Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synergies and trade-offs of multi-use solar landscapes

Abstract

Research on multi-use solar—combining solar energy with agriculture (agrivoltaics) or natural vegetation (ecovoltaics)—is developing rapidly, but interdisciplinary integration is needed to better address management issues and to guide future research. Agrivoltaics allows farmers to develop and manage microclimates, which can help to retain or expand agricultural production in the context of changing climate and land-water limitations. However, improvements in food–energy production and other co-benefits are often site-specific, depending on background climate, soil conditions and system design. To optimize multi-use systems, it is essential to consider local economic impacts, ecosystem services and stakeholder perspectives in design and implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Agricultural land conversion and multi-use solar PV strategies.
Fig. 2: Scaling and mapping of PV land-use.
Fig. 3: Impacts of light availability and temperature on photosynthesis and crop yield under different shading systems.
Fig. 4: Environmental, morphological and technical changes within agrivoltaics systems where reductions are reported in negative values.
Fig. 5: Effects of land use on soil carbon, biomass response to shade on biomass and rangevoltaics impact.
Fig. 6: Socio-economic synergies in rural and urban areas.

Similar content being viewed by others

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  2. Pourasl, H. H., Barenji, R. V. & Khojastehnezhad, V. M. Solar energy status in the world: a comprehensive review. Energy Rep. 10, 3474–3493 (2023).

    Article  Google Scholar 

  3. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (International Renewable Energy Agency, 2019).

  4. Ding, H., Zhou, D. Q., Liu, G. Q. & Zhou, P. Cost reduction or electricity penetration: government R&D-induced PV development and future policy schemes. Renew. Sustain. Energy Rev. 124, 109752 (2020).

    Article  Google Scholar 

  5. Lowe, R. J. & Drummond, P. Solar, wind and logistic substitution in global energy supply to 2050 – barriers and implications. Renew. Sustain. Energy Rev. 153, 111720 (2022).

    Article  Google Scholar 

  6. Ravi, S. et al. Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy 165, 383–392 (2016).

    Article  Google Scholar 

  7. Ferreras-Alonso, N., Capellán-Pérez, I., Adam, A., de Blas, I. & Mediavilla, M. Mitigation of land-related impacts of solar deployment in the European Union through land planning policies. Energy 302, 131617 (2024).

    Article  Google Scholar 

  8. Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy – critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).

    Article  Google Scholar 

  9. Choi, C. S. et al. Environmental co-benefits of maintaining native vegetation with solar photovoltaic infrastructure. Earths Future 11, e2023EF003542 (2023).

    Article  Google Scholar 

  10. Krishnan, R. & Pearce, J. M. Economic impact of substituting solar photovoltaic electric production for tobacco farming. Land Use Policy 72, 503–509 (2018).

    Article  Google Scholar 

  11. Walston, L. J. et al. Examining the potential for agricultural benefits from pollinator habitat at solar facilities in the United States. Environ. Sci. Technol. 52, 7566–7576 (2018).

    Article  CAS  Google Scholar 

  12. Miskin, C. K. et al. Sustainable co-production of food and solar power to relax land-use constraints. Nat. Sustain. 2, 972–980 (2019).

    Article  Google Scholar 

  13. Edouard, S., Combes, D., Van Iseghem, M., Ng Wing Tin, M. & Escobar-Gutiérrez, A. J. Increasing land productivity with agriphotovoltaics: application to an alfalfa field. Appl. Energy 329, 120207 (2023).

    Article  Google Scholar 

  14. Zhang, B. et al. Deploying photovoltaic arrays in degraded grasslands is a promising win–win strategy for promoting grassland restoration and resolving land use conflicts. J. Environ. Manag. 349, 119495 (2024).

    Article  CAS  Google Scholar 

  15. Macknick, J. et al. The 5 Cs of Agrivoltaic Success Factors in the United States: Lessons from the InSPIRE Research Study Technical Report NREL/TP-6A20-83566 (NREL, 2022); https://doi.org/10.2172/1882930

  16. Ong, S., Campbell, C., Denholm, P., Margolis, R. & Heath, G. Land-Use Requirements for Solar Power Plants in the United States Technical Report NREL/TP-6A20-56290 (NREL, 2013); https://doi.org/10.2172/1086349

  17. MacKay, D. J. C. Could energy-intensive industries be powered by carbon-free electricity? Phil. Trans. R. Soc. A 371, 20110560 (2013).

    Article  Google Scholar 

  18. Trainor, A. M., McDonald, R. I. & Fargione, J. Energy sprawl is the largest driver of land use change in United States. PLoS ONE 11, e0162269 (2016).

    Article  Google Scholar 

  19. Beckman, J. & Xiarchos, I. M. Why are Californian farmers adopting more (and larger) renewable energy operations? Renew. Energy 55, 322–330 (2013).

    Article  Google Scholar 

  20. Hernandez, R. R., Hoffacker, M. K., Murphy-Mariscal, M. L., Wu, G. C. & Allen, M. F. Solar energy development impacts on land cover change and protected areas. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015).

    Article  CAS  Google Scholar 

  21. Macknick, J., Beatty, B. & Hill, G. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation Technical Report NREL/TP-6A20-60240 (NREL, 2013); https://doi.org/10.2172/1115798

  22. Curioni, M., Galli, N., Manzolini, G. & Rulli, M. C. Global land-water competition and synergy between solar energy and agriculture. Earths Future 13, e2024EF005291 (2025).

    Article  Google Scholar 

  23. Kruitwagen, L. et al. A global inventory of photovoltaic solar energy generating units. Nature 598, 604–610 (2021).

    Article  CAS  Google Scholar 

  24. Denholm, P. & Margolis, R. M. Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy 36, 3531–3543 (2008).

    Article  Google Scholar 

  25. Bessette, D. L. et al. Good fences make good neighbors: stakeholder perspectives on the local benefits and burdens of large-scale solar energy development in the United States. Energy Res. Soc. Sci. 108, 103375 (2024).

    Article  Google Scholar 

  26. Späth, L. et al. Large-scale photovoltaics? Yes please, but not like this! Insights on different perspectives underlying the trade-off between land use and renewable electricity development. Energy Policy 122, 429–437 (2018).

    Article  Google Scholar 

  27. Pascaris, A. S., Schelly, C., Rouleau, M. & Pearce, J. M. Do agrivoltaics improve public support for solar? A survey on perceptions, preferences, and priorities. Green. Technol. Resil. Sustain. 2, 8 (2022).

    Article  Google Scholar 

  28. Zeng, H. et al. Drought-induced soil desiccation cracking behavior with consideration of basal friction and layer thickness. Water Resour. Res. 56, e2019WR026948 (2020).

    Article  Google Scholar 

  29. Shokri-Kuehni, S. M. S. et al. Water table depth and soil salinization: from pore-scale processes to field-scale responses. Water Resour. Res. 56, e2019WR026707 (2020).

    Article  Google Scholar 

  30. Li, J., Ma, W., Renwick, A. & Zheng, H. The impact of access to irrigation on rural incomes and diversification: evidence from China. China Agric. Econ. Rev. 12, 705–725 (2020).

    Article  CAS  Google Scholar 

  31. Agriculture at a Crossroads: Global Report (IAASTD, 2009).

  32. Anderson, K. Globalization’s effects on world agricultural trade, 1960–2050. Phil. Trans. R. Soc. B. 365, 3007–3021 (2010).

    Article  Google Scholar 

  33. Mumm, R. H., Goldsmith, P. D., Rausch, K. D. & Stein, H. H. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization. Biotechnol. Biofuels 7, 61 (2014).

    Article  Google Scholar 

  34. Hernandez, R. R. et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 29, 766–779 (2014).

    Article  Google Scholar 

  35. Barron-Gafford, G. A. et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2, 848–855 (2019).

    Article  Google Scholar 

  36. Choi, C. S. et al. Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics. Renew. Sustain. Energy Rev. 151, 111610 (2021).

    Article  Google Scholar 

  37. Trommsdorff, M. et al. Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming. Appl. Energy 350, 121619 (2023).

    Article  Google Scholar 

  38. Choi, C. S., Macknick, J., McCall, J., Bertel, R. & Ravi, S. Multi-year analysis of physical interactions between solar PV arrays and underlying soil–plant complex in vegetated utility-scale systems. Appl. Energy 365, 123227 (2024).

    Article  Google Scholar 

  39. Warmann, E., Jenerette, G. D. & Barron-Gafford, G. A. Agrivoltaic system design tools for managing trade-offs between energy production, crop productivity and water consumption. Environ. Res. Lett. 19, 034046 (2024).

    Article  Google Scholar 

  40. Tilman, D. et al. Beneficial biofuels—the food, energy, and environment trilemma. Science 325, 270–271 (2009).

    Article  CAS  Google Scholar 

  41. Goetzberger, A. & Zastrow, A. On the coexistence of solar-energy conversion and plant cultivation. Int. J. Sol. Energy 1, 55–69 (1982).

    Article  Google Scholar 

  42. Pascaris, A. S., Schelly, C., Burnham, L. & Pearce, J. M. Integrating solar energy with agriculture: industry perspectives on the market, community, and socio-political dimensions of agrivoltaics. Energy Res. Soc. Sci. 75, 102023 (2021).

    Article  Google Scholar 

  43. Zhang, J., Wang, T., Chang, Y. & Liu, B. A sustainable development pattern integrating data centers and pasture-based agrivoltaic systems for ecologically fragile areas. Resour. Conserv. Recycl. 188, 106684 (2023).

    Article  Google Scholar 

  44. Al-Agele, H., Proctor, K., Murthy, G. & Higgins, C. A case study of tomato (Solanum lycopersicon var Legend) production and water productivity in agrivoltaic systems. Sustainability 13, 2850 (2021).

    Article  Google Scholar 

  45. Jiang, S. et al. Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under ‘agrivoltaic’ system in southwest China. Agric. Water Manag. 269, 107675 (2022).

    Article  Google Scholar 

  46. Jo, H. et al. Comparison of yield and yield components of several crops grown under agro-photovoltaic system in Korea. Agriculture 12, 619 (2022).

    Article  CAS  Google Scholar 

  47. Kornhuber, K. et al. Risks of synchronized low yields are underestimated in climate and crop model projections. Nat. Commun. 14, 3528 (2023).

    Article  CAS  Google Scholar 

  48. Smith, P. D. et al. in Climate Change 2007: Mitigation of Climate Change (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) Ch 8 (IPCC, Cambridge Univ. Press, 2007).

  49. Proctor, J., Rigden, A., Chan, D. & Huybers, P. More accurate specification of water supply shows its importance for global crop production. Nat. Food 3, 753–763 (2022).

    Article  Google Scholar 

  50. IPCC: Technical Summary. In Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2019).

  51. Abramoff, R. Z. et al. Adaptation strategies strongly reduce the future impacts of climate change on simulated crop yields. Earths Future 11, e2022EF003190 (2023).

    Article  Google Scholar 

  52. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article  Google Scholar 

  53. Weselek, A. et al. Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 39, 35 (2019).

    Article  Google Scholar 

  54. Katul, G. G. Agrivoltaics in color: going from light spectra to biomass. Earths Future 11, e2023EF003512 (2023).

  55. Benedetti, M., Vecchi, V., Barera, S. & Dall’Osto, L. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb. Cell Factories 17, 173 (2018).

    Article  CAS  Google Scholar 

  56. Armstrong, A., Ostle, N. J. & Whitaker, J. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett. 11, 074016 (2016).

    Article  Google Scholar 

  57. Trommsdorff, M. et al. Combining food and energy production: design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 140, 110694 (2021).

    Article  Google Scholar 

  58. Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822–2844 (2021).

    Article  CAS  Google Scholar 

  59. Campana, P. E., Stridh, B., Amaducci, S. & Colauzzi, M. Optimisation of vertically mounted agrivoltaic systems. J. Clean. Prod. 325, 129091 (2021).

    Article  Google Scholar 

  60. Elamri, Y., Cheviron, B., Lopez, J.-M., Dejean, C. & Belaud, G. Water budget and crop modelling for agrivoltaic systems: application to irrigated lettuces. Agric. Water Manag. 208, 440–453 (2018).

    Article  Google Scholar 

  61. Adeh, E. H., Selker, J. S. & Higgins, C. W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 13, e0203256 (2018).

    Article  Google Scholar 

  62. Marrou, H., Guilioni, L., Dufour, L., Dupraz, C. & Wery, J. Microclimate under agrivoltaic systems: is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 177, 117 (2013).

    Article  Google Scholar 

  63. Weselek, A. et al. Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron. Sustain. Dev. 41, 59 (2021).

    Article  Google Scholar 

  64. Katkar, A. A., Shinde, N. N. & Patil, P. S. Performance & evaluation of industrial solar cell w.r.t. temperature and humidity. Int. J. Res. Mech. Eng. Technol. 1, 69–73 (2011).

    Google Scholar 

  65. Kaldellis, J. K., Kapsali, M. & Kavadias, K. A. Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renew. Energy 66, 612–624 (2014).

    Article  Google Scholar 

  66. Adeh, E. H., Good, S. P., Calaf, M. & Higgins, C. W. Solar PV power potential is greatest over croplands. Sci. Rep. 9, 11442 (2019).

    Article  Google Scholar 

  67. Vuckovic, M., Kiesel, K. & Mahdavi, A. Studies in the assessment of vegetation impact in the urban context. Energy Build. 145, 331–341 (2017).

    Article  Google Scholar 

  68. Bai, Y. & Cotrufo, M. F. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377, 603–608 (2022).

    Article  CAS  Google Scholar 

  69. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  CAS  Google Scholar 

  70. Lu, X. et al. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai–Tibetan Plateau: a synthesis. Ecosphere 8, e01656 (2017).

    Article  Google Scholar 

  71. Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118 (2021).

    Article  CAS  Google Scholar 

  72. Auffret, A. G. & Svenning, J.-C. Climate warming has compounded plant responses to habitat conversion in northern Europe. Nat. Commun. 13, 7818 (2022).

    Article  CAS  Google Scholar 

  73. Yi, C., Wei, S. & Hendrey, G. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration. Sci. Rep. 4, 5472 (2014).

    Article  CAS  Google Scholar 

  74. Choi, C. S. et al. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Front. Environ. Sci. 8, 140 (2020).

    Article  Google Scholar 

  75. Walston, L. J. et al. Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the midwestern United States. Ecosyst. Serv. 47, 101227 (2021).

  76. Gholami, A., Khazaee, I., Eslami, S., Zandi, M. & Akrami, E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol. Energy 159, 346–352 (2018).

    Article  Google Scholar 

  77. Dhaouadi, R., Al-Othman, A., Aidan, A. A., Tawalbeh, M. & Zannerni, R. A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates. Renew. Energy 171, 133–140 (2021).

    Article  Google Scholar 

  78. Fthenakis, V. & Kim, H. C. Life-cycle uses of water in U.S. electricity generation. Renew. Sustain. Energy Rev. 14, 2039–2048 (2010).

    Article  Google Scholar 

  79. Machmuller, M. B. et al. Emerging land use practices rapidly increase soil organic matter. Nat. Commun. 6, 6995 (2015).

    Article  CAS  Google Scholar 

  80. Peschel, R., Peschel, T., Marchand, M. & Hauke, J. Solar Parks – Profits for Biodiversity (Association of Energy Market Innovators, 2019).

  81. Ritchie, H., Rosado, P. & Roser, M. Meat and Dairy Production (Our World in Data, 2017).

  82. Our Standards (Humane Farm Animal Care, 2019); https://certifiedhumane.org/our-standards/

  83. Pascaris, A. S., Handler, R., Schelly, C. & Pearce, J. M. Life cycle assessment of pasture-based agrivoltaic systems: emissions and energy use of integrated rabbit production. Clean. Respons. Consum. 3, 100030 (2021).

  84. Lytle, W. et al. Conceptual design and rationale for a new agrivoltaics concept: pasture-raised rabbits and solar farming. J. Clean. Prod. 282, 124476 (2021).

    Article  Google Scholar 

  85. Ouzts, E. Farmers, experts: solar and agriculture ‘complementary, not competing’ in North Carolina. Energy News Network (28 August 2017).

  86. Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

    Article  CAS  Google Scholar 

  87. Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl Acad. Sci. USA 113, 140–145 (2016).

    Article  CAS  Google Scholar 

  88. van Swaay, C. et al. European Red List of Butterflies (Publication Office of the European Union, 2010).

  89. Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS ONE 8, e66993 (2013).

    Article  CAS  Google Scholar 

  90. Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    Article  CAS  Google Scholar 

  91. Sturchio, M. A. & Knapp, A. K. Ecovoltaic principles for a more sustainable, ecologically informed solar energy future. Nat. Ecol. Evol. 7, 1746–1749 (2023).

    Article  Google Scholar 

  92. Graham, M. et al. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Sci. Rep. 11, 7452 (2021).

    Article  CAS  Google Scholar 

  93. Martin, J. Ecosystem Enriching and Efficient Solar Energy: Exploring the Effects of Pollinator-Friendly Solar Facilities on Ecosystem Function and Solar Panel Efficiency. MSc thesis, William & Mary (2022).

  94. Waldman, K. B. et al. Socioeconomic threats are more salient to farmers than environmental threats. J. Rural Stud. 86, 508–517 (2021).

    Article  Google Scholar 

  95. Severini, S., Tantari, A. & Di Tommaso, G. The instability of farm income. Empirical evidences on aggregation bias and heterogeneity among farm groups. Bio-based Appl. Econ. 5, 63–81 (2016).

    Google Scholar 

  96. Newman, R. & Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 14, 6103 (2023).

    Article  CAS  Google Scholar 

  97. Spangler, K., Smithwick, E. A. H., Buechler, S. & Baka, J. Just energy imaginaries? Examining realities of solar development on Pennsylvania’s farmland. Energy Res. Soc. Sci. 108, 103394 (2024).

    Article  Google Scholar 

  98. Moore, S., Graff, H., Ouellet, C., Leslie, S. & Olweean, D. Can we have clean energy and grow our crops too? Solar siting on agricultural land in the United States. Energy Res. Soc. Sci. 91, 102731 (2022).

    Article  Google Scholar 

  99. Chang, H.-H. & Lin, T.-C. Solar farm policy and farmland price – a land zoning perspective. J. Environ. Manag. 344, 118454 (2023).

    Article  Google Scholar 

  100. Taylor, M., Pettit, J., Sekiyama, T. & Sokołowski, M. M. Justice-driven agrivoltaics: facilitating agrivoltaics embedded in energy justice. Renew. Sustain. Energy Rev. 188, 113815 (2023).

    Article  Google Scholar 

  101. Ravi, S., Lobell, D. B. & Field, C. B. Tradeoffs and synergies between biofuel production and large solar infrastructure in deserts. Environ. Sci. Technol. 48, 3021–3030 (2014).

    Article  CAS  Google Scholar 

  102. Malu, P. R., Sharma, U. S. & Pearce, J. M. Agrivoltaic potential on grape farms in India. Sustain. Energy Technol. Assess. 23, 104–110 (2017).

    Google Scholar 

  103. Dupraz, C. et al. Combining solar photovoltaic panels and food crops for optimising land use: towards new agrivoltaic schemes. Renew. Energy 36, 2725–2732 (2011).

    Article  Google Scholar 

  104. Valle, B. et al. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy 206, 1495–1507 (2017).

    Article  Google Scholar 

  105. Cuppari, R. I., Higgins, C. W. & Characklis, G. W. Agrivoltaics and weather risk: a diversification strategy for landowners. Appl. Energy 291, 116809 (2021).

    Article  Google Scholar 

  106. McCall, J., Macdonald, J., Burton, R. & Macknick, J. Vegetation management cost and maintenance implications of different ground covers at utility-scale solar sites. Sustainability 15, 5895 (2023).

    Article  Google Scholar 

  107. Stein, K. et al. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Sci. Rep. 7, 17691 (2017).

    Article  Google Scholar 

  108. Liu, Z. et al. Potential benefits and risks of solar photovoltaic power plants on arid and semi-arid ecosystems: an assessment of soil microbial and plant communities. Front. Microbiol. 14, 1190650 (2023).

    Article  Google Scholar 

  109. Barbón, A., Fortuny Ayuso, P., Bayón, L. & Silva, C. A. Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers. Appl. Energy 348, 121524 (2023).

    Article  Google Scholar 

  110. Wang, F. & Gao, J. How a photovoltaic panel impacts rainfall-runoff and soil erosion processes on slopes at the plot scale. J. Hydrol. 620, 129522 (2023).

    Article  Google Scholar 

  111. Schneider, A.-K. et al. Drawing transformation pathways for making use of joint effects of food and energy production with biodiversity agriphotovoltaics and electrified agricultural machinery. J. Environ. Manag. 335, 117539 (2023).

    Article  Google Scholar 

  112. Heras-Saizarbitoria, I., Cilleruelo, E. & Zamanillo, I. Public acceptance of renewables and the media: an analysis of the Spanish PV solar experience. Renew. Sustain. Energy Rev. 15, 4685–4696 (2011).

    Article  Google Scholar 

  113. Ketzer, D., Weinberger, N., Rösch, C. & Seitz, S. Land use conflicts between biomass and power production – citizens’ participation in the technology development of agrophotovoltaics. J. Responsible Innov. https://doi.org/10.1080/23299460.2019.1647085 (2019).

  114. Pascaris, A. S., Schelly, C. & Pearce, J. M. A first investigation of agriculture sector perspectives on the opportunities and barriers for agrivoltaics. Agronomy 10, 1885 (2020).

    Article  Google Scholar 

  115. Adelhardt, N. & Berneiser, J. Risk analysis for agrivoltaic projects in rural farming communities in SSA. Appl. Energy 362, 122933 (2024).

  116. Migration, Agriculture and Rural Development (FAO, 2016).

  117. Luo, G. & Guo, Y. Rural electrification in China: a policy and institutional analysis. Renew. Sustain. Energy Rev. 23, 320–329 (2013).

    Article  Google Scholar 

  118. van Campen, B., Guidi, D. & Best, G. Solar Photovoltaics for Sustainable Agriculture and Rural Development (FAO, 2000).

  119. Cuppari, R. I. et al. Drivers of agrivoltaic perception in California and North Carolina. Environ. Res. Food Syst. 1, 021003 (2024).

    Article  Google Scholar 

  120. Qoaider, L. & Steinbrecht, D. Photovoltaic systems: a cost competitive option to supply energy to off-grid agricultural communities in arid regions. Appl. Energy 87, 427–435 (2010).

    Article  Google Scholar 

  121. Gonocruz, R. A. T., Yoshida, Y., Ozawa, A., Aguirre, R. A. & Maguindayao, E. J. H. Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines. Appl. Energy 350, 121832 (2023).

    Article  CAS  Google Scholar 

  122. Bilich, A. et al. Adapting Agrivoltaics for Solar Mini-Grids in Haiti (USAID and NREL, 2024); https://doi.org/10.2172/2331426

  123. Randle-Boggis, R. J. et al. Harvesting the sun twice: energy, food and water benefits from agrivoltaics in East Africa. Renew. Sustain. Energy Rev. 208, 115066 (2025).

    Article  Google Scholar 

  124. Patel, B., Gami, B., Baria, V., Patel, A. & Patel, P. Co-generation of solar electricity and agriculture produce by photovoltaic and photosynthesis—dual model by Abellon, India. J. Sol. Energy Eng. 141, 031014 (2019).

  125. Proctor, K. W., Murthy, G. S. & Higgins, C. W. Agrivoltaics align with green new deal goals while supporting investment in the US’ rural economy. Sustainability 13, 137 (2021).

    Article  CAS  Google Scholar 

  126. Croce, S. & Vettorato, D. Urban surface uses for climate resilient and sustainable cities: a catalogue of solutions. Sustain. Cities Soc. 75, 103313 (2021).

    Article  Google Scholar 

  127. Hu, A. et al. Impact of solar panels on global climate. Nat. Clim. Change 6, 290–294 (2016).

    Article  Google Scholar 

  128. Barron-Gafford, G. A. et al. The photovoltaic heat island effect: larger solar power plants increase local temperatures. Sci. Rep. 6, 35070 (2016).

    Article  CAS  Google Scholar 

  129. Barrico, L. et al. Plant and microbial biodiversity in urban forests and public gardens: insights for cities’ sustainable development. Urban For. Urban Green. 29, 19–27 (2018).

    Article  Google Scholar 

  130. Skar, S. L. G. et al. Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. Blue-Green Syst. 2, 1–27 (2020).

    Article  Google Scholar 

  131. Evans, D. L. et al. Ecosystem service delivery by urban agriculture and green infrastructure – a systematic review. Ecosyst. Serv. 54, 101405 (2022).

    Article  Google Scholar 

  132. Buckley, S. et al. Enhancing crop growth in rooftop farms by repurposing CO2 from human respiration inside buildings. Front. Sustain. Food Syst. 6, 918027 (2022).

  133. World Urbanization Prospects: The 2018 Revision (United Nations, 2018); https://doi.org/10.18356/b9e995fe-en

  134. Adil, A. M. & Ko, Y. Socio-technical evolution of decentralized energy systems: a critical review and implications for urban planning and policy. Renew. Sustain. Energy Rev. 57, 1025–1037 (2016).

    Article  Google Scholar 

  135. Sarr, A., Soro, Y. M., Tossa, A. K. & Diop, L. Agrivoltaic, a synergistic co-location of agricultural and energy production in perpetual mutation: a comprehensive review. Processes 11, 948 (2023).

    Article  CAS  Google Scholar 

  136. Camporese, M. & Abou Najm, M. Not all light spectra were created equal: can we harvest light for optimum food-energy co-generation? Earths Future 10, e2022EF002900 (2022).

    Article  Google Scholar 

  137. Çetinkaya, Ç. et al. Enhancement of color and photovoltaic performance of semi-transparent organic solar cell via fine-tuned 1D photonic crystal. Sci. Rep. 12, 19400 (2022).

    Article  Google Scholar 

  138. Wen, L. et al. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting. Sci. Rep. 4, 7036 (2014).

    Article  Google Scholar 

  139. Pattison, P. M., Tsao, J. Y., Brainard, G. C. & Bugbee, B. LEDs for photons, physiology and food. Nature 563, 493–500 (2018).

    Article  CAS  Google Scholar 

  140. Martin, M. & Bustamante, M. J. Growing-service systems: new business models for modular urban-vertical farming. Front. Sustain. Food Syst. 5, 787281 (2021).

  141. Zainali, S. et al. Computational fluid dynamics modelling of microclimate for a vertical agrivoltaic system. Energy Nexus 9, 100173 (2023).

    Article  Google Scholar 

  142. Li, Y. et al. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 13, 1964 (2022).

    Article  Google Scholar 

  143. Merheb, C. Why should imminent international funds for solar photovoltaics go to families and the private sector and not to the government to stop the electricity crisis in Lebanon? Energy Policy 192, 114223 (2024).

    Article  Google Scholar 

  144. Nair, A. A., Rohith, A. N., Cibin, R. & McPhillips, L. E. A framework to model the hydrology of solar farms using EPA SWMM. Environ. Model. Assess. https://doi.org/10.1007/s10666-023-09922-0 (2023).

    Article  Google Scholar 

  145. Buchhorn, M. et al. Copernicus Global Land Service: land cover 100m: collection 3: epoch 2019: globe. Zenodo https://doi.org/10.5281/zenodo.3939050 (2020).

  146. Global Power Plant Database. GitHub https://github.com/wri/global-power-plant-database (2018).

  147. Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117 (2013).

    Article  Google Scholar 

  148. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  Google Scholar 

  149. The State of the World’s Land and Water Resources for Food and Agriculture – Systems at Breaking Point (SOLAW 2021) (FAO, 2021); https://doi.org/10.4060/cb7654en

  150. Pang, K. et al. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agrofor. Syst. https://doi.org/10.1007/s10457-017-0067-8 (2019).

    Article  Google Scholar 

  151. Andrew, A. Lamb growth and pasture production in agrivoltaic production system. Honors Baccalaureate of Science in Biology Thesis, Oregon State Univ. (2020).

  152. Maia, A. S. C. et al. Photovoltaic panels as shading resources for livestock. J. Clean. Prod. 258, 120551 (2020).

    Article  Google Scholar 

  153. Andrew, A. C., Higgins, C. W., Smallman, M. A., Graham, M. & Ates, S. Herbage yield, lamb growth and foraging behavior in agrivoltaic production system. Front. Sustain. Food Syst. 5, 659175 (2021).

  154. Sharpe, K. T., Heins, B. J., Buchanan, E. S. & Reese, M. H. Evaluation of solar photovoltaic systems to shade cows in a pasture-based dairy herd. J. Dairy Sci. 104, 2794–2806 (2021).

    Article  CAS  Google Scholar 

  155. Kampherbeek, E. W. et al. A preliminary investigation of the effect of solar panels and rotation frequency on the grazing behavior of sheep (Ovis aries) grazing dormant pasture. Appl. Anim. Behav. Sci. 258, 105799 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding provided by US National Science Foundation CAREER no. 1943969 for S.R. and the InSPIRE project through the US Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under award DE-EE00034165 for J.M. This work was authored in part by Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the US Department of Energy under contract no. DE-AC36-08GO28308.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.M., S.R., N.D. and J.M. Data curation: C.M. Methodology: C.M. and S.R. Formal analysis: C.M. Writing—original draft: C.M. and S.R. Writing—review and editing: C.M., S.R., J.M. and N.D. Supervision: S.R. Project administration: S.R. Funding acquisition: S.R. and J.M.

Corresponding author

Correspondence to Sujith Ravi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Peter Bermel, Maria Cristina Rulli and Lauren McPhillips for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Supplementary Notes and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merheb, C., Macknick, J., Davatzes, N. et al. Synergies and trade-offs of multi-use solar landscapes. Nat Sustain 8, 857–870 (2025). https://doi.org/10.1038/s41893-025-01600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01600-1

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene