Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hybrid electrolyte enables solid-state sodium batteries sustaining 50,000 cycles

Subjects

Abstract

Solid-state sodium (Na) batteries open the opportunity for more sustainable energy storage due to their safety, low cost and high energy density. Inorganic solid electrolytes show notable advantages for such technologies but suffer from poor interfacial compatibility, rendering hybrid solid–liquid electrolytes an alternative. Here we show that the interfacial failure in the hybrid electrolyte system (Na3Zr2Si2PO12 (NZSP) and 1 M NaClO4 in propylene carbonate/ethylene carbonate/fluoroethylene carbonate) is closely associated with Na vacancies on the surface of NZSP. Asymmetric kinetics of solid and liquid electrolytes lead to the formation of Na vacancies and an unstable environment in the Helmholtz layer, while the organic molecules (propylene carbonate) are energetically favourable towards undesirable dehydrogenation. To eliminate the Na vacancies layer, we designed an ion-anchoring interlayer that serves to minimize the interfacial polarization. The unique O–Na coordination between the interfacial layer and NSZP confers stability to the solid–liquid interface. As demonstrated, the sodium battery with the modified hybrid electrolyte sustains 50,000 cycles with capacity retention of 86.3%. Our work provides a new path for the design of solid-state Na batteries, highlighting their potential for widespread practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Internal failure induced by dynamic mismatch in the hybrid electrolyte.
Fig. 2: Na vacancies drive the decomposition of polar molecules.
Fig. 3: Design principles for the ion-anchoring interphase to eliminate Na vacancies.
Fig. 4: Architecture of the Na-anchoring interlayer.
Fig. 5: Long-term cycling stability and high rate performance of batteries.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. Source data are provided with this paper (Figshare https://doi.org/10.6084/m9.figshare.28473926).

References

  1. Trost, J. N. & Dunn, J. B. Assessing the feasibility of the Inflation Reduction Act’s EV critical mineral targets. Nat. Sustain. 6, 639–643 (2023).

    Article  Google Scholar 

  2. Dai, T. et al. Inorganic glass electrolytes with polymer-like viscoelasticity. Nat. Energy 8, 1221–1228 (2023).

    Article  CAS  Google Scholar 

  3. Li, Y. et al. Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries. Nat. Energy 7, 511–519 (2022).

    Article  CAS  Google Scholar 

  4. Zhou, S. et al. Printed solid-state batteries. Electrochem. Energy Rev. 6, 34 (2023).

    Article  CAS  Google Scholar 

  5. Lee, M. J. et al. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022).

    Article  CAS  Google Scholar 

  6. Liu, Q., Chen, Q., Tang, Y. & Cheng, H.-M. Interfacial modification, electrode/solid-electrolyte engineering, and monolithic construction of solid-state batteries. Electrochem. Energy Rev. 6, 15 (2023).

    Article  CAS  Google Scholar 

  7. Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    Article  CAS  Google Scholar 

  8. Yu, Z. et al. Dendrites in solid-state batteries: ion transport behavior, advanced characterization, and interface regulation. Adv. Energy Mater. 11, 2003250 (2021).

    Article  CAS  Google Scholar 

  9. Chen, X. & Vereecken, P. M. Solid and solid-like composite electrolyte for lithium ion batteries: engineering the ion conductivity at interfaces. Adv. Mater. Interfaces 6, 1800899 (2018).

    Article  Google Scholar 

  10. Yan, Y. et al. Bioinspired design of Na-ion conduction channels in covalent organic frameworks for quasi-solid-state sodium batteries. Nat. Commun. 14, 3066 (2023).

    Article  CAS  Google Scholar 

  11. Liu, M. et al. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 17, 959–967 (2022).

    Article  CAS  Google Scholar 

  12. Huo, H. & Janek, J. Solid-state batteries: from ‘all-solid’ to ‘almost-solid’. Natl Sci. Rev. 10, nwad098 (2023).

    Article  Google Scholar 

  13. Weiss, M. et al. From liquid- to solid-state batteries: ion transfer kinetics of heteroionic interfaces. Electrochem. Energy Rev. 3, 221–238 (2020).

    Article  Google Scholar 

  14. Langer, F. et al. Impedance spectroscopy analysis of the lithium ion transport through the Li7La3Zr2O12/P(EO)20Li interface. J. Electrochem. Soc. 164, A2298–A2303 (2017).

    Article  CAS  Google Scholar 

  15. Huang, L. et al. Negating Li+ transfer barrier at solid–liquid electrolyte interface in hybrid batteries. Chem 8, 1928–1943 (2022).

    Article  CAS  Google Scholar 

  16. Busche, M. R. et al. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).

    Article  CAS  Google Scholar 

  17. Oh, D. Y. et al. Slurry‐fabricable Li+‐conductive polymeric binders for practical all‐solid‐state lithium‐ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019).

    Article  Google Scholar 

  18. Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    Article  Google Scholar 

  19. Liu, J. et al. The interface between Li6.5La3Zr1.5Ta0.5O12 and liquid electrolyte. Joule 4, 101–108 (2020).

    Article  CAS  Google Scholar 

  20. Wang, X., Chen, J., Wang, D. & Mao, Z. Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding. Nat. Commun. 12, 7109 (2021).

    Article  CAS  Google Scholar 

  21. Deng, Z. et al. Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes. Nat. Commun. 13, 4470 (2022).

    Article  CAS  Google Scholar 

  22. Goodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    Article  CAS  Google Scholar 

  23. Zhang, Z. et al. A self‐forming composite electrolyte for solid‐state sodium battery with ultralong cycle life. Adv. Energy Mater. 7, 1601196 (2016).

    Article  Google Scholar 

  24. Zhang, Z. et al. Correlated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytes. Adv. Energy Mater. 9, 1902373 (2019).

    Article  CAS  Google Scholar 

  25. Weiss, M. et al. Unraveling the formation mechanism of solid–liquid electrolyte interphases on LiPON thin films. ACS Appl. Mater. Interfaces 11, 9539–9547 (2019).

    Article  CAS  Google Scholar 

  26. Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from ‘ceramic-in-polymer’ to ‘polymer-in-ceramic’. Nano Energy 46, 176–184 (2018).

    Article  CAS  Google Scholar 

  27. Li, Z. et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl. Mater. Interfaces 11, 784–791 (2018).

    Article  Google Scholar 

  28. Jung, Y.-C. et al. All solid-state lithium batteries assembled with hybrid solid electrolytes. J. Electrochem. Soc. 162, A704–A710 (2015).

    Article  CAS  Google Scholar 

  29. Park, M.-S., Jung, Y.-C. & Kim, D.-W. Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. Solid State Ion. 315, 65–70 (2018).

    Article  CAS  Google Scholar 

  30. Isaac, J. A., Devaux, D. & Bouchet, R. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity. Nat. Mater. 21, 1412–1418 (2022).

    Article  CAS  Google Scholar 

  31. MacFarlane, D. R., Newman, P. J., Nairn, K. M. & Forsyth, M. Lithium-ion conducting ceramic/polyether composites. Electrochim. Acta 43, 1333–1337 (1998).

    Article  CAS  Google Scholar 

  32. Mehrotra, A., Ross, P. N. & Srinivasan, V. Quantifying polarization losses in an organic liquid electrolyte/single ion conductor interface. J. Electrochem. Soc. 161, A1681–A1690 (2014).

    Article  CAS  Google Scholar 

  33. Zarrabeitia, M. et al. Towards environmentally friendly Na-ion batteries: moisture and water stability of Na2Ti3O7. J. Power Sources 324, 378–387 (2016).

    Article  CAS  Google Scholar 

  34. Sagane, F., Abe, T., Iriyama, Y. & Ogumi, Z. Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes. J. Power Sources 146, 749–752 (2005).

    Article  CAS  Google Scholar 

  35. Sagane, F., Abe, T. & Ogumi, Z. Sodium-ion transfer at the interface between ceramic and organic electrolytes. J. Power Sources 195, 7466–7470 (2010).

    Article  CAS  Google Scholar 

  36. Sun, N. et al. Anisotropically electrochemical–mechanical evolution in solid-state batteries and interfacial tailored strategy. Angew. Chem. Int. Ed. 58, 18647–18653 (2019).

    Article  CAS  Google Scholar 

  37. Wang, J., Chen‐Wiegart, Y. C. K. & Wang, J. In situ three‐dimensional synchrotron X‐ray nanotomography of the (de)lithiation processes in tin anodes. Angew. Chem. Int. Ed. 53, 4460–4464 (2014).

    Article  CAS  Google Scholar 

  38. An, H. et al. Eliminating local electrolyte failure induced by asynchronous reaction for high-loading and long‐lifespan all‐solid‐state batteries. Adv. Funct. Mater. 33, 2305186 (2023).

    Article  CAS  Google Scholar 

  39. Huo, H. et al. Li2CO3 effects: new insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy 73, 104836 (2020).

    Article  CAS  Google Scholar 

  40. Lu, X. et al. Microstructural evolution of battery electrodes during calendering. Joule 4, 2746–2768 (2020).

    Article  CAS  Google Scholar 

  41. Liu, Q.-S. et al. Effective transport network driven by tortuosity gradient enables high-electrochem-active solid-state batteries. Natl Sci. Rev. 10, nwac272 (2023).

    Article  CAS  Google Scholar 

  42. Chang, Q. et al. Investigation on interfacial interaction and the origin of Fe3+ in LiFePO4/C. Electrochim. Acta 108, 211–218 (2013).

    Article  CAS  Google Scholar 

  43. Yoon, W.-S. et al. Oxygen contribution on Li-ion intercalation–deintercalation in LiAlyCo1−y O2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Electrochem. Soc. 149, A1305 (2002).

    Article  CAS  Google Scholar 

  44. He, R. et al. Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS ONE 7, e49182 (2012).

    Article  Google Scholar 

  45. Zhang, Z. et al. Na3Zr2Si2PO12: a stable Na+-ion solid electrolyte for solid-state batteries. ACS Appl. Energy Mater. 3, 7427–7437 (2020).

    Article  CAS  Google Scholar 

  46. Zhai, Y. et al. A hybrid solid electrolyte for high-energy solid-state sodium metal batteries. Appl. Phys. Lett. 120, 253902 (2022).

    Article  CAS  Google Scholar 

  47. Hou, M. et al. Multiscale investigation into chemically stable NASICON solid electrolyte in acidic solutions. ACS Appl. Mater. Interfaces 13, 33262–33271 (2021).

    Article  CAS  Google Scholar 

  48. Lu, Z. et al. Electrolyte sieving chemistry in suppressing gas evolution of sodium‐metal batteries. Angew. Chem. Int. Ed. 61, e202206340 (2022).

    Article  CAS  Google Scholar 

  49. Gu, Z. et al. Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte. Nat. Commun. 14, 1632 (2023).

    Article  CAS  Google Scholar 

  50. Xu, J. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023).

    Article  CAS  Google Scholar 

  51. Li, C. et al. NaSICON: a promising solid electrolyte for solid‐state sodium batteries. Interdiscip. Mater. 1, 396–416 (2022).

    Google Scholar 

  52. Wang, X. et al. Constructing interfacial nanolayer stabilizes 4.3 V high‐voltage all‐solid‐state lithium batteries with PEO‐based solid‐state electrolyte. Adv. Funct. Mater. 32, 2113068 (2022).

    Article  CAS  Google Scholar 

  53. Zhou, D. et al. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019).

    Article  CAS  Google Scholar 

  54. Su, Y. et al. Cryo-TEM studies of binder free high performance FeF2 cathode based full cells enabled by surface engineering. Energy Storage Mater. 59, 102779 (2023).

    Article  Google Scholar 

  55. Xie, M. et al. Pathway of in situ polymerization of 1,3-dioxolane in LiPF6 electrolyte on Li metal anode. Mater. Today Energy 21, 100730 (2021).

    Article  CAS  Google Scholar 

  56. Fu, C. et al. Molecular bridges stabilize lithium metal anode and solid-state electrolyte interface. Chem. Eng. J. 432, 134271 (2022).

    Article  CAS  Google Scholar 

  57. Li, M. et al. Ion–dipole-interaction-induced encapsulation of free residual solvent for long-cycle solid-state lithium metal batteries. J. Am. Chem. Soc. 145, 25632–25642 (2023).

    Article  CAS  Google Scholar 

  58. Mi, J. et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383 (2022).

    Article  Google Scholar 

  59. Song, Y. et al. Highly reversible solid‐state lithium‐oxygen batteries by size‐matching between Fe‐Fe cluster and Li2‐xO2. Adv. Energy Mater. 13, 2203660 (2022).

    Article  Google Scholar 

  60. Ma, J. et al. A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J. Electrochem. Soc. 164, A3454–A3461 (2017).

    Article  CAS  Google Scholar 

  61. Wang, H. et al. Thiol‐branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium‐metal batteries. Adv. Mater. 32, 202001259 (2020).

    Google Scholar 

  62. Ba, D. et al. Robust cathode-ether electrolyte interphase on interfacial redox assembled fluorophosphate enabling high-rate and ultrastable sodium ion full cells. Nano Energy 94, 106918 (2022).

    Article  CAS  Google Scholar 

  63. Wan, T. H., Lu, Z. & Ciucci, F. A first principle study of the phase stability, ion transport and substitution strategy for highly ionic conductive sodium antipervoskite as solid electrolyte for sodium ion batteries. J. Power Sources 390, 61–70 (2018).

    Article  CAS  Google Scholar 

  64. He, K. et al. In‐situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi‐solid‐state lithium metal batteries. Angew. Chem. Int. Ed. 60, 12116–12123 (2021).

    Article  CAS  Google Scholar 

  65. Chen, R.-J. et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach. ACS Appl. Mater. Interfaces 9, 9654–9661 (2017).

    Article  CAS  Google Scholar 

  66. Cha, H. et al. Boosting reaction homogeneity in high‐energy lithium‐ion battery cathode materials. Adv. Mater. 32, 202003040 (2020).

    Article  Google Scholar 

  67. Besli, M. M. et al. Mesoscale chemomechanical interplay of the LiNi0.8Co0.15Al0.05O2 cathode in solid-state polymer batteries. Chem. Mat. 31, 491–501 (2018).

    Article  Google Scholar 

  68. Nguyen, L. H. B. et al. Stability in water and electrochemical properties of the Na3V2(PO4)2F3-Na3(VO)2(PO4)2F solid solution. Energy Storage Mater. 20, 324–334 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 92372110 and no. 22075063), the Chinesisch-Deutsches Mobilitätspropgamm (M-0281), the Opening Project of State Key Laboratory of Space Power-Sources, the Fundamental Research Funds for the Central Universities (grant no. HIT.OCEF.2023039), the Heilongjiang Touyan Team (no. HITTY-20190033), the ‘Young Scientist Studio’ of Harbin Institute of Technology (HIT) and funds from Chongqing Research Institute of HIT. We thank the Shanghai Synchrotron Radiation Facility (SSRF) for providing the beamlines of BL13HB, BL18B and BL08U1A for completing STXM and SR-CT measurements. Finally, we extend gratitude to E. J. Hansen from the Advanced Materials for Energy Storage Lab at the University of British Columbia (UBCO) for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have approved the final version of the manuscript. J.W. proposed the research direction and conceived and led the project. H.A. designed and performed experiments with other co-authors. M.L., Q.L. and Y.S. performed STXM and CT measurements, analysed and discussed experimental results and drafted the manuscript. B.D. aided with the synchrotron radiation data collection at the SSRF. X.L. offered access to the experimental platform and equipment for pouch cells fabrication and testing. All authors participated in discussions and contributed valuable comments.

Corresponding author

Correspondence to Jiajun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Cheng Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–44 and Tables 1–6.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, H., Li, M., Liu, Q. et al. Hybrid electrolyte enables solid-state sodium batteries sustaining 50,000 cycles. Nat Sustain 8, 661–671 (2025). https://doi.org/10.1038/s41893-025-01544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01544-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing