Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orthogonal photopatterning of two-dimensional percolated network films for wafer-scale heterostructures

Abstract

Molecular intercalation-based electrochemical exfoliation of two-dimensional (2D) materials can be used to create van der Waals heterostructures. However, the scalable assembly of vertical heterostructures typically requires the use of various chemical solvents for photolithography and subsequent transfer, which can leave behind chemical residues and limit the patterning resolution. We show that patterned van der Waals heterostructures can be fabricated from electrochemically exfoliated 2D flakes using a photoreactive crosslinker. When a 2D van der Waals percolated network with the crosslinker is exposed to ultraviolet light, the network junctions form covalent bonds, thereby enabling improved charge transport and orthogonal patterning of vertically stacked van der Waals thin-film networks without affecting the underlying prepatterned layers. Our approach can be used to create wafer-scale arrays of photopatterned field-effect transistors based on different 2D materials. The field-effect transistors exhibit high spatial uniformity and can be used to create logic gates, namely NOT, NAND and NOR gates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photopatterned 2D vertical van der Waals heterostructures.
Fig. 2: Chemical and electrical analyses of 2D percolated networks.
Fig. 3: Electronic properties of FETs based on all 2D materials.
Fig. 4: Applicability to various logic circuits.

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Lemme, M. C., Akinwande, D., Huyghebaert, C. & Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022).

    Article  Google Scholar 

  2. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  3. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  MATH  Google Scholar 

  4. Zhang, X. et al. Facile synthesis of solution-processed MoS2 nanosheets and their application in high-performance ultraviolet organic light-emitting diodes. J. Mater. Chem. C 7, 926–936 (2019).

    Article  MATH  Google Scholar 

  5. Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    Article  Google Scholar 

  6. Kim, J. et al. Solution-processed MoS2 film with functional interfaces via precursor-assisted chemical welding. ACS Appl. Mater. Interfaces 13, 12221–12229 (2021).

    Article  MATH  Google Scholar 

  7. Kim, J. et al. All-solution-processed van der Waals heterostructures for wafer-scale electronics. Adv. Mater. 34, 2106110 (2022).

    Article  Google Scholar 

  8. Liu, Q. et al. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution. Small 11, 5556–5564 (2015).

    Article  MATH  Google Scholar 

  9. Ciesielski, A. & Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014).

    Article  Google Scholar 

  10. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  MATH  Google Scholar 

  11. Knobloch, T. et al. Improving stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning. Nat. Electron. 5, 356–366 (2022).

    Article  MATH  Google Scholar 

  12. Li, M. et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater. 30, 1803690 (2018).

    Article  Google Scholar 

  13. Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Article  Google Scholar 

  14. Deng, T. et al. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett. 19, 1494–1503 (2019).

    Article  MATH  Google Scholar 

  15. Wu, D. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13, 9907–9917 (2019).

    Article  MATH  Google Scholar 

  16. Kwon, Y. A. et al. Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina. Nat. Electron. 6, 443–450 (2023).

    Article  MATH  Google Scholar 

  17. Rhee, D., Jariwala, D., Cho, J. H. & Kang, J. Solution-processed 2D van der Waals networks: Fabrication strategies, properties, and scalable device applications. Appl. Phys. Rev. 11, 021310 (2024).

  18. Song, O. et al. All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. npj 2D Mater. Appl. 6, 64 (2022).

    Article  MATH  Google Scholar 

  19. Bae, S.-H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    Article  MATH  Google Scholar 

  20. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  MATH  Google Scholar 

  21. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  MATH  Google Scholar 

  22. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  MATH  Google Scholar 

  23. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  MATH  Google Scholar 

  24. Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    Article  Google Scholar 

  25. Tong, L. et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 6, 37–44 (2023).

    MATH  Google Scholar 

  26. Quellmalz, A. et al. Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat. Commun. 12, 917 (2021).

    Article  MATH  Google Scholar 

  27. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  MATH  Google Scholar 

  28. Luo, P. et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron. 5, 849–858 (2022).

    Article  MATH  Google Scholar 

  29. Yang, X. et al. Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18, 471–478 (2023).

    Article  MATH  Google Scholar 

  30. Chang, S., Yan, Y. & Geng, Y. Manipulating nanopatterns on two-dimensional MoS2 monolayers via atomic force microscopy-based thermomechanical nanolithography for optoelectronic device fabrication. ACS Appl. Nano Mater. 6, 8346–8357 (2023).

    Article  Google Scholar 

  31. Cho, S. R. et al. Universal patterning for 2D van der Waals materials via direct optical lithography. Adv. Funct. Mater. 31, 2105302 (2021).

    Article  Google Scholar 

  32. Enrico, A. et al. Ultrafast and resist-free nanopatterning of 2D materials by femtosecond laser irradiation. ACS Nano 17, 8041–8052 (2023).

    Article  MATH  Google Scholar 

  33. Li, T. et al. Reconfigurable, non-volatile neuromorphic photovoltaics. Nat. Nanotechnol. 18, 1303–1310 (2023).

    Article  MATH  Google Scholar 

  34. Bolshakov, P. et al. Contact engineering for dual-gate MoS2 transistors using O2 plasma exposure. ACS Appl. Electron. Mater. 1, 210–219 (2019).

    Article  Google Scholar 

  35. Garcia, A. G. F. et al. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 12, 4449–4454 (2012).

    Article  MATH  Google Scholar 

  36. Sun, X. et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 5, 752–760 (2022).

    Article  MATH  Google Scholar 

  37. McManus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017).

    Article  MATH  Google Scholar 

  38. Carey, T. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017).

    Article  MATH  Google Scholar 

  39. Nguyen, V. L. et al. Wafer-scale integration of transition metal dichalcogenide field-effect transistors using adhesion lithography. Nat. Electron. 6, 146–153 (2023).

    Article  MATH  Google Scholar 

  40. Kim, M. J. et al. Universal three-dimensional crosslinker for all-photopatterned electronics. Nat. Commun. 11, 1520 (2020).

    Article  MATH  Google Scholar 

  41. Kwak, I. C. et al. Solid-state homojunction electrochemical transistors and logic gates on plastic. Adv. Funct. Mater. 33, 2211740 (2023).

    Article  Google Scholar 

  42. Syari’ati, A. et al. Photoemission spectroscopy study of structural defects in molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). Chem. Commun. 55, 10384–10387 (2019).

    Article  MATH  Google Scholar 

  43. Kim, J. et al. Area-selective chemical doping on solution-processed MoS2 thin-film for multi-valued logic gates. Nano Lett. 22, 570–577 (2022).

    Article  MATH  Google Scholar 

  44. Kim, K. S. et al. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nat. Commun. 10, 4701 (2019).

    Article  MATH  Google Scholar 

  45. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  MATH  Google Scholar 

  46. Nie, X.-R. et al. Impact of metal contacts on the performance of multilayer HfS2 field-effect transistors. ACS Appl. Mater. Interfaces 9, 26996–27003 (2017).

    Article  MATH  Google Scholar 

  47. Zhu, J. et al. Solution-processed dielectrics based on thickness-sorted two-dimensional hexagonal boron nitride nanosheets. Nano Lett. 15, 7029–7036 (2015).

    Article  MATH  Google Scholar 

  48. Mondal, A. et al. Low ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat. Nanotechnol. 19, 34–43 (2024).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (Grant Numbers RS-2023-00234581, RS-2023-00208538, RS-2023-00237308 and RS-2023-00276201). M.S.K. acknowledges support from the Nano & Material Technology Development Program (RS-2024-00445116) of the NRF funded by the Ministry of Science and ICT, Korea. V.M. was supported by project LUAUS23049 from the Ministry of Education Youth and Sports. Z.S. was supported by the ERC-CZ programme (Project LL2101) of the Ministry of Education Youth and Sports and used a large piece of infrastructure from Project Reg. Number CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR.

Author information

Authors and Affiliations

Authors

Contributions

J.H.C. and J. Kang initiated and supervised all the research. I.C.K. and J. Kim conducted and designed most of the experimental work and data analysis. J.W.M., S.K., H.J. and S.Y.P. assisted with the data analysis. J.Y.P., O.S., V.M. and Z.S. synthesized the materials. M.S.K. assisted with paper writing. All authors contributed to the writing of the paper. All authors discussed the progress of the research and contributed to editing the paper.

Corresponding authors

Correspondence to Joohoon Kang or Jeong Ho Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Yuerui Lu, Ning Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–23.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, I.C., Kim, J., Moon, J.W. et al. Orthogonal photopatterning of two-dimensional percolated network films for wafer-scale heterostructures. Nat Electron 8, 235–243 (2025). https://doi.org/10.1038/s41928-025-01351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01351-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing