Abstract
Restoring coastal ecosystems offers more than just carbon storage: it can also help bring coral reefs back to life. This Perspective explores how the carbon captured by mangroves and other blue carbon systems could be used to support reef restoration, creating a powerful synergy between climate action and marine conservation. By aligning ecological benefits with innovative funding strategies, this approach offers a practical path towards more resilient coastlines and more durable climate solutions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
McIntyre, A. D. (ed.) Life in the World’s Oceans: Diversity, Distribution, and Abundance (Wiley, 2010).
Knowlton, N. et al. in Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 65–78 (Wiley, 2010).
Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O. Biodiversity II: Understanding and Protecting Our Biological Resources (Joseph Henry Press, 1996).
Riegl, B., Bruckner, A., Coles, S. L., Renaud, P. & Dodge, R. E. Coral reefs. Ann. N. Y. Acad. Sci. 1162, 136–186 (2009).
MacPherson, R. Coral reefs need you. Smithsonian Ocean https://ocean.si.edu/ecosystems/coral-reefs/coral-reefs-need-you?utm_source=chatgpt.com (2010).
Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
Brander, L. & van Beukering, P. The Total Economic Value of U.S. Coral Reefs: A Review of the Literature (NOAA, 2013).
Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
Curran, A. & Barnard, S. What is the role of zooxanthellae during coral bleaching? Review of zooxanthellae and their response to environmental stress. S. Afr. J. Sci. 117, 8369 (2021).
Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).
Helgoe, J., Davy, S. K., Weis, V. M. & Rodriguez-Lanetty, M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol. Rev. 99, 715–752 (2024).
Good, A. M. & Bahr, K. D. The coral conservation crisis: interacting local and global stressors reduce reef resiliency and create challenges for conservation solutions. SN Appl. Sci. 3, 312 (2021).
McFarland, B. J. in Conservation of Tropical Coral Reefs: A Review of Financial and Strategic Solutions (ed. McFarland, B. J.) 5–62 (Springer, 2021).
Schmidt-Roach, S. et al. Cost-efficiency and effectiveness of coral restoration pathways. Restor. Ecol. 30, e14326 (2025).
Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).
Bayraktarov, E. et al. Motivations, success, and cost of coral reef restoration. Restor. Ecol. 27, 981–991 (2019).
Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).
Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3398 (2019).
Fakhraee, M., Planavsky, N. J. & Reinhard, C. T. Ocean alkalinity enhancement through restoration of blue carbon ecosystems. Nat. Sustain. 6, 1087–1094 (2023).
Reithmaier, G. M. S. et al. Alkalinity production coupled to pyrite formation represents an unaccounted blue carbon sink. Glob. Biogeochem. Cycles 35, e2020GB006785 (2021).
Reithmaier, G. M. S. et al. Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes. Nat. Commun. 14, 8196 (2023).
Saderne, V. et al. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol. Oceanogr. Lett. 6, 61–67 (2021).
Williamson, P. & Gattuso, J.-P. Carbon removal using coastal blue carbon ecosystems is uncertain and unreliable, with questionable climatic cost-effectiveness. Front. Clim. 4, 853666 (2022).
Bach, L. T. The additionality problem of ocean alkalinity enhancement. Biogeosciences 21, 261–277 (2024).
Alongi, D. M. Lateral export and sources of subsurface dissolved carbon and alkalinity in mangroves: revising the blue carbon budget. J. Mar. Sci. Eng. 10, 1916 (2022).
Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C. & Santos, I. R. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Glob. Biogeochem. Cycles 30, 753–766 (2016).
Yau, Y. Y. Y. et al. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh. Limnol. Oceanogr. 67, S158–S170 (2022).
Fakhraee, M. & Planavsky, N. J. Enhanced sulfide burial in low-oxygen aquatic environments could offset the carbon footprint of aquaculture production. Nat. Food 5, 988–994 (2024).
Maberly, S. C., Stott, A. W. & Gontero, B. The differential ability of two species of seagrass to use carbon dioxide and bicarbonate and their modelled response to rising concentrations of inorganic carbon. Front. Plant Sci. 13, 936716 (2022).
Camp, E. F. et al. Mangrove and seagrass beds provide different biogeochemical services for corals threatened by climate change. Front. Mar. Sci. 3, 52 (2016).
Pezner, A. K. et al. Coral growth along a natural gradient of seawater temperature, pH, and oxygen in a nearshore seagrass bed on Dongsha Atoll, Taiwan. PLoS ONE 19, e0312263 (2024).
Chatting, M. et al. Future mangrove carbon storage under climate change and deforestation. Front. Mar. Sci. 9, 781876 (2022).
Alongi, D. M. Carbon sequestration in mangrove forests. Carbon Manag. 3, 313–322 (2012).
Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).
Muller-Parker, G., D’Elia, C. F. & Cook, C. B. in Coral Reefs in the Anthropocene (ed. Birkeland, C.) 99–116 (Springer, 2015).
Vieira, V. M. N. C. S. et al. Seagrasses benefit from mild anthropogenic nutrient additions. Front. Mar. Sci. 9, 960249 (2022).
Davis, S. E., Lirman, D. & Wozniak, J. R. in Ecological Connectivity among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 9–43 (Springer, 2009).
Barreto, C. R., Morrissey, E. M., Wykoff, D. D. & Chapman, S. K. Co-occurring mangroves and salt marshes differ in microbial community composition. Wetlands 38, 497–508 (2018).
Alongi, D. M. Carbon balance in salt marsh and mangrove ecosystems: a global synthesis. J. Mar. Sci. Eng. 8, 767 (2020).
Allais, L. et al. Salinity, mineralogy, porosity, and hydrodynamics as drivers of carbon burial in urban mangroves from a megacity. Sci. Total Environ. 912, 168955 (2024).
Hong, X. et al. Study on the wave-dissipation effect of oyster reefs based on the SWAN numerical model. Water 15, 2884 (2023).
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).
Donatelli, C., Ganju, N. K., Kalra, T. S., Fagherazzi, S. & Leonardi, N. Changes in hydrodynamics and wave energy as a result of seagrass decline along the shoreline of a microtidal back-barrier estuary. Adv. Water Resour. 128, 183–192 (2019).
Weaver, R. J. & Stehno, A. L. Mangroves as coastal protection for restoring low-energy waterfront property. J. Mar. Sci. Eng. 12, 470 (2024).
Infantes, E. et al. Effect of a seagrass (Posidonia oceanica) meadow on wave propagation. Mar. Ecol. Prog. Ser. 456, 63–72 (2012).
Péquignet, A.-C., Becker, J. M., Merrifield, M. A. & Boc, S. J. The dissipation of wind wave energy across a fringing reef at Ipan, Guam. Coral Reefs 30, 71–82 (2011).
Lowe, R. J. et al. Spectral wave dissipation over a barrier reef. J. Geophys. Res. Oceans 110, C04001 (2005).
Huang, Z.-C. et al. Dissipation of wave energy and turbulence in a shallow coral reef lagoon. J. Geophys. Res. Oceans 117, C03015 (2012).
de Boer, W. F. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591, 5–24 (2007).
Guerra-Vargas, L. A., Gillis, L. G. & Mancera-Pineda, J. E. Stronger together: do coral reefs enhance seagrass meadows ‘blue carbon’ potential? Front. Mar. Sci. 7, 628 (2020).
Bouillon, S. et al. Mangrove production and carbon sinks: a revision of global budget estimates. Glob. Biogeochem. Cycles 22, GB2013 (2008).
Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).
Menéndez, P., Losada, I. J., Torres-Ortega, S., Narayan, S. & Beck, M. W. The global flood protection benefits of mangroves. Sci. Rep. 10, 4404 (2020).
McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).
Tomlinson, P. B. The Botany of Mangroves (Cambridge Univ. Press, 2016).
Sunkur, R., Kantamaneni, K., Bokhoree, C. & Ravan, S. Mangroves’ role in supporting ecosystem-based techniques to reduce disaster risk and adapt to climate change: a review. J. Sea Res. 196, 102449 (2023).
Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).
Unsworth, R. K. F. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Progr. Ser. 353, 213–224 (2008).
Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).
van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
Forsman, Z. H., Page, C. A., Toonen, R. J. & Vaughan, D. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. PeerJ 3, e1313 (2015).
Harrison, P. L., dela Cruz, D. W., Cameron, K. A. & Cabaitan, P. C. Increased coral larval supply enhances recruitment for coral and fish habitat restoration. Front. Mar. Sci. 8, 750210 (2021).
Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).
Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).
Razak, T. B., Boström-Einarsson, L., Alisa, C. A. G., Vida, R. T. & Lamont, T. A. C. Coral reef restoration in Indonesia: a review of policies and projects. Mar. Policy 137, 104940 (2022).
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
Webb, R., Silverman-Roati, K. & Gerrard, M. Removing Carbon Dioxide Through Ocean Alkalinity Enhancement: Legal Challenges and Opportunities (Sabin Center for Climate Change Law, Columbia Law School, 2021).
Pagiola, S. Payments for environmental services in Costa Rica. Ecol. Econ. 65, 712–724 (2008).
Hasan, S. et al. Exploring Trading in Water Quality Credits as a Cost-Effective Approach for Managing Water Quality in the Great Barrier Reef (Griffith Univ., 2020); https://research-repository.griffith.edu.au/items/3db4664c-6a9c-441a-bea1-61d146e2c5ac
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Sustainability thanks Olivier Sulpis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fakhraee, M. Blue carbon ecosystems and coral reefs as coupled nature-based climate solutions. Nat Sustain (2026). https://doi.org/10.1038/s41893-026-01768-0
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41893-026-01768-0


