Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metallaphotoredox catalysis for sp3 C–H functionalizations through single-electron transfer

Abstract

Metallaphotoredox catalysis merging photocatalysis and transition metal catalysis is now the most efficient platform for sp3 C–H functionalizations due to its very efficient activation and transformation capability. In such a process, photocatalysis is usually in charge of C–H bond activation to generate an sp3-hybridized carbon-centred radical, whereas transition metal catalysis is in charge of the subsequent transformation of this radical. Here we review advances in sp3 C–H functionalizations under matallaphotoredox catalysis via photocatalytic single-electron transfer mechanisms as opposed to hydrogen atom transfer processes. The delineation of these advancements is initially organized according to distinct sp3 C–H bonds and subsequently categorized by various transition metal catalytic systems. We encompass a thorough exploration of diverse metallaphotoredox catalysis strategies, along with their synthetic applications and mechanisms. Similarities and differences between these strategies are described to inspire new reaction designs, thus promoting further development of this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Excitation of a photocatalyst and its participation in metallaphotoredox catalysis.
Fig. 2: α-sp3 C–H activation of amines.
Fig. 3: α-functionalizations of anilines.
Fig. 4: α-functionalizations of amines.
Fig. 5: α-functionalizations of amines.
Fig. 6: α-functionalizations of anilines.
Fig. 7: Functionalizations of allylic C–H.
Fig. 8: Functionalizations of benzylic C–H.

Similar content being viewed by others

References

  1. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Yi, H. et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R1–H/R2–H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Kwon, K., Simons, R. T., Nandakumar, M. & Roizen, J. L. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis. Chem. Rev. 122, 2353–2428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bellotti, P., Huang, H., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Rehm, D. & Weller, A. Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem. 8, 259–271 (1970).

    Article  CAS  Google Scholar 

  8. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  9. Yuan, W., Zheng, S. & Hu, Y. Recent advances in C(sp3)–C(sp3) cross-coupling via metallaphotoredox strategies. Synthesis 53, 1719–1733 (2020).

    Article  Google Scholar 

  10. Lu, F., He, G., Lu, L. & Xiao, W. Metallaphotoredox catalysis for multicomponent coupling reactions. Green Chem. 23, 5379–5393 (2021).

    Article  CAS  Google Scholar 

  11. Sarkar, T., Shah, T. A., Maharana, P. K., Debnath, B. & Punniyamurthy, T. Dual metallaphotoredox‐catalyzed directed C(sp2)–H functionalization: access to C–C/C–heteroatom bonds. Eur. J. Org. Chem. 2022, e202200541 (2022).

    Article  CAS  Google Scholar 

  12. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Singh, P. P., Singh, P. K. & Srivastava, V. Visible light metallaphotoredox catalysis in the late-stage functionalization of pharmaceutically potent compounds. Org. Chem. Front. 10, 216–236 (2023).

    Article  CAS  Google Scholar 

  14. Zhang, J. C. & Rueping, M. Metallaphotoredox catalysis for sp3 C–H functionalizations through hydrogen atom transfer (HAT). Chem. Soc. Rev. 52, 4099–4120 (2023).

    Article  PubMed  Google Scholar 

  15. Freeman, D. B., Furst, L., Condie, A. G. & Stephenson, C. R. J. Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light. Org. Lett. 14, 94–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. McNally, A., Prier, C. K. & MacMillan, D. W. C. Discovery of an α-amino C–H arylation reaction using the strategy of accelerated serendipity. Science 334, 1114–1117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muralirajan, K., Kancherla, R. & Rueping, M. Dehydrogenative aromatization and sulfonylation of pyrrolidines: orthogonal reactivity in photoredox catalysis. Angew. Chem. Int. Ed. 57, 14787–14791 (2018).

    Article  CAS  Google Scholar 

  18. Kumar, G. S. et al. Paired electrolysis for decarboxylative cyanation: 4-CN-pyridine, a versatile nitrile source. Org. Lett. 24, 6357–6363 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, J. C. et al. Visible-light-induced benzylic C–H functionalization for the synthesis of 2-arylquinazolines. Eur. J. Org. Chem. 2019, 5934–5936 (2019).

    Article  CAS  Google Scholar 

  20. Huang, C., Li, J. & Li, C. A cross-dehydrogenative C(sp3)–H heteroarylation via photo-induced catalytic chlorine radical generation. Nat. Commun. 12, 4010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu, C., Yue, H., Nikolaienko, P. & Rueping, M. Merging electrolysis and nickel catalysis in redox neutral cross-coupling reactions: experiment and computation for electrochemically induced C–P and C–Se bonds formation. CCS Chem. 2, 179–190 (2020).

    Article  CAS  Google Scholar 

  22. Zhu, C., Kale, A. P., Yue, H. & Rueping, M. Redox-neutral cross-coupling amination with weak N-nucleophiles: arylation of anilines, sulfonamides, sulfoximines, carbamates, and imines via nickelaelectrocatalysis. JACS Au 1, 1057–1065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kancherla, R., Muralirajan, K. & Rueping, M. Excited-state palladium-catalysed reductive alkylation of imines: scope and mechanism. Chem. Sci. 13, 8583–8589 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014). Report of photoredox/nickel catalysis realizing the cross-coupling of anilines and aryl halides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maity, B., Zhu, C., Rueping, M. & Cavallo, L. Mechanistic understanding of arylation vs alkylation of aliphatic \({\mathrm{C}}_{sp^3}\)–H bonds by decatungstate–nickel catalysis. ACS Catal. 11, 13973–13982 (2021).

    Article  CAS  Google Scholar 

  26. Joe, C. L. & Doyle, A. G. Direct acylation of C(sp3)–H bonds enabled by nickel and photoredox catalysis. Angew. Chem. Int. Ed. 55, 4040–4043 (2016).

    Article  CAS  Google Scholar 

  27. Ahneman, D. T. & Doyle, A. G. C–H functionalization of amines with aryl halides by nickel-photoredox catalysis. Chem. Sci. 7, 7002–7006 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gui, Y. et al. Arylation of aniline C(sp3)–H bonds with phenols via an in situ activation strategy. Asian J. Org. Chem. 7, 537–541 (2017).

    Article  Google Scholar 

  29. Trost, B. M. & Crawley, M. L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem. Rev. 103, 2921–2944 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Norsikian, S. & Chang, C. Control of the regioselectivity in palladium(0)-catalyzed allylic alkylation. Curr. Org. Synth. 6, 264–289 (2009).

    Article  CAS  Google Scholar 

  31. Xuan, J. et al. Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis. Angew. Chem. Int. Ed. 54, 1625–1628 (2014). Report of photoredox/palladium catalysis-mediated α-allylation between N-alkyl anilines and diethyl phosphates.

    Article  Google Scholar 

  32. Zhang, H., Zhao, J. & Yu, S. Enantioselective α-allylation of anilines enabled by a combined palladium and photoredox catalytic system. ACS Catal. 10, 4710–4716 (2020).

    Article  CAS  Google Scholar 

  33. Masuda, Y., Ito, M. & Murakami, M. Dehydrative allylation of α C(sp3)–H bonds of alkylamines with allylic alcohols. Org. Lett. 22, 4467–4470 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Rueping, M. et al. Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions—C–C bond formation using visible light. Chem. Eur. J. 18, 5170–5174 (2012). Report combining photocatalysis and copper catalysis for the alkynylation of amines using air as a green oxidant.

    Article  CAS  PubMed  Google Scholar 

  35. Perepichka, I., Kundu, S., Hearne, Z. & Li, C. Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Org. Biomol. Chem. 13, 447–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Yeung, C. S. & Dong, V. M. Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem. Rev. 111, 1215–1292 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Meng, Q. et al. A cascade cross-coupling hydrogen evolution reaction by visible light catalysis. J. Am. Chem. Soc. 135, 19052–19055 (2013). Report of metellaphotoredox catalysis-mediated cross-dehydrogenative coupling with H2 evolution.

    Article  CAS  PubMed  Google Scholar 

  38. Zhong, J. et al. Cross-coupling hydrogen evolution reaction in homogeneous solution without noble metals. Org. Lett. 16, 1988–1991 (2014). Report of photoredox/cobalt catalysis to unearth the high efficiency of cobalt for H2 evolution.

    Article  CAS  PubMed  Google Scholar 

  39. Gao, X. et al. Visible light catalysis assisted site-specific functionalization of amino acid derivatives by C–H bond activation without oxidant: cross-coupling hydrogen evolution reaction. ACS Catal. 5, 2391–2396 (2015).

    Article  CAS  Google Scholar 

  40. Yang, Q. et al. Visible‐light‐promoted asymmetric cross‐dehydrogenative coupling of tertiary amines to ketones by synergistic multiple catalysis. Angew. Chem. Int. Ed. 56, 3694–3698 (2017).

    Article  CAS  Google Scholar 

  41. Niu, L. et al. Visible light-mediated oxidative C(sp3)–H phosphonylation for α-aminophosphonates under oxidant-free conditions. Chem. Commun. 54, 1659–1662 (2018).

    Article  CAS  Google Scholar 

  42. Tucker, J. W. & Stephenson, C. R. J. Shining light on photoredox catalysis: theory and synthetic applications. J. Org. Chem. 77, 1617–1622 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Rueping, M. et al. Light-mediated heterogeneous cross dehydrogenative coupling reactions: metal oxides as efficient, recyclable, photoredox catalysts in C–C bond-forming reactions. Chem. Eur. J. 18, 3478–3481 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, S. & Rueping, M. Merging visible-light photoredox and Lewis acid catalysis for the functionalization and arylation of glycine derivatives and peptides. Chem. Commun. 48, 11960–11962 (2012).

    Article  CAS  Google Scholar 

  45. Rueping, M., Vila, C., Koenigs, R. M., Poscharny, K. & Fabry, D. C. Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. Chem. Commun. 47, 2360–2362 (2011).

    Article  CAS  Google Scholar 

  46. Hou, H., Zhu, S., Atodiresei, I. & Rueping, M. Asymmetric organocatalysis and photoredox catalysis for the α-functionalization of tetrahydroisoquinolines. Eur. J. Org. Chem. 2018, 1277–1280 (2018).

    Article  CAS  Google Scholar 

  47. Thullen, S. M. & Rovis, T. A mild hydroaminoalkylation of conjugated dienes using a unified cobalt and photoredox catalytic system. J. Am. Chem. Soc. 139, 15504–15508 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. He, K. et al. Acceptorless dehydrogenation of N-heterocycles by merging visible-light photoredox catalysis and cobalt catalysis. Angew. Chem. Int. Ed. 56, 3080–3084 (2017).

    Article  CAS  Google Scholar 

  49. Sahoo, M. K. & Balaraman, E. Room temperature catalytic dehydrogenation of cyclic amines with the liberation of H2 using water as a solvent. Green Chem. 21, 2119–2128 (2019).

    Article  CAS  Google Scholar 

  50. Fabry, D. C., Zoller, J., Raja, S. & Rueping, M. Combining rhodium and photoredox catalysis for C–H functionalizations of arenes: oxidative heck reactions with visible light. Angew. Chem. Int. Ed. 53, 10228–10231 (2014).

    Article  CAS  Google Scholar 

  51. Zheng, J. & Breit, B. Regiodivergent hydroaminoalkylation of alkynes and allenes by a combined rhodium and photoredox catalytic system. Angew. Chem. Int. Ed. 58, 3392–3397 (2019).

    Article  CAS  Google Scholar 

  52. Huang, L. et al. Modulating stereoselectivity in allylic C(sp3)–H bond arylations via nickel and photoredox catalysis. Nat. Commun. 14, 548 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Okude, Y., Hirano, S., Hiyama, T. & Nozaki, H. Grignard-type carbonyl addition of allyl halides by means of chromous salt. A chemospecific synthesis of homoallyl alcohols. J. Am. Chem. Soc. 99, 3179–3181 (1977).

    Article  CAS  Google Scholar 

  54. Jin, H., Uenishi, J., Christ, W. J. & Kishi, Y. Catalytic effect of nickel(ii) chloride and palladium(ii) acetate on chromium(ii)-mediated coupling reaction of iodo olefins with aldehydes. J. Am. Chem. Soc. 108, 5644–5646 (1986).

    Article  CAS  Google Scholar 

  55. Takai, K. et al. Reactions of alkenylchromium reagents prepared from alkenyl trifluoromethanesulfonates (triflates) with chromium(ii) chloride under nickel catalysis. J. Am. Chem. Soc. 108, 6048–6050 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Fürstner, A. & Shi, N. Nozaki–Hiyama–Kishi reactions catalytic in chromium. J. Am. Chem. Soc. 118, 12349–12357 (1996).

    Article  Google Scholar 

  57. Schwarz, J. L., Schäfers, F., Tlahuext-Aca, A., Lückemeier, L. & Glorius, F. Diastereoselective allylation of aldehydes by dual photoredox and chromium catalysis. J. Am. Chem. Soc. 140, 12705–12709 (2018). Development of the NozakiHiyamaKishi reaction realized under very mild conditions with the assistance of photocatalysis.

    Article  CAS  PubMed  Google Scholar 

  58. Schäfers, F. et al. Direct access to monoprotected homoallylic 1,2-diols via dual chromium/photoredox catalysis. ACS Catal. 10, 11841–11847 (2020).

    Article  Google Scholar 

  59. Mitsunuma, H., Tanabe, S., Fuse, H., Ohkubo, K. & Kanai, M. Catalytic asymmetric allylation of aldehydes with alkenes through allylic C(sp3)–H functionalization mediated by organophotoredox and chiral chromium hybrid catalysis. Chem. Sci. 10, 3459–3465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yue, H., Zhu, C., Huang, L., Dewanji, A. & Rueping, M. Advances in allylic and benzylic C–H bond functionalization enabled by metallaphotoredox catalysis. Chem. Commun. 58, 171–184 (2022).

    Article  CAS  Google Scholar 

  61. Liu, H. et al. One-pot photomediated Giese reaction/Friedel–Crafts hydroxyalkylation/oxidative aromatization to access naphthalene derivatives from toluenes and enones. ACS Catal. 8, 6224–6229 (2018).

    Article  CAS  Google Scholar 

  62. Kim, W., Koo, J. & Lee, H. S. Benzylic C(sp3)–C(sp2) cross-coupling of indoles enabled by oxidative radical generation and nickel catalysis. Chem. Sci. 12, 4119–4125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, P., Le, C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kariofillis, S. K. et al. Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J. Am. Chem. Soc. 144, 1045–1055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xiang, M. et al. Activation of C–H bonds through oxidant-free photoredox catalysis: cross-coupling hydrogen-evolution transformation of isochromans and β-keto esters. Chem. Eur. J. 21, 18080–18084 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yue, H., Zhu, C., Kancherla, R., Liu, F. & Rueping, M. Regioselective hydroalkylation and arylalkylation of alkynes by photoredox/nickel dual catalysis: application and mechanism. Angew. Chem. Int. Ed. 59, 5738–5746 (2020).

    Article  CAS  Google Scholar 

  69. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Primer, D. N. & Molander, G. A. Enabling the cross-coupling of tertiary organoboron nucleophiles through radical-mediated alkyl transfer. J. Am. Chem. Soc. 139, 9847–9850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corcé, V. et al. Silicates as latent alkyl radical precursors: visible‐light photocatalytic oxidation of hypervalent bis‐catecholato silicon compounds. Angew. Chem. Int. Ed. 54, 11414–11418 (2015).

    Article  Google Scholar 

  72. Jouffroy, M., Primer, D. N. & Molander, G. A. Base-free photoredox/nickel dual-catalytic cross-coupling of ammonium alkylsilicates. J. Am. Chem. Soc. 138, 475–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Yayla, H. G., Wang, H., Tarantino, K. T., Orbe, H. S. & Knowles, R. R. Catalytic ring-opening of cyclic alcohols enabled by PCET activation of strong O–H bonds. J. Am. Chem. Soc. 138, 10794–10797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ji, T., Chen, X., Huang, L. & Rueping, M. Remote trifluoromethylthiolation enabled by organophotocatalytic C–C bond cleavage. Org. Lett. 22, 2579–2583 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Huang, L., Ji, T. & Rueping, M. Remote nickel-catalyzed cross-coupling arylation via proton-coupled electron transfer-enabled C–C bond cleavage. J. Am. Chem. Soc. 142, 3532–3539 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Huang, L. et al. Bioinspired desaturation of alcohols enabled by photoredox proton-coupled electron transfer and cobalt dual catalysis. Nat. Commun. 13, 809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakajima, K., Nojima, S. & Nishibayashi, Y. Nickel- and photoredox-catalyzed cross-coupling reactions of aryl halides with 4-alkyl-1,4-dihydropyridines as formal nucleophilic alkylation reagents. Angew. Chem. Int. Ed. 55, 14106–14110 (2016).

    Article  CAS  Google Scholar 

  78. Yue, H. et al. Nickel-catalyzed C–N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chem. Sci. 10, 4430–4435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Knauber, T. et al. Ru/Ni dual catalytic desulfinative photoredox \({\mathrm{C}}_{sp^2}-{\mathrm{C}}_{sp^3}\) cross-coupling of alkyl sulfinate salts and aryl halides. Org. Lett. 19, 6566–6569 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Yue, H., Zhu, C. & Rueping, M. Cross-coupling of sodium sulfinates with aryl, heteroaryl, and vinyl halides by nickel/photoredox dual. Catal. Angew. Chem. Int. Ed. 57, 1371–1375 (2018).

    Article  CAS  Google Scholar 

  81. Kim, H. J., Fabry, D. C., Mader, S. & Rueping, M. Photoredox/rhodium catalysis in C–H activation for the synthesis of nitrogen containing heterocycles. Org. Chem. Front. 6, 2319–2323 (2019).

    Article  CAS  Google Scholar 

  82. Zhu, C., Yue, H., Jia, J. & Rueping, M. Nickel‐catalyzed C–heteroatom cross‐coupling reactions under mild conditions via facilitated reductive elimination. Angew. Chem. Int. Ed. 60, 17810–17831 (2021).

    Article  CAS  Google Scholar 

  83. Zhu, C. et al. A multicomponent synthesis of stereodefined olefins via nickel catalysis and single electron/triplet energy transfer. Nat. Catal. 2, 678–687 (2019).

    Article  CAS  Google Scholar 

  84. Huang, L. et al. Cascade cross‐coupling of dienes: photoredox and nickel dual. Catal. Angew. Chem. Int. Ed. 59, 457–464 (2020).

    Article  CAS  Google Scholar 

  85. Zhu, C., Yue, H., Chu, L. & Rueping, M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chem. Sci. 11, 4051–4064 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu, C., Yue, H. & Rueping, M. Nickel catalyzed multicomponent stereodivergent synthesis of olefins enabled by electrochemistry, photocatalysis and photo-electrochemistry. Nat. Commun. 13, 3240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kumar, G. S. et al. Nickel‐catalyzed chain‐walking cross‐electrophile coupling of alkyl and aryl halides and olefin hydroarylation enabled by electrochemical reduction. Angew. Chem. Int. Ed. 59, 6513–6519 (2020).

    Article  CAS  Google Scholar 

  88. Zhu, C., Lee, S., Chen, H., Yue, H. & Rueping, M. Reductive cross‐coupling of α‐oxy halides enabled by thermal catalysis, photocatalysis, electrocatalysis, or mechanochemistry. Angew. Chem. Int. Ed. 61, e202204212 (2022).

    Article  CAS  Google Scholar 

  89. Yi, L., Ji, T., Chen, K., Chen, X. & Rueping, M. Nickel-catalyzed reductive cross-couplings: new opportunities for carbon–carbon bond formations through photochemistry and electrochemistry. CCS Chem. 4, 9–30 (2022).

    Article  CAS  Google Scholar 

  90. Chen, H., Zhu, C., Yue, H. & Rueping, M. Carbon–germanium bond formation via low-valent cobalt-catalyzed cross-electrophile coupling. ACS Catal. 13, 6773–6780 (2023).

    Article  CAS  Google Scholar 

  91. Li, P. et al. Research progress in organic synthesis by means of photoelectrocatalysis. Chem. Rec. 21, 841–857 (2021).

    Article  PubMed  Google Scholar 

  92. Hardwick, T. & Ahmed, N. C–H functionalization via electrophotocatalysis and photoelectrochemistry: complementary synthetic approach. ACS Sustain. Chem. Eng. 9, 4324–4340 (2021).

    Article  CAS  Google Scholar 

  93. Huang, H., Steiniger, K. A. & Lambert, T. H. Electrophotocatalysis: combining light and electricity to catalyze reactions. J. Am. Chem. Soc. 144, 12567–12583 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Yue, H., Zhu, C. & Rueping, M. Trisaminocyclopropenium ion (TAC+) enables contiguous C–H bonds oxygenations via oxidative electrophotocatalysis. Sci. Bull. 68, 367–369 (2023).

    Article  CAS  Google Scholar 

  95. Lee, S., Choi, D., Kuk, S. & Park, C. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 57, 7958–7985 (2018).

    Article  CAS  Google Scholar 

  96. Schmermund, L. et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 9, 4115–4144 (2019).

    Article  CAS  Google Scholar 

  97. Peng, Y., Chen, Z., Xu, J. & Wu, Q. Recent advances in photobiocatalysis for selective organic synthesis. Org. Process Res. Dev. 26, 1900–1913 (2022).

    Article  CAS  Google Scholar 

  98. Bau, J. A. et al. Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts. Nat. Catal. 5, 397–404 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.Z. thanks the Jining Medical University High-Level Research Foundation for financial support (600497001 and 600497002). M.R. thanks the Office of Sponsored Research at King Abdullah University of Science and Technology in Saudi Arabia for financial support (URF/1/4405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingchang Zhang or Magnus Rueping.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Wei Guan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Rueping, M. Metallaphotoredox catalysis for sp3 C–H functionalizations through single-electron transfer. Nat Catal 7, 963–976 (2024). https://doi.org/10.1038/s41929-024-01215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01215-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing