,

WHIM), cumulative values across six years were used to capture long-term exposure.
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For relatively stable biometric and physiological measures (e.g., NAR, DAR, PULSE,

AL, K1, K2), six-year averages were computed to reduce random fluctuations and

measurement error. Static variables such as gender and parental myopia (PWG) were

retained as baseline values.

After data preprocessing (see Supplementary material for details), 16 variables were

finally selected and used as input for model training and causal attribution. A full list

of selected variables and their definitions is provided in Table 1.

Table 1: Variables of the pediatric myopia dataset from the Anyang Childhood Eye
Study

VARIABLE VARIABLE MEANING DATA TYPE DATA RANGE UNITS

CR cycloplegic refraction continuous -5.4-8.7 diopter(D)
AL axial length continuous 20-34 mm
NW total nearwork load continuous 0-102 hour(h)

DTO
distance-viewing
time outdoors

continuous 0-57 hour(h)

NAR
near accommodative
ability of right eye

continuous -5.1-2.2 diopter(D)

DAR
distance accommodative

ability of right eye
continuous -6.6-4.4 diopter(D)

HEIGHT height continuous 97-143 cm
PULSE pulse rate continuous 52-140 Bpm

GENDER gender binary 0,1
0 represents a girl
1 represents a boy

CB
carbonated beverage

consumption frequency
discrete 1-5 times per week

EGG egg consumption frequency discrete 1-4 times per week

REDM
red meat

consumption frequency
discrete 1-5 times per week

WHIM
white meat

consumption frequency
discrete 1-5 times per week

PWG
number of parents
wearing glasses

discrete 0-2 person

K1
corneal keratometry

in both eyes
continuous 38-71 mm

K2
corneal keratometry

in both eyes
continuous 38-183 mm

Myopia myopia or not binary 0,1
0 represents non-myopia
1 represents myopia

4.2 Neural Network Architecture

We constructed a feedforward neural network (FNN) model to predict myopia status

based on the preprocessed features derived from the dataset. The network architecture

consists of an input layer with 16 neurons corresponding to the selected variables, two
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fully connected hidden layers with 12 and 8 neurons respectively, and an output layer

with 2 neurons representing binary classification outcomes (myopia vs. non-myopia).

The network structure is illustrated in Fig.1b.

Each neuron in the hidden layers uses the Rectified Linear Unit (ReLU) as the

activation function to introduce non-linearity. The final output layer employs the

softmax function to produce probability distributions over the two classes. The model

is trained using the cross-entropy loss function, and optimized via stochastic gradient

descent with backpropagation.

To identify optimal model performance, we conducted a series of hyperparameter

tuning experiments, adjusting the learning rate, batch size, and number of training

epochs. The best-performing configuration was selected based on validation accuracy.

Final performance metrics of the four-layer FNN model on the test set are reported in

Table 2, demonstrating high accuracy and robustness across multiple evaluation criteria.

To benchmark performance, we also implemented five traditional machine learn-

ing models—Logistic Regression, Naive Bayes, Random Forest, K-Nearest Neighbors,

and Support Vector Machine—using the same input features. As shown in Table 2,

the 4-layer FNN achieved consistently high performance across all evaluation metrics.

Its sensitivity was comparable to that of SVM and Logistic Regression, all of which

reached the highest values among the tested models (within the allowable statisti-

cal error), thereby reducing the risk of missed myopia cases. Compared with other

baseline models, the FNN also provided a more balanced trade-off between sensitivity

and specificity, indicating its robustness in distinguishing myopia versus non-myopia.

Furthermore, given its representative “black-box” nature, the FNN serves as an appro-

priate foundation for our proposed causal explanation framework, which aims to move

beyond predictive accuracy to provide interpretable and clinically meaningful insights.

Table 2: Performance metrics of the four-layer feedforward neural network and
traditional machine learning models

Model Accuracy Sensitivity Specificity F1 Score AUC

4-layer FNN 0.935 ± 0.011 0.939 ± 0.010 0.927 ± 0.019 0.947 ± 0.009 0.976 ± 0.007
SVM 0.863 ± 0.008 0.867 ± 0.013 0.854 ± 0.016 0.888 ± 0.007 0.921 ± 0.014
Logistic Regression 0.935 ± 0.016 0.941 ± 0.009 0.926 ± 0.030 0.948 ± 0.013 0.977 ± 0.008
Naive Bayes 0.845 ± 0.018 0.783 ± 0.027 0.949 ± 0.011 0.864 ± 0.018 0.948 ± 0.010
K-Nearest Neighbors 0.922 ± 0.012 0.936 ± 0.015 0.899 ± 0.011 0.938 ± 0.010 0.978 ± 0.008
Random Forest 0.936 ± 0.014 0.940 ± 0.007 0.928 ± 0.027 0.948 ± 0.011 0.977 ± 0.009
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4.3 Causal Discovery

Causal discovery, a key approach for inferring causal relationships from observational

data via graphical models like DAGs, enables researchers to uncover intervention-

relevant structures in the absence of randomized trials[110]. In this study, we adopted a

constraint-based causal discovery approach, specifically the Peter-Clark (PC) algo-

rithm[30], to identify causal relationships among the 16 input variables of the myopia

prediction model. The PC algorithm begins with a fully connected undirected graph and

iteratively removes edges by testing conditional independence. It then determines edge

directions using v-structure identification and Meek rules[111], producing a partially

directed acyclic graph (CPDAG) that represents the underlying causal structure.

A critical challenge in biomedical datasets is the presence of mixed-type variables,

including both continuous and categorical features. Traditional independence tests

(e.g., Pearson correlation, Chi-squared test, or Fisher’s Z-test) are limited to continuous

or discrete data and often fail in mixed domains.

To address this, we integrated the Degenerate Gaussian Likelihood Ratio Test

(DG-LRT) into the PC algorithm. This method originally proposed by Andrews[112,

113] and refined for mixed data, uses a transformed representation of categorical

variables via one-hot encoding, followed by degenerate Gaussian modeling. The resulting

structure is especially well-suited for medical applications where variable types and

scales vary widely.

This design highlights the cross-disciplinary adaptability. It is capable of capturing

statistically reasonable causal structures across hybrid domains, bridging data mining,

statistical learning, and clinical reasoning.

For stability and completeness, the causal discovery process was conducted on the

entire dataset rather than a training split, ensuring that the learned structure reflected

global dependencies among variables.

The final causal graph extracted from our dataset included 10 out of the 16 input

variables, forming 15 directed edges (as shown in Fig. 1e). This structure serves as the

backbone for following causal attribution and interpretation. The detailed steps of the

algorithm are presented in Algorithm 1.
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Algorithm 1: PC Algorithm with Degenerate Gaussian Likelihood Ratio Test

Input: Dataset D with mixed-type variables

Output: Causal graph G

Initialize G as a complete undirected graph over all variables;

Set separation sets S(i, j)← ∅ for all pairs (i, j);
for l = 0 to maximum neighborhood size do

foreach variable pair (Xi, Xj) with |Adj(Xi) \ {Xj}| ≥ l do

foreach subset Z ⊆ Adj(Xi) \ {Xj} with |Z| = l do

if Xi ⊥⊥ Xj | Z using DG-LRT then

Remove edge (Xi, Xj) from G;

Set S(i, j)← Z;

Identify v-structures based on separation sets;

Apply Meek rules to orient remaining edges;

return G;

4.4 Attribution Algorithm

In this study, causal inference is conducted at two levels: estimating the effect of

input-layer neurons on output neurons within a neural network (i.e., attribution), and

evaluating inter-feature causal effects in the dataset using regression-based techniques.

Causal effects can be defined at different levels. Assuming binary treatment T ∈
{0, 1}, the most commonly used is:

Average Treatment Effect (ATE):

ATE = E[Y (1)]− E[Y (0)]

Isolated Units. Isolated Units refer to specific input neurons in a neural network

whose causal effects on output neurons are to be independently assessed. Based on the

operator framework introduced in Section Causal Inference, we formalize the average

causal effect (ACE) from input neuron xi to output neuron y, as shown in Fig. 1f left

one.

For a binary variable x, its ACE on another variable y is defined as:

ACE(x) = E[y | do(x = 1)]− E[y | do(x = 0)] (2)
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For continuous-valued variables, we extend this to:

ACExi =
1

highi − lowi

∫ highi

lowi

E[y | do(xi = α)] dα (3)

To mitigate the inefficiency and variance introduced by high-dimensional sampling,

we approximate the intervention expectation using a second-order Taylor expansion of

the network function f .

Let µ be the mean input vector, and f(µ) be the smooth neural network function.

For a small perturbation δ in the input, the Taylor expansion around µ is:

f(µ+ δ) ≈ f(µ) +∇f(µ)⊤δ + 1

2
δ⊤∇2f(µ)δ (4)

Taking expectation over δ where E[δ] = 0 leads to:

E[y | do(xi = α)] ≈ f(µ) +
1

2
tr
(
∇2f(µ) · Cov

)
(5)

This allows efficient estimation of intervention effects without full re-evaluation

over the dataset.

The algorithm estimates the causal effect of input neuron xi on the output neuron

y over a specified intervention interval [lowi, highi] by dividing it into num uniform

sub-intervals.

The full procedure is shown in Algorithm 2.
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Algorithm 2: Approximate Causal Effect for Isolated Input Unit

Input: Output neuron y, target input neuron xi, intervention interval

[lowi, highi], number of intervals num, mean input vector µ, input

covariance matrix Cov, neural network function f(·)
Output: Intervention expectation E[y | do(xi)] for each α ∈ [lowi, highi]

Initialize Cov[xi][:]← 0, Cov[:][xi]← 0;

Initialize intervention expectation← [ ];

Set α← lowi;

while α ≤ highi do

µ[i]← α;

e← f(µ) + 1
2 · tr(∇

2f(µ) · Cov);

Append e to intervention expectation;

α← α+ highi−lowi

num ;

return intervention expectation;

Pure Units. This section discusses how to attribute causal effects for input

neurons that are causally dependent on other inputs but are not affected by con-

founders—referred to as Pure Units. We assume these neurons are connected to other

input neurons via causal pathways, but no common ancestor influences both the input

and output neurons (i.e., no confounding exists).

As illustrated in Fig. 1f middle one, let l11 be the intervened input neuron and ln1

be the output neuron. In this structure, l11 can influence ln1 through multiple paths,

such as the direct path P1 and an indirect path P2 via intermediate neuron l12, but no

confounders are present.

In this scenario, the causal effect of l11 on ln1 includes both direct and indirect

components:

ACE(l11 → ln1) = ACEP1 +ACEP2 + · · · (6)

Each term corresponds to a causal path, and the effect along each path can be

estimated as the product of edge weights along that path. For instance, the average

causal effect along the indirect path P2 from l11 → l12 → ln1 is given by:

ACEP2 = (E[l12 | do(l11 = α2)]− E[l12 | do(l11 = α1)]) · βln1∼l12 (7)

where βln1∼l12 denotes the regression coefficient from l12 to ln1. Equation 7 reflects

the mediated effect of l11 on ln1 through l12. The direct effect βln1∼l11 accounts for

path P1.
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Once all relevant paths are identified and estimated, we update the mean vector µ

and covariance matrix Σ of the training data to reflect the intervened distribution. The

expected effect of l11 on ln1 under intervention do(l11 = α) is then computed using the

intervention expectation approximation from the previous subsection:

E[ln1 | do(l11 = α)] ≈ f(µ) +
1

2
· tr

(
∇2f(µ) · Σ

)
(8)

This method effectively aggregates the impact of multiple causal paths while

maintaining computational efficiency. By correcting for potential bias induced by

intermediaries, it enables robust causal interpretability in neural networks.

The full procedure is shown in Algorithm 3.

Algorithm 3: Estimate Causal Effect for Pure Input Unit

Input: Output neuron y;

Target input neuron xi;

Set of causal paths {P1, P2, . . . , Pk} from xi to y;

Intervention values α1, α2 for xi;

Neural network function f(·);
Dataset D

Output: Estimated average causal effect ACE(xi → y)

Initialize total effect← 0;

foreach path Pj ∈ {P1, . . . , Pk} do
Identify intermediate neuron z along path Pj such that xi → · · · → z → y;

foreach α ∈ {α1, α2} do
Set input vector µ with xi ← α and other inputs fixed at their mean;

Feed forward through f(·) to compute E[z | do(xi = α)];

Compute ∆z ← E[z | do(xi = α2)]− E[z | do(xi = α1)];

Estimate regression coefficient βy∼z using training data D;

Compute path effect← ∆z · βy∼z;

Update total effect← total effect+ path effect;

return total effect

Confounded Units. In real-world neural networks, causal dependencies among input

neurons are often interleaved with hidden confounding variables. A confounder is a

variable that simultaneously influences both the intervention (input neuron) and the

outcome (output neuron), thereby creating backdoor paths that induce selection bias

and invalidate naive causal estimation.

As shown in Fig. 1f right one, the input neuron l11 affects output neuron ln1 via

the direct causal path P1 : l11 → ln1. However, the presence of neuron l12, which also
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influences ln1 and is influenced by l11, forms a backdoor path l11 ← l12 → ln1. This

makes l12 a confounder and it needs to be adjusted to avoid biased estimation of the

average treatment effect (ATE) of l11 on ln1.

To estimate unbiased causal effects in the presence of confounders, we adopt a

four-stage framework that integrates graphical causal identification, propensity-based

domain adaptation, and ensemble-based meta-learning[114]. Specifically:

Confounder Identification: Based on a predefined causal graph, we identify a

sufficient set of covariates Z that satisfy the backdoor criterion, thereby blocking all

spurious associations between the treatment variable X and the outcome Y .

Propensity Score Estimation: We estimate the propensity score e(z) = P (X =

1 | Z = z) using a supervised learning model. These scores are subsequently used

to reweight samples and mitigate distributional imbalance across treatment groups,

enabling domain adaptation.

Ensemble Meta-Learning for Outcome Modeling: To model potential outcomes,

we train ensemble-based predictors using gradient boosted decision trees (GBDT)

and random forests (RF), combined with a fixed weight ratio of 10:1. These models

are trained separately on the treatment and control groups with inverse-propensity

weighting to account for confounding.

Causal Effect Estimation: Individual treatment effects (ITEs) are approximated

by computing residuals between observed and predicted counterfactual outcomes. A

final regression model is fitted to these residuals to estimate the conditional average

treatment effect τ̂(x). Prior to modeling, continuous covariates such as axial length

(AL) and cycloplegic refraction (CR) are discretized using both equal-width and equal-

frequency discretization to satisfy the discrete input requirements of the meta-learning

model.
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Algorithm 4: Domain-Adaptive Causal Attribution via Ensemble-based

Meta-Learning

Input: Input-output pairs (X,Y ), confounders Z, binary intervention

X ∈ {0, 1}
Output: Estimated conditional average treatment effect τ̂(x)

Step 1: Propensity Score Estimation

Train a model to estimate e(z) = P (X = 1 | Z = z) using observed

confounders Z;

Step 2: Ensemble Outcome Modeling (Meta-Learner)

Train ensemble predictors (GBDT + RF, weight ratio 10:1) with inverse

propensity weighting:

• For control group (X = 0):

µ̂0(x)← EnsembleModel(Y 0 ∼ X0,weight = e(X0)
1−e(X0) )

• For treatment group (X = 1):

µ̂1(x)← EnsembleModel(Y 1 ∼ X1,weight = 1−e(X1)
e(X1) )

Step 3: Residual-based Individual Treatment Effect Estimation

foreach sample i in treatment group do

D̂i
1 ← Y i

1 − µ̂0(X
i
1)

foreach sample j in control group do

D̂j
0 ← µ̂1(X

j
0)− Y j

0

Step 4: Final Treatment Effect Modeling

Discretize continuous covariates (e.g., AL, RA) via equal-width and

equal-frequency binning;

Fit regression model: τ̂(x)← MetaRegressor(D̂0 ∪ D̂1 ∼ X0 ∪X1);

return τ̂(x)

4.5 Refutation Experiments

To evaluate the robustness and reliability of the estimated causal effects, we conduct a

series of refutation experiments following the methodology proposed in DoWhy [100].

These experiments are designed to examine whether the estimated effect is stable under

a variety of controlled perturbations. Specifically, five types of falsification strategies

are applied:

Bootstrap Validation (BV): This method uses resampling with replacement from

the original dataset to generate synthetic bootstrap datasets. A reliable causal effect

estimator should produce consistent estimates across these samples. The error rate is

defined as:
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ERRBV =

∣∣∣∣NewEffect− EstimatedEffect

EstimatedEffect

∣∣∣∣ (9)

Add Random Common Cause (ARCC): This method randomly introduces artificial

confounding variables into the dataset. A robust estimator should show minimal change

in causal effect when noise variables are added. The deviation indicates sensitivity to

confounding bias. The error rate is calculated as:

ERRARCC =

∣∣∣∣NewEffect− EstimatedEffect

EstimatedEffect

∣∣∣∣ (10)

Data Subsets Validation (DSV): This method randomly selects a subset of the

data as the new evaluation set, and recomputes the causal effect. A stable estimation

algorithm should yield similar results across data splits. The error rate is defined as:

ERRDSV =

∣∣∣∣NewEffect− EstimatedEffect

EstimatedEffect

∣∣∣∣ (11)

Placebo Treatment (PT): In this test, the original treatment variable is replaced by

a randomly permuted variable (i.e., placebo). Since there is no actual treatment effect, a

valid causal estimator should report an effect close to zero. The error rate is defined as:

ERRPT = |NewEffect| (12)

Dummy Outcome (DO): In this setting, the outcome variable Y is replaced with a

randomly generated variable. If the causal inference method is valid, it should yield an

estimated causal effect near zero. The error rate is:

ERRDO = |NewEffect| (13)

These falsification strategies provide a comprehensive suite of counterfactual diagnos-

tics. A reliable causal estimation method should demonstrate stability across bootstrap

samples, insensitivity to irrelevant variables, robustness to subsampling, and null effects

under placebo or dummy variable conditions.

5 Data Availability

The datasets analyzed in the current study are not publicly available due to patient

privacy purposes but are available upon reasonable request to the corresponding author

Shi-Ming Li(lishiming81@163.com).
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6 Code Availability

The code can be made available upon reasonable request to the corresponding author

Xu Yang(pyro yangxu@bit.edu.cn).
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Fig. 1: The workflow of causal structure discovery and functional catego-
rization of input neurons a Data Preprocess. Sixteen input variables were selected
across five domains: behavioral, physiological, environmental, dietary, and hereditary.
b Architecture of the neural network (NN). c Flow of removing edges via causal dis-
covery algorithm. d Four rules for determining edge directions. e The directed causal
graph of key behavioral and genetic factors related to myopia, involving 10 of the 16
input variables, connected by a total of 15 edges. f Three categorized units of the
corresponding input-layer neurons in NN.
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Fig. 2: Causal attribution results of Isolated Units a Intervention value of
PULSE. b Intervention value of CB. c Intervention value of EGG. The difference
between the ATE value and its average value is presented as the green line, which shows
the increasing/decreasing trend of variable for myopic. ’YES’ means myopic and ’NO’
means non-myopic. The vertical dotted line indicates that the ATE at this location is 0.
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Fig. 3: Causal attribution results of Pure Units a Result of positive causal
effects. b Result of negative causal effects. Solid lines represent positive causal effects
and dashed lines indicate negative effects. Numbers on each line represent causal effect
value of corresponding causal links. c-e Intervention value of HEIGHT, GENDER and
REDM. The difference between the ATE and its average value is presented as the
blue line, showing the increasing/decreasing trend of variable for myopic. ’YES’ means
myopic and ’NO’ means non-myopic. The vertical dotted line indicates that the ATE
at this location is 0. f Refutation results of the 15 causal effects.
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Fig. 4: Causal attribution results of Confounded Units (a and c) Causal effects
of AL and CR on output neurons (YES/NO) under equal-width and equal-frequency
discretization, respectively. Equal-width discretization divides AL and CR into 10
groups within their value intervals and calculates the ACE between adjacent discrete
groups. The equal-frequency discretization divides variables into 10 groups and the
number of data points in each group is the same. The output neuron value (YES/NO)
was benchmarked at 0. The corresponding causal effect value was added to each
intervention interval, from which the dashed line of the output neuron value change
showed. (b and d) Refutation results of equal-width and equal-frequency discretization,
respectively.
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