Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Perovskites for next-generation colour conversion displays

Abstract

Metal halide perovskites could form the basis of future display technology due to their powerful optical properties. However, the commercialization of electroluminescent perovskites has been hindered by key challenges, including limited operational lifetime and instability in blue emission. Here we highlight the potential of perovskites in colour conversion displays. We examine the particular advantages of perovskite materials as colour conversion layers: narrow emission spectrum, high absorption coefficients, high-brightness operation, photon recycling and ease of manufacturing. We provide a framework for the development of RoHS (Restriction of Hazardous Substances)-compliant and colour-filter-free perovskite-based colour conversion displays and offer guidelines for commercialization. We also explore the potential of using perovskite colour conversion layers to create advanced augmented reality and virtual reality technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural evolution of display technologies.
Fig. 2: Comprehensive characteristics of perovskite materials.
Fig. 3: Overview of optical strategies and their corresponding functionalities.
Fig. 4: Design and modelling for RoHS-compliant and colour-filter-free perovskite colour conversion displays.

Similar content being viewed by others

Data availability

The data that support this study are available from the corresponding authors upon reasonable request.

References

  1. Zhu, R., Luo, Z., Chen, H., Dong, Y. & Wu, S.-T. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express 23, 23680–23693 (2015).

    Article  Google Scholar 

  2. Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).

    Article  Google Scholar 

  3. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    Article  Google Scholar 

  4. Chen, J., Hardev, V., Hartlove, J., Hofler, J. & Lee, E. 66.1: Distinguised paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film. SID Symp. Dig. Tech. Pap. 43, 895–896 (2012).

    Article  Google Scholar 

  5. Yin, M. et al. Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer. Org. Electron. 62, 407–411 (2018).

    Article  Google Scholar 

  6. Hu, Z. et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 12, 2103–2110 (2020).

    Article  Google Scholar 

  7. Xuan, T., Shi, S., Wang, L., Kuo, H.-C. & Xie, R.-J. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J. Phys. Chem. Lett. 11, 5184–5191 (2020).

    Article  Google Scholar 

  8. Li, Y. et al. Microfluidics-based quantum dot color conversion layers for full-color micro-LED display. Appl. Phys. Lett. 118, 173501 (2021).

    Article  Google Scholar 

  9. Han, T.-H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article  Google Scholar 

  10. Wu, X.-G., Ji, H., Yan, X. & Zhong, H. Industry outlook of perovskite quantum dots for display applications. Nat. Nanotechnol. 17, 813–816 (2022).

    Article  Google Scholar 

  11. Lu, M. et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv. Funct. Mater. 29, 1902008 (2019).

    Article  Google Scholar 

  12. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  Google Scholar 

  13. Li, G. et al. Color-conversion displays: current status and future outlook. Light Sci. Appl. 13, 301 (2024).

    Article  Google Scholar 

  14. Sadhukhan, P., Kim, M. S., Baek, S.-D. & Myoung, J.-M. Super-bright green perovskite light-emitting diodes using ionic liquid additives. Small Methods 7, 2201407 (2023).

    Article  Google Scholar 

  15. Liu, A. et al. Optimizing perovskite surfaces to enhance post-treatment for efficient blue mixed-halide perovskite light-emitting diodes. Adv. Mater. 36, 2414788 (2024).

    Google Scholar 

  16. Li, N. et al. Diammonium-mediated perovskite film formation for high-luminescence red perovskite light-emitting diodes. Adv. Mater. 34, 2202042 (2022).

    Article  Google Scholar 

  17. Yuan, F. et al. Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci. Adv. 6, eabb0253 (2020).

    Article  Google Scholar 

  18. Jiang, X., Fan, Z., Luo, L. & Wang, L. Advances and challenges in heavy-metal-free InP quantum dot light-emitting diodes. Micromachines 13, 709 (2022).

    Article  Google Scholar 

  19. Rabouw, F. T. & de Mello Donega, C. Excited-state dynamics in colloidal semiconductor nanocrystals. Top. Curr. Chem. 374, 58 (2016).

    Article  Google Scholar 

  20. Wolf, M. & Berezovsky, J. Homogeneous and inhomogeneous sources of optical transition broadening in room temperature CdSe/ZnS nanocrystal quantum dots. Appl. Phys. Lett. 105, 143105 (2014).

    Article  Google Scholar 

  21. Xie, B. et al. Precise optical modeling of quantum dots for white light-emitting diodes. Sci. Rep. 7, 16663 (2017).

    Article  Google Scholar 

  22. Osinski, J. & Palomaki, P. Quantum dot design criteria for colour conversion in microLED displays. SID Symp. Dig. Tech. Pap. 50, 34–37 (2019).

    Article  Google Scholar 

  23. Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).

    Article  Google Scholar 

  24. De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Article  Google Scholar 

  25. Herz, L. M. Charge-carrier dynamics in organic–inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).

    Article  Google Scholar 

  26. Song, H. et al. A universal perovskite nanocrystal ink for high-performance optoelectronic devices. Adv. Mater. 35, 2209486 (2023).

    Article  Google Scholar 

  27. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  Google Scholar 

  28. Wei, Q. et al. Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater. 7, 1900080 (2019).

    Article  Google Scholar 

  29. Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8, 737–743 (2014).

    Article  Google Scholar 

  30. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  Google Scholar 

  31. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  Google Scholar 

  32. Cho, C., Sun, Y., You, J., Cui, L.-S. & Greenham, N. C. Enhanced photon recycling enables efficient perovskite light-emitting diodes. Adv. Funct. Mater. 34, 2411556 (2024).

    Article  Google Scholar 

  33. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  Google Scholar 

  34. Vighnesh, K., Wang, S., Liu, H. & Rogach, A. L. Hot-injection synthesis protocol for green-emitting cesium lead bromide perovskite nanocrystals. ACS Nano 16, 19618–19625 (2022).

    Article  Google Scholar 

  35. Zhang, F. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    Article  Google Scholar 

  36. Al-Milaji, K. N. & Zhao, H. New perspective of mitigating the coffee-ring effect: interfacial assembly. J. Phys. Chem. C 123, 12029–12041 (2019).

    Article  Google Scholar 

  37. Park, H. et al. Efficient quantum dot color conversion layer with mixed spherical/rod-shaped scattering particles. ACS Appl. Opt. Mater. 1, 289–297 (2023).

    Article  Google Scholar 

  38. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    Article  Google Scholar 

  39. Ooi, Z. Y. et al. Strong angular and spectral narrowing of electroluminescence in an integrated Tamm-plasmon-driven halide perovskite LED. Nat. Commun. 15, 5802 (2024).

    Article  Google Scholar 

  40. Pourdavoud, N. et al. Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films. Adv. Mater. 31, 1903717 (2019).

    Article  Google Scholar 

  41. McGroddy, K. et al. Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes. Appl. Phys. Lett. 93, 103502 (2008).

    Article  Google Scholar 

  42. Kumar, S. et al. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022).

    Article  Google Scholar 

  43. Sim, S. et al. Color gamut change by optical crosstalk in high-resolution organic light-emitting diode microdisplays. Opt. Express 30, 24155–24165 (2022).

    Article  Google Scholar 

  44. Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (Recast) Text with EEA Relevance EUR-Lex Document 32011L0065 (European Union, 2011); https://eur-lex.europa.eu/eli/dir/2011/65/oj/eng

  45. Kong, Q. et al. Phase engineering of cesium manganese bromides nanocrystals with color-tunable emission. Angew. Chem. Int. Ed. 60, 19653–19659 (2021).

    Article  Google Scholar 

  46. Han, D. et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 622, 493–498 (2023).

    Article  Google Scholar 

  47. Lu, Q. et al. A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Adv. Funct. Mater. 31, 2100151 (2021).

    Article  Google Scholar 

  48. Chen, S. et al. Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy 5, 1003–1011 (2020).

    Article  Google Scholar 

  49. Chen, B. et al. Recycling lead and transparent conductors from perovskite solar modules. Nat. Commun. 12, 5859 (2021).

    Article  Google Scholar 

  50. Samsung Display introduces innovative quantum dot ink regeneration technology. Samsung Display Newsroom https://global.samsungdisplay.com/31318 (2024).

  51. Alberola-Borràs, J.-A. et al. Perovskite photovoltaic modules: life cycle assessment of pre-industrial production process. iScience 9, 542–551 (2018).

    Article  Google Scholar 

  52. Zhang, M. et al. Towards sustainable perovskite light-emitting diodes. Nat. Sustain. 8, 315–324 (2025).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Kang (Seoul National University) for his comments and suggestions during the overall review of this paper. This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (RS-2025-00523067, NRF-2022R1A2C4002248, 2021M3H4A1A02049006, 2022H1D3A3A01077343 and RS-2024-00337375). This work was partly supported by a Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (RS-2024-00418086, HRD Program for Industrial Innovation). C.C. also acknowledges the Korea Basic Science Institute (National Research Facilities and Equipment Center) (RS-2024-00403574) funded by the Korea government (Ministry of Science and ICT). This work received funding from the Engineering and Physical Science Research Council (EPSRC), UK, through projects EP/V061747/1 and EP/V06164X/1. It was also supported by the Samsung Research Funding & Incubation Center of Samsung Electronics under projects SRFC-TC2103-04 and SRFC-MA2302-02.

Author information

Authors and Affiliations

Authors

Contributions

J.K., E.D.J. and B.R.L. conceived of the project and wrote the initial draft of the paper. J.K. and J.Y. drew the figures. J.Y. conducted the optical simulations and collected the relevant data for Supplementary Information. J.L. provided overall feedback and helped improve the clarity of the paper. B.C.P. supported literature research. H.J.S. and R.H.F. provided scientific advice and critical discussion throughout the project. C.C. and B.R.L. supervised the project and led the overall research direction. All authors discussed the results and contributed to the final version of the paper.

Corresponding authors

Correspondence to Changsoon Cho or Bo Ram Lee.

Ethics declarations

Competing interests

H.J.S. and R.H.F. are co-founders of Helio Display Materials Ltd, a company commercializing perovskite nanocrystals for colour conversion applications in displays.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Figs. 1–4 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Jung, E.D., You, J. et al. Perovskites for next-generation colour conversion displays. Nat Electron (2025). https://doi.org/10.1038/s41928-025-01456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41928-025-01456-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing