Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocatalytic upcycling of polysulfones at ambient conditions

Abstract

Chemical upcycling has the potential to turn plastic wastes into valuable chemicals and promote the circularity of plastics. Polysulfones and relevant composites are plastics with notable chemical durability, resistance and survivability. They are known as super engineering plastics, but they pose enormous challenges for reuse and upcycling. Here we develop a strategy for the chemical upcycling of polysulfones through copper-photocatalysed dual desulfonylative chlorination at ambient conditions, affording high-value-added dichlorinated diaryl ethers. The key to this strategy is cascade homolytic ipso-aromatic substitutions with high selectivity using the chlorine radical. Various types of polysulfones were successfully depolymerized and functionalized, including 12 examples of resins and eight examples of end-of-life plastics. Through gram-scale upcycling and mixed-plastic treatment, we further demonstrated the excellent compatibility and practicality of our strategy. Overall, this work establishes a viable approach for upcycling waste plastics into valuable chemicals, thus contributing to more sustainable plastic waste management and to realizing the circular economy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical upcycling of PSFs.
Fig. 2: Dual desulfonylative chlorination of sulfone models.
Fig. 3: Progress for chemical upcycling of PES 1.
Fig. 4: Chemical upcycling of PSFs.
Fig. 5: Mechanism.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S. & Zhu, L. Plastics in the Earth system. Science 373, 51–55 (2021).

    Article  CAS  Google Scholar 

  2. Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P. & Junginger, M. Plastic futures and their CO2 emissions. Nature 612, 272–276 (2022).

    Article  CAS  Google Scholar 

  3. Zuin, V. G. & Kümmerer, K. Chemistry and materials science for a sustainable circular polymeric economy. Nat. Rev. Mater. 7, 76–78 (2022).

    Article  Google Scholar 

  4. Vidal, F. et al. Designing a circular carbon and plastics economy for a sustainable future. Nature 626, 45–57 (2024).

    Article  CAS  Google Scholar 

  5. Korley, L. T. J., Epps, T. H., Helms, B. A. & Ryan, A. J. Toward polymer upcycling—adding value and tackling circularity. Science 373, 66–69 (2021).

    Article  CAS  Google Scholar 

  6. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article  CAS  Google Scholar 

  7. Zhou, H. et al. Plastic waste valorization by leveraging multidisciplinary catalytic technologies. ACS Catal. 12, 9307–9324 (2022).

    Article  CAS  Google Scholar 

  8. Chu, S. et al. Photocatalytic conversion of plastic waste: from photodegradation to photosynthesis. Adv. Energy Mater. 12, 2200435 (2022).

    Article  CAS  Google Scholar 

  9. Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    Article  CAS  Google Scholar 

  10. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  Google Scholar 

  11. Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    Article  CAS  Google Scholar 

  12. Conk, R. J. et al. Polyolefin waste to light olefins with ethylene and base-metal heterogeneous catalysts. Science 385, 1322–1327 (2024).

    Article  CAS  Google Scholar 

  13. Huang, Z. et al. Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light. J. Am. Chem. Soc. 144, 6532–6542 (2022).

    Article  CAS  Google Scholar 

  14. Zhao, B. et al. Selective upcycling of polyolefins into high-value nitrogenated chemicals. J. Am. Chem. Soc. 146, 28605–28611 (2024).

  15. DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).

    Article  CAS  Google Scholar 

  16. Sun, B. et al. Valorization of waste biodegradable polyester for methyl methacrylate production. Nat. Sustain. 6, 712–719 (2023).

    Article  Google Scholar 

  17. Ahrens, A. et al. Catalytic disconnection of C–O bonds in epoxy resins and composites. Nature 617, 730–737 (2023).

    Article  CAS  Google Scholar 

  18. Clarke, R. W. et al. Manufacture and testing of biomass-derivable thermosets for wind blade recycling. Science 385, 854–860 (2024).

    Article  CAS  Google Scholar 

  19. Fink, J. K. in High Performance Polymers (ed. Fink, J. K.) Ch. 7, 177–208 (William Andrew Publishing, 2014).

  20. Mittal, V. in High Performance Polymers and Engineering Plastics (ed. Mittal, V.) Ch. 1, 1–20 (Wiley, 2011).

  21. Wu, S. & Madkour, T. M. in Polymer Data Handbook 2nd edn (ed. Mark, J. E.) 617–620 (Oxford Univ. Press, 2009).

  22. Maximize Market Research. Polysulfone market–industry analysis, by grade, applications, region and forecast (2023–2029). https://www.maximizemarketresearch.com/market-report/global-polysulfone-market/71241/ (Maximize Market Research, 2023).

  23. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies. 1st edn (CRC Press, 2007).

  24. Benson, S. W. Thermochemistry and kinetics of sulfur-containing molecules and radicals. Chem. Rev. 78, 23–35 (1978).

    Article  CAS  Google Scholar 

  25. Minami, Y., Inagaki, Y., Tsuyuki, T., Sato, K. & Nakajima, Y. Hydroxylation–depolymerization of oxyphenylene-based super engineering plastics to regenerate arenols. JACS Au 3, 2323–2332 (2023).

    Article  CAS  Google Scholar 

  26. McGrail, P. T. Polyaromatics. Polym. Int. 41, 103–121 (1996).

    Article  CAS  Google Scholar 

  27. Bart, J. C. J. Additives in Polymers: Industrial Analysis and Applications (John Wiley & Sons, 2005).

  28. Zeng, D., Ma, Y., Deng, W.-P., Wang, M. & Jiang, X. Divergent sulfur(vi) fluoride exchange linkage of sulfonimidoyl fluorides and alkynes. Nat. Synth. 1, 455–463 (2022).

    Article  CAS  Google Scholar 

  29. Meng, J., Zhou, Y., Li, D. & Jiang, X. Degradation of plastic wastes to commercial chemicals and monomers under visible light. Sci. Bull. 68, 1522–1530 (2023).

    Article  CAS  Google Scholar 

  30. Ji, L., Meng, J., Li, C., Wang, M. & Jiang, X. From polyester plastics to diverse monomers via low-energy upcycling. Adv. Sci. 11, 2403002 (2024).

    Article  CAS  Google Scholar 

  31. Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).

    Article  CAS  Google Scholar 

  32. Hillman, S. A. J. et al. Why do sulfone-containing polymer photocatalysts work so well for sacrificial hydrogen evolution from water? J. Am. Chem. Soc. 144, 19382–19395 (2022).

    Article  CAS  Google Scholar 

  33. Tay, N. E. S. et al. 19F- and 18F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution. Nat. Catal. 3, 734–742 (2020).

    Article  CAS  Google Scholar 

  34. Zhou, Y., Hu, D., Li, D. & Jiang, X. Uranyl-photocatalyzed hydrolysis of diaryl ethers at ambient environment for the directional degradation of 4-O-5 lignin. JACS Au 1, 1141–1146 (2021).

    Article  CAS  Google Scholar 

  35. Wang, S., Wang, H. & König, B. Photo-induced thiolate catalytic activation of inert Caryl-hetero bonds for radical borylation. Chem 7, 1653–1665 (2021).

    Article  CAS  Google Scholar 

  36. Mahadevi, A. S. & Sastry, G. N. Cation–π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138 (2013).

    Article  CAS  Google Scholar 

  37. Bowry, S. K., Gatti, E. & Vienken, J. Contribution of polysulfone membranes to the success of convective dialysis therapies. Contrib. Nephrol. 173, 110–118 (2011).

    Article  CAS  Google Scholar 

  38. Ali, R. S. A. E., Meng, J. & Jiang, X. Multimode photo-CSTR (continuous stirred tank reactor) setup for heterogeneous photocatalytic processes. Org. Process Res. Dev. 28, 1683–1689 (2023).

  39. Doyle, K. J., Tran, H., Baldoni-Olivencia, M., Karabulut, M. & Hoggard, P. E. Photocatalytic degradation of dichloromethane by chlorocuprate(ii) ions. Inorg. Chem. 47, 7029–7034 (2008).

    Article  CAS  Google Scholar 

  40. Mereshchenko, A. S. et al. Photochemistry of copper(ii) chlorocomplexes in acetonitrile: trapping the ligand-to-metal charge transfer excited state relaxations pathways. Chem. Phys. Lett. 615, 105–110 (2014).

    Article  CAS  Google Scholar 

  41. Treacy, S. M. & Rovis, T. Copper catalyzed C(sp3)–H bond alkylation via photoinduced ligand-to-metal charge transfer. J. Am. Chem. Soc. 143, 2729–2735 (2021).

    Article  CAS  Google Scholar 

  42. Bowman, W. R. & Storey, J. M. D. Synthesis using aromatic homolytic substitution—recent advances. Chem. Soc. Rev. 36, 1803–1822 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (grant numbers 22125103 and 21971065 to X.J. and 22301077 to Y.Z.), the Science and Technology Commission of Shanghai Municipality (grant number 22JC140100 to X.J.) and the Shanghai Pujiang Program (grant number 22PJ1403200 to Y.Z.). R.H. acknowledges support from the PhD Scientific Research and Innovation Foundation of the Education Department of Hainan Province Joint Project of Sanya Yazhou Bay Science and Technology City (grant number HSPHDSRF-2024-14-003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: R.H., Y.Z. and X.J. Methodology: R.H., Y.Z. and X.J. Formal analysis: C.L. and Y.Z. Project administration: Y.Z. and X.J. Supervision: Y.Z., D.L. and X.J. Writing—original draft: R.H., Y.Z. and X.J. Writing—review and editing: R.H., Y.Z. and X.J.

Corresponding authors

Correspondence to Yinsong Zhao or Xuefeng Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Meng Wang, Fan Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–170 and Tables 1–6.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Zhao, Y., Li, C. et al. Photocatalytic upcycling of polysulfones at ambient conditions. Nat Sustain 8, 818–826 (2025). https://doi.org/10.1038/s41893-025-01569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01569-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing