Radical intermediates are key species in many chemical transformations. Recent advances have provided a new suite of selective radical alkylation reactions. This Comment highlights pioneering studies using alkyl amines that act as radical precursors in a number of catalytic processes by their conversion to alkylpyridinium salts.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Stereoselective intermolecular radical cascade reactions of tryptophans or ɤ-alkenyl-α-amino acids with acrylamides via photoredox catalysis
Nature Communications Open Access 01 April 2022
-
Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN2 pincer ligand
Nature Communications Open Access 12 August 2021
-
Manganese-mediated reductive functionalization of activated aliphatic acids and primary amines
Nature Communications Open Access 07 October 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






References
Beller, M., Renken, A. & van Santen, R. A. Catalysis from Principles to Application (Wiley-VCH, Hoboken, 2012).
Blakemore, D. C. et al. Nat. Chem. 10, 383–394 (2018).
Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. J. Am. Chem. Soc. 138, 12692–12714 (2016).
Choi, J. & Fu, G. C. Science 356, 9 (2017).
Lovering, F. MedChemComm 4, 515–519 (2013).
Matyjaszewski, K. & Tsarevsky, N. V. J. Am. Chem. Soc. 136, 6513–6533 (2014).
Wu, X. Y. et al. J. Am. Chem. Soc. 140, 14836–14843 (2018).
Shaw, M. H., Twilton, J. & MacMillan, D. W. C. J. Org. Chem. 81, 6898–6926 (2016).
Twilton, J. et al. Nat. Rev. Chem. 1, 19 (2017).
Cornella, J. et al. J. Am. Chem. Soc. 138, 2174–2177 (2016).
Nawrat, C. C., Jamison, C. R., Slutskyy, Y., MacMillan, D. W. C. & Overman, L. E. J. Am. Chem. Soc. 137, 11270–11273 (2015).
Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. Angew. Chem. Int. Ed. 58, 6152–6163 (2019).
Smith, J. M., Dixon, J. A., deGruyter, J. N. & Baran, P. S. J. Med. Chem. 62, 2256–2264 (2018).
Katritzky, A. R. & Marson, C. M. Angew. Chem. Int. Ed. 23, 420–429 (1984).
Basch, C. H., Liao, J. N., Xu, J. Y., Piane, J. J. & Watson, M. P. J. Am. Chem. Soc. 139, 5313–5316 (2017).
Liao, J. et al. Org. Lett. 20, 3030–3033 (2018).
Guan, W., Liao, J. & Watson, M. P. Synthesis 50, 3231–3237 (2018).
Ociepa, M., Turkowska, J. & Gryko, D. ACS Catal. 8, 11362–11367 (2018).
Sandfort, F., Strieth-Kalthoff, F., Klauck, F. J. R., James, M. J. & Glorius, F. Chem. Eur. J. 24, 17210–17214 (2018).
Katritzky, A. R., Deville, G. & Patel, R. C. Tetrahedron 37, 25–30 (1981).
Pound, S. M. & Watson, M. P. Chem. Commun. 54, 12286–12301 (2018).
Plunkett, S., Basch, C. H., Santana, S. O. & Watson, M. P. J. Am. Chem. Soc. 141, 2257–2262 (2019).
Ni, S., Li, C., Han, J., Mao, Y. & Pan, Y. Ni-catalyzed deamination cross-electrophile coupling of Katritzky salts with halides via C–N bond activation. Preprint at https://go.nature.com/2K9J88M(2019).
Weix, D. J. Acc. Chem. Res. 48, 1767–1775 (2015).
Yue, H. et al. Chem. Sci. 10, 4430–4435 (2019).
Yi, J., Badir, S. O., Kammer, L. M., Ribagorda, M. & Molander, G. A. Org. Lett. https://go.nature.com/2Wus0kG (2019).
Martin-Montero, R., Yatham, V. R., Yin, H., Davies, J. & Martin, R. Org. Lett. 21, 2947–2951 (2019).
Liao, J. et al. Org. Lett. 21, 2941–2946 (2019).
Klauck, F. J. R., James, M. J. & Glorius, F. Angew. Chem. Int. Ed. 56, 12336–12339 (2017).
Klauck, F. J. R., Yoon, H., James, M. J., Lautens, M. & Glorius, F. ACS Catal. 9, 236–241 (2019).
Ruano, J. L. G., Aleman, J., Parra, A. & Marzo, L. Eur. J. Org. Chem. 2014, 1577–1588 (2014).
Jiang, X., Zhang, M.-M., Xiong, W., Lu, L.-Q. & Xiao, W.-J. Angew. Chem. Int. Ed. 58, 2402–2406 (2019).
Wu, J. J., He, L., Noble, A. & Aggarwal, V. K. J. Am. Chem. Soc. 140, 10700–10704 (2018).
Hu, J. F., Wang, G. Q., Li, S. H. & Shi, Z. Z. Angew. Chem. Int. Ed. 57, 15227–15231 (2018).
Wu, J., Grant, P. S., Li, X., Noble, A. & Aggarwal, V. K. Angew. Chem. Int. Ed. 58, 5697–5701 (2019).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kong, D., Moon, P.J. & Lundgren, R.J. Radical coupling from alkyl amines. Nat Catal 2, 473–476 (2019). https://doi.org/10.1038/s41929-019-0292-9
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41929-019-0292-9
This article is cited by
-
Photoinduced nickel-catalysed enantioconvergent sp3–sp3 coupling of unactivated olefins and aziridines
Nature Catalysis (2025)
-
Accessing sulfonamides via formal SO2 insertion into C–N bonds
Nature Chemistry (2025)
-
Deaminative Giese-type reaction
Nature Chemistry (2025)
-
Stereoselective intermolecular radical cascade reactions of tryptophans or ɤ-alkenyl-α-amino acids with acrylamides via photoredox catalysis
Nature Communications (2022)
-
Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN2 pincer ligand
Nature Communications (2021)