Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Blue carbon ecosystems and coral reefs as coupled nature-based climate solutions

Abstract

Restoring coastal ecosystems offers more than just carbon storage: it can also help bring coral reefs back to life. This Perspective explores how the carbon captured by mangroves and other blue carbon systems could be used to support reef restoration, creating a powerful synergy between climate action and marine conservation. By aligning ecological benefits with innovative funding strategies, this approach offers a practical path towards more resilient coastlines and more durable climate solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of BCEs in increasing local pH.
Fig. 2: Summary of mutual benefits between BCEs and coral reefs.
Fig. 3: The reinforcing cycle between carbon credit, coral reef restoration and BCEs.

Similar content being viewed by others

References

  1. McIntyre, A. D. (ed.) Life in the World’s Oceans: Diversity, Distribution, and Abundance (Wiley, 2010).

  2. Knowlton, N. et al. in Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 65–78 (Wiley, 2010).

  3. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O. Biodiversity II: Understanding and Protecting Our Biological Resources (Joseph Henry Press, 1996).

  4. Riegl, B., Bruckner, A., Coles, S. L., Renaud, P. & Dodge, R. E. Coral reefs. Ann. N. Y. Acad. Sci. 1162, 136–186 (2009).

    Article  CAS  Google Scholar 

  5. MacPherson, R. Coral reefs need you. Smithsonian Ocean https://ocean.si.edu/ecosystems/coral-reefs/coral-reefs-need-you?utm_source=chatgpt.com (2010).

  6. Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).

    Article  Google Scholar 

  7. Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).

  8. Brander, L. & van Beukering, P. The Total Economic Value of U.S. Coral Reefs: A Review of the Literature (NOAA, 2013).

  9. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    Article  CAS  Google Scholar 

  10. Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Article  Google Scholar 

  11. Curran, A. & Barnard, S. What is the role of zooxanthellae during coral bleaching? Review of zooxanthellae and their response to environmental stress. S. Afr. J. Sci. 117, 8369 (2021).

    Article  Google Scholar 

  12. Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).

    Article  Google Scholar 

  13. Helgoe, J., Davy, S. K., Weis, V. M. & Rodriguez-Lanetty, M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol. Rev. 99, 715–752 (2024).

    Article  CAS  Google Scholar 

  14. Good, A. M. & Bahr, K. D. The coral conservation crisis: interacting local and global stressors reduce reef resiliency and create challenges for conservation solutions. SN Appl. Sci. 3, 312 (2021).

    Article  CAS  Google Scholar 

  15. McFarland, B. J. in Conservation of Tropical Coral Reefs: A Review of Financial and Strategic Solutions (ed. McFarland, B. J.) 5–62 (Springer, 2021).

  16. Schmidt-Roach, S. et al. Cost-efficiency and effectiveness of coral restoration pathways. Restor. Ecol. 30, e14326 (2025).

  17. Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).

    Article  Google Scholar 

  18. Bayraktarov, E. et al. Motivations, success, and cost of coral reef restoration. Restor. Ecol. 27, 981–991 (2019).

    Article  Google Scholar 

  19. Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    Article  CAS  Google Scholar 

  20. Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3398 (2019).

    Google Scholar 

  21. Fakhraee, M., Planavsky, N. J. & Reinhard, C. T. Ocean alkalinity enhancement through restoration of blue carbon ecosystems. Nat. Sustain. 6, 1087–1094 (2023).

  22. Reithmaier, G. M. S. et al. Alkalinity production coupled to pyrite formation represents an unaccounted blue carbon sink. Glob. Biogeochem. Cycles 35, e2020GB006785 (2021).

    Article  CAS  Google Scholar 

  23. Reithmaier, G. M. S. et al. Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes. Nat. Commun. 14, 8196 (2023).

    Article  CAS  Google Scholar 

  24. Saderne, V. et al. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol. Oceanogr. Lett. 6, 61–67 (2021).

    Article  CAS  Google Scholar 

  25. Williamson, P. & Gattuso, J.-P. Carbon removal using coastal blue carbon ecosystems is uncertain and unreliable, with questionable climatic cost-effectiveness. Front. Clim. 4, 853666 (2022).

    Article  Google Scholar 

  26. Bach, L. T. The additionality problem of ocean alkalinity enhancement. Biogeosciences 21, 261–277 (2024).

    Article  CAS  Google Scholar 

  27. Alongi, D. M. Lateral export and sources of subsurface dissolved carbon and alkalinity in mangroves: revising the blue carbon budget. J. Mar. Sci. Eng. 10, 1916 (2022).

    Article  Google Scholar 

  28. Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C. & Santos, I. R. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Glob. Biogeochem. Cycles 30, 753–766 (2016).

    Article  CAS  Google Scholar 

  29. Yau, Y. Y. Y. et al. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh. Limnol. Oceanogr. 67, S158–S170 (2022).

    Article  CAS  Google Scholar 

  30. Fakhraee, M. & Planavsky, N. J. Enhanced sulfide burial in low-oxygen aquatic environments could offset the carbon footprint of aquaculture production. Nat. Food 5, 988–994 (2024).

  31. Maberly, S. C., Stott, A. W. & Gontero, B. The differential ability of two species of seagrass to use carbon dioxide and bicarbonate and their modelled response to rising concentrations of inorganic carbon. Front. Plant Sci. 13, 936716 (2022).

    Article  CAS  Google Scholar 

  32. Camp, E. F. et al. Mangrove and seagrass beds provide different biogeochemical services for corals threatened by climate change. Front. Mar. Sci. 3, 52 (2016).

    Article  Google Scholar 

  33. Pezner, A. K. et al. Coral growth along a natural gradient of seawater temperature, pH, and oxygen in a nearshore seagrass bed on Dongsha Atoll, Taiwan. PLoS ONE 19, e0312263 (2024).

    Article  CAS  Google Scholar 

  34. Chatting, M. et al. Future mangrove carbon storage under climate change and deforestation. Front. Mar. Sci. 9, 781876 (2022).

    Article  Google Scholar 

  35. Alongi, D. M. Carbon sequestration in mangrove forests. Carbon Manag. 3, 313–322 (2012).

    CAS  Google Scholar 

  36. Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).

    Article  CAS  Google Scholar 

  37. Muller-Parker, G., D’Elia, C. F. & Cook, C. B. in Coral Reefs in the Anthropocene (ed. Birkeland, C.) 99–116 (Springer, 2015).

  38. Vieira, V. M. N. C. S. et al. Seagrasses benefit from mild anthropogenic nutrient additions. Front. Mar. Sci. 9, 960249 (2022).

    Article  Google Scholar 

  39. Davis, S. E., Lirman, D. & Wozniak, J. R. in Ecological Connectivity among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 9–43 (Springer, 2009).

  40. Barreto, C. R., Morrissey, E. M., Wykoff, D. D. & Chapman, S. K. Co-occurring mangroves and salt marshes differ in microbial community composition. Wetlands 38, 497–508 (2018).

    Article  Google Scholar 

  41. Alongi, D. M. Carbon balance in salt marsh and mangrove ecosystems: a global synthesis. J. Mar. Sci. Eng. 8, 767 (2020).

    Article  Google Scholar 

  42. Allais, L. et al. Salinity, mineralogy, porosity, and hydrodynamics as drivers of carbon burial in urban mangroves from a megacity. Sci. Total Environ. 912, 168955 (2024).

    Article  CAS  Google Scholar 

  43. Hong, X. et al. Study on the wave-dissipation effect of oyster reefs based on the SWAN numerical model. Water 15, 2884 (2023).

    Article  Google Scholar 

  44. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    Article  CAS  Google Scholar 

  45. Donatelli, C., Ganju, N. K., Kalra, T. S., Fagherazzi, S. & Leonardi, N. Changes in hydrodynamics and wave energy as a result of seagrass decline along the shoreline of a microtidal back-barrier estuary. Adv. Water Resour. 128, 183–192 (2019).

  46. Weaver, R. J. & Stehno, A. L. Mangroves as coastal protection for restoring low-energy waterfront property. J. Mar. Sci. Eng. 12, 470 (2024).

    Article  Google Scholar 

  47. Infantes, E. et al. Effect of a seagrass (Posidonia oceanica) meadow on wave propagation. Mar. Ecol. Prog. Ser. 456, 63–72 (2012).

    Article  Google Scholar 

  48. Péquignet, A.-C., Becker, J. M., Merrifield, M. A. & Boc, S. J. The dissipation of wind wave energy across a fringing reef at Ipan, Guam. Coral Reefs 30, 71–82 (2011).

    Article  Google Scholar 

  49. Lowe, R. J. et al. Spectral wave dissipation over a barrier reef. J. Geophys. Res. Oceans 110, C04001 (2005).

    Article  Google Scholar 

  50. Huang, Z.-C. et al. Dissipation of wave energy and turbulence in a shallow coral reef lagoon. J. Geophys. Res. Oceans 117, C03015 (2012).

    Google Scholar 

  51. de Boer, W. F. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591, 5–24 (2007).

    Article  Google Scholar 

  52. Guerra-Vargas, L. A., Gillis, L. G. & Mancera-Pineda, J. E. Stronger together: do coral reefs enhance seagrass meadows ‘blue carbon’ potential? Front. Mar. Sci. 7, 628 (2020).

    Article  Google Scholar 

  53. Bouillon, S. et al. Mangrove production and carbon sinks: a revision of global budget estimates. Glob. Biogeochem. Cycles 22, GB2013 (2008).

    Article  Google Scholar 

  54. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

  55. Menéndez, P., Losada, I. J., Torres-Ortega, S., Narayan, S. & Beck, M. W. The global flood protection benefits of mangroves. Sci. Rep. 10, 4404 (2020).

    Article  Google Scholar 

  56. McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).

    Article  Google Scholar 

  57. Tomlinson, P. B. The Botany of Mangroves (Cambridge Univ. Press, 2016).

  58. Sunkur, R., Kantamaneni, K., Bokhoree, C. & Ravan, S. Mangroves’ role in supporting ecosystem-based techniques to reduce disaster risk and adapt to climate change: a review. J. Sea Res. 196, 102449 (2023).

  59. Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).

    Article  CAS  Google Scholar 

  60. Unsworth, R. K. F. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Progr. Ser. 353, 213–224 (2008).

    Article  Google Scholar 

  61. Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).

    Article  Google Scholar 

  62. van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    Article  Google Scholar 

  63. Forsman, Z. H., Page, C. A., Toonen, R. J. & Vaughan, D. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. PeerJ 3, e1313 (2015).

    Article  Google Scholar 

  64. Harrison, P. L., dela Cruz, D. W., Cameron, K. A. & Cabaitan, P. C. Increased coral larval supply enhances recruitment for coral and fish habitat restoration. Front. Mar. Sci. 8, 750210 (2021).

    Article  Google Scholar 

  65. Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

    Article  Google Scholar 

  66. Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).

    Article  CAS  Google Scholar 

  67. Razak, T. B., Boström-Einarsson, L., Alisa, C. A. G., Vida, R. T. & Lamont, T. A. C. Coral reef restoration in Indonesia: a review of policies and projects. Mar. Policy 137, 104940 (2022).

    Article  Google Scholar 

  68. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  69. Webb, R., Silverman-Roati, K. & Gerrard, M. Removing Carbon Dioxide Through Ocean Alkalinity Enhancement: Legal Challenges and Opportunities (Sabin Center for Climate Change Law, Columbia Law School, 2021).

  70. Pagiola, S. Payments for environmental services in Costa Rica. Ecol. Econ. 65, 712–724 (2008).

    Article  Google Scholar 

  71. Hasan, S. et al. Exploring Trading in Water Quality Credits as a Cost-Effective Approach for Managing Water Quality in the Great Barrier Reef (Griffith Univ., 2020); https://research-repository.griffith.edu.au/items/3db4664c-6a9c-441a-bea1-61d146e2c5ac

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Fakhraee.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Olivier Sulpis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhraee, M. Blue carbon ecosystems and coral reefs as coupled nature-based climate solutions. Nat Sustain (2026). https://doi.org/10.1038/s41893-026-01768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41893-026-01768-0

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology