Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A programmable metasurface antenna that approaches the wireless information mapping limit

Abstract

Digitally programmable metasurfaces are of potential use in next-generation mobile communications due to their ability to perform wireless data transmission without digital-to-analogue conversion or frequency mixing. However, communication networks based on programmable metasurfaces currently suffer from relatively low data transmission rates and low information mapping efficiencies (where the transmitted information per unit switching time is much lower than the information that encodes the programmable pattern). Here we report a programmable metasurface antenna that can approach the theoretical upper limit of the information mapping efficiency. Our approach combines non-recurrent encoding with spatial harmonic retrieval, and we show that the model maps most available programmable patterns to the first-harmonic direction in bijection. As a result, the approach can retrieve all of the encoding information through a single measurement. We also optimize the power efficiency of the communication architecture by using cascaded encoding to amplify the far-field radiation exclusively in the harmonic angles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Information mapping based on programmable metasurface antennas.
Fig. 2: Far-field responses of the programmable metasurface in the normal and first-harmonic directions, where the lengths of the encoding sequences are odd primes.
Fig. 3: Prototype design and far-field responses.
Fig. 4: Experimental results of information mapping scheme based on a programmable metasurface antenna.
Fig. 5: Bit-error-rate evaluation through a simulated data transmission experiment.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Shafi, M. et al. 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35, 1201–1221 (2017).

    MATH  Google Scholar 

  2. Yu, H., Lee, H. & Jeon, H. What is 5G? Emerging 5G mobile services and network requirements. Sustainability 9, 1848 (2017).

    MATH  Google Scholar 

  3. Zong, B. et al. 6G technologies: key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh. Technol. Mag. 14, 18–27 (2019).

    MATH  Google Scholar 

  4. Tariq, F. et al. A speculative study on 6G. IEEE Wirel. Commun. 27, 118–125 (2020).

    MATH  Google Scholar 

  5. Wang, J. H., Ling, X. T., Ye, Y. W., Huang, Y. M. & You, X. H. Blockchain-enabled wireless communications: a new paradigm towards 6G. Natl Sci. Rev. 8, nwab069 (2021).

  6. Yang, X. et al. Hardware-constrained millimeter-wave systems for 5G: challenges, opportunities, and solutions. IEEE Commun. Mag. 57, 44–50 (2019).

    MATH  Google Scholar 

  7. Cui, T. J., Liu, S., Bai, G. D. & Ma, Q. Direct transmission of digital message via programmable coding metasurface. Research 2019, 2584509 (2019).

    Google Scholar 

  8. Zhao, J. et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci. Rev. 6, 231–238 (2019).

    MATH  Google Scholar 

  9. Zhang, L. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021).

    MATH  Google Scholar 

  10. Chen, M. Z. et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. Natl Sci. Rev. 9, nwab134 (2022).

    Google Scholar 

  11. Zhang, X. G. et al. A metasurface-based light-to-microwave transmitter for hybrid wireless communications. Light Sci. Appl. 11, 126 (2022).

    MATH  Google Scholar 

  12. Wu, G. B. et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. Nat. Commun. 14, 5155 (2023).

    MATH  Google Scholar 

  13. Wu, G. B., Dai, J. Y., Cheng, Q., Cui, T. J. & Chan, C. H. Sideband-free space-time-coding metasurface antennas. Nat. Electron. 5, 808–819 (2022).

    Google Scholar 

  14. Dai, J. Y. et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface. Adv. Mater. Technol. 4, 1900044 (2019).

    Google Scholar 

  15. Ke, J. C. et al. Space-frequency-polarization-division multiplexed wireless communication system using anisotropic space-time-coding digital metasurface. Natl Sci. Rev. 9, nwac225 (2022).

    Google Scholar 

  16. Tang, W. et al. Wireless communications with programmable metasurface: new paradigms, opportunities, and challenges on transceiver design. IEEE Wirel. Commun. 27, 180–187 (2020).

    MATH  Google Scholar 

  17. Tan, H. et al. A free-space orbital angular momentum multiplexing communication system based on a metasurface. Laser Photonics Rev. 13, 1800278 (2019).

    Google Scholar 

  18. Li, N. et al. A broadband dual-polarized reflective metasurface for THz OAM communication. IEEE Trans. Microw. Theory Tech. 72, 1302–1311 (2024).

    MATH  Google Scholar 

  19. Tao, J. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications. Adv. Mater. 34, 2106080 (2022).

    Google Scholar 

  20. Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials, and programmable metamaterials. Light Sci. Appl. 3, e218 (2014).

    MATH  Google Scholar 

  21. Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

    Google Scholar 

  22. Li, L. et al. Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 97 (2019).

    MATH  Google Scholar 

  23. Nooraiepour, A., Vosoughitabar, S., Wu, C.-T. M., Bajwa, W. U. & Mandayam, N. B. Programming wireless security through learning-aided spatiotemporal digital coding metamaterial antenna. Adv. Intell. Syst. 5, 2300341 (2023).

    Google Scholar 

  24. Vosoughitabar, S. & Wu, C.-T. M. Programming nonreciprocity and harmonic beam steering via a digitally space-time-coded metamaterial antenna. Sci. Rep. 13, 7338 (2023).

    MATH  Google Scholar 

  25. Zhang, X. G. et al. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron. 3, 165–171 (2020).

    MATH  Google Scholar 

  26. Ma, Q. et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl. 8, 98 (2019).

    MATH  Google Scholar 

  27. Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).

    MATH  Google Scholar 

  28. Zhang, L. et al. Breaking reciprocity with space-time-coding digital metasurfaces. Adv. Mater. 31, 1904069 (2019).

    Google Scholar 

  29. Chen, B. W. et al. Electrically addressable integrated intelligent terahertz metasurface. Sci. Adv. 8, eadd1296 (2022).

    Google Scholar 

  30. Li, L. L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).

    MATH  Google Scholar 

  31. Wu, H. et al. Robust spin-momentum coupling induced by parity-time symmetric spatiotemporal metasurface. Adv. Opt. Mater. 9, 2101322 (2021).

    Google Scholar 

  32. Chen, X. Q., Zhang, L., Liu, S. & Cui, T. J. Artificial neural network for direction-of-arrival estimation and secure wireless communications via space-time-coding digital metasurfaces. Adv. Opt. Mater. 10, 2201900 (2022).

    Google Scholar 

  33. Cui, T. J., Liu, S. & Li, L. L. Information entropy of coding metasurface. Light Sci. Appl. 5, e16172 (2016).

    MATH  Google Scholar 

  34. Wu, H. et al. Information theory of metasurfaces. Natl Sci. Rev. 7, 561–571 (2020).

    MATH  Google Scholar 

  35. Tsai, D. P. Exploring the electromagnetic information of metasurfaces. Natl Sci. Rev. 7, 1845–1846 (2020).

    MATH  Google Scholar 

  36. Wu, H. et al. Harmonic information transitions of spatiotemporal metasurfaces. Light Sci. Appl. 9, 198 (2020).

    MATH  Google Scholar 

  37. Wang, S. R. et al. Manipulations of multi-frequency waves and signals via multi-partition asynchronous space-time-coding digital metasurface. Nat. Commun. 14, 5377 (2023).

    MATH  Google Scholar 

  38. Li, W. H. et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision. Nat. Commun. 14, 989 (2023).

    MATH  Google Scholar 

  39. Bai, X., Tan, S., Mikki, S., Li, E. & Cui, T. J. Information-theoretic measures for reconfigurable metasurface-enabled direct digital modulation systems: an electromagnetic perspective. Prog. Electromagn. Res. 179, 1–18 (2024).

    MATH  Google Scholar 

  40. Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M. & Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 18, 4157–4170 (2019).

    MATH  Google Scholar 

  41. Wu, Q. & Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 18, 5394–5409 (2019).

    MATH  Google Scholar 

  42. Han, Y., Tang, W., Jin, S., Wen, C. & Ma, X. Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Trans. Veh. Technol. 68, 8238–8242 (2019).

    Google Scholar 

  43. Di Renzo, M. et al. Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 1, 798–807 (2020).

    MATH  Google Scholar 

  44. Di Renzo, M. et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 38, 2450–2525 (2020).

    MATH  Google Scholar 

  45. Tang, W. K. et al. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement. IEEE Trans. Wirel. Commun. 20, 421–439 (2021).

    MATH  Google Scholar 

  46. Zhang, Z. Z. et al. Active RIS vs. passive RIS: which will prevail in 6G? IEEE Trans. Commun. 71, 1707–1725 (2022).

    MATH  Google Scholar 

  47. Cheng, Q. et al. Reconfigurable intelligent surfaces: simplified-architecture transmitters—from theory to implementations. Proc. IEEE 110, 1266–1289 (2022).

    MATH  Google Scholar 

  48. Trichopoulos, G. C. et al. Design and evaluation of reconfigurable intelligent surfaces in real-world environment. IEEE Open J. Commun. Soc. 3, 462–474 (2022).

    MATH  Google Scholar 

  49. Yu, F. T. S. Entropy and Information Optics-Connecting Information and Time 2nd edn (CRC Press, 2017).

  50. Yatagai, T. Fourier Theory in Optics and Optical Information Processing 1st edn (CRC Press, 2022).

  51. Ingleton, A. W. The rank of circulant matrices. J. Lond. Math. Soc. s1–31, 445–460 (1956).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under grant nos. 62288101 (T.J.C.), 62171124 (T.J.C.) and 62225108 (T.J.C.); in part by the National Key Research and Development Program of China under grant nos. 2021YFA1401002 (T.J.C.) and 2018YFA070194 (T.J.C.); in part by the 111 Project under grant no. 111-2-05 (T.J.C.); in part by the Fundamental Research Funds for Central Universities under grant nos. 2242022k30004 (T.J.C.), 2242022R10055 (T.J.C.) and 2242022R10185 (T.J.C.); in part by NRF-CRP22-2019-0006 (Y.L.); in part by NRF-CRP23-2019-0007 (Y.L.); in part by the Distinguished Professor Fund of Jiangsu Province under grant no. 1004-YQR24010 (Y.L.); in part by the Fundamental Research Funds for the Central Universities, NUAA, under grant no. NE2024007 (Y.L.); and in part by The Ministry of Education, Singapore, under its MOE ARF Tier 2 (MOE-T2EP50223-0020, Y.Z.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Contributions

T.J.C. and H.W. conceived the idea. H.W. and R.S. developed and carried out the theoretical analysis. R.S. and H.W. designed the programmable metasurface antenna and carried out the measurements. Z.X. and Z.Q. participated in the experimental design. Z.X., Y.L., Y.Z., J.W.W., S.T., X.W. and Q.C. participated in the analysis and discussion of the results. T.J.C., Y.L. and Y.Z. supervised the whole project. H.W., R.S., Z.X., T.J.C. and Y.L. wrote the paper with input from all other authors.

Corresponding authors

Correspondence to Yuanjin Zheng, Yu Luo or Tie Jun Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Chung-Tse Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–21, Figs. 1–19 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Shao, R., Xu, Z. et al. A programmable metasurface antenna that approaches the wireless information mapping limit. Nat Electron 8, 179–191 (2025). https://doi.org/10.1038/s41928-024-01298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-024-01298-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing