Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A hydrogenative oxidation strategy for the single-step synthesis of lactams from N-heteroarenes using water

Abstract

Using water as a hydrogen or oxygen source in organic synthesis has enabled various reductive and oxidative transformations, but incorporation of both hydrogen and oxygen atoms into the same molecule, representing an atom-economic and environmentally benign process, has scarcely been explored. Here we report a hydrogenative oxidation strategy using water as both a source of H2 and formal oxidant, enabling the direct synthesis of lactams from N-heteroarenes and thereby eliminating the need for additional reductants and oxidants and minimizing waste generation. The reaction can be initiated either under low H2 pressure or with a catalytic amount of H2, leading to the efficient transformation of various N-heteroarenes into lactams in excellent yield thanks to an in situ-generated, piperidine-based, ruthenium pincer complex that balances the hydrogenation and dehydrogenation processes. This study will promote the design of other hydrogenative oxidation reactions using water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrogenative oxidation of N-heteroarenes.
Fig. 2: Condition optimization for catalytic hydrogenative oxidation of quinoline.
Fig. 3: Substrate scope of catalytic hydrogenative oxidation of N-heteroarenes.
Fig. 4: Investigation of the active catalyst.
Fig. 5: Mechanistic study of hydrogenative oxidation of quinoline.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2348166 (Ru-9) and CCDC 2348165 (Ru-10). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Data are available from the corresponding author on request.

References

  1. Bryant, D. A. & Frigaard, N. U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14, 488–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Sligar, S. G., Marks, T. M. & Denisov, I. G. Thirty years of microbial P450 monoxygenase research: peroxo-heme intermediates—the central bus station in heme oxygenase catalysis. Biochem. Biophys. Res. Commun. 338, 346–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, C., Wu, Y., Zhao, B. & Zhang, B. Designed nanomaterials for electrocatalytic organic hydrogenation using water as the hydrogen source. Acc. Chem. Res. 56, 1872–1883 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, E., Zhang, W., Dong, L., Zbořil, R. & Chen, Z. Photocatalytic transfer hydrogenation reactions using water as the proton source. ACS Catal. 13, 7557–7567 (2023).

    Article  CAS  Google Scholar 

  5. Crabtree, R. H. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: applications in hydrogen storage and to heterocycle synthesis. Chem. Rev. 117, 9228–9246 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Kar, S. & Milstein, D. Oxidation of organic compounds using water as the oxidant with H2 liberation catalyzed by molecular metal complexes. Acc. Chem. Res. 55, 2304–2315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cummings, S. P., Le, T.-N., Fernandez, G. E., Quiambao, L. G. & Stokes, B. J. Tetrahydroxydiboron-mediated palladium-catalyzed transfer hydrogenation and deuteriation of alkenes and alkynes using water as the stoichiometric H or D atom donor. J. Am. Chem. Soc. 138, 6107–6110 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, J., Mück-Lichtenfeld, C. & Studer, A. Photocatalytic phosphine-mediated water activation for radical hydrogenation. Nature 619, 506–513 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).

    Article  CAS  Google Scholar 

  10. Liu, X., Liu, R., Qiu, J., Cheng, X. & Li, G. Chemical-reductant-free electrochemical deuteration reaction using deuterium oxide. Angew. Chem. Int. Ed. 59, 13962–13967 (2020).

    Article  CAS  Google Scholar 

  11. Wu, Y., Liu, C., Wang, C., Lu, S. & Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd–P cathode. Angew. Chem. Int. Ed. 59, 21170–21175 (2020).

    Article  CAS  Google Scholar 

  12. Balaraman, E., Khaskin, E., Leitus, G. & Milstein, D. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nat. Chem. 5, 122–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Nielsen, M. et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495, 85–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Cha, H. G. & Choi, K.-S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7, 328–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Liang, Y. et al. Electrochemically induced nickel catalysis for oxygenation reactions with water. Nat. Catal. 4, 719–726 (2021).

    Article  Google Scholar 

  16. Yan, Y., Zhong, J., Wang, R., Yan, S. & Zou, Z. Trivalent nickel-catalyzing electroconversion of alcohols to carboxylic acids. J. Am. Chem. Soc. 146, 4814–4821 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Simonetti, S. O., Larghi, E. L. & Kaufman, T. S. The 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one alkaloids. Results of 20 years of research, uncovering a new family of natural products. Nat. Prod. Rep. 33, 1425–1446 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, X. et al. Structure–functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J. Med. Chem. 55, 7141–7153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cavusoglu, E., Frishman, W. H. & Klapholz, M. Vesnarinone: a new inotropic agent for treating congestive heart failure. J. Card. Fail. 1, 249–257 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Lucas, S. et al. In vivo active aldosterone synthase inhibitors with improved selectivity: lead optimization providing a series of pyridine substituted 3,4-dihydro-1H-quinolin-2-one derivatives. J. Med. Chem. 51, 8077–8087 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bello, R. D. et al. 1-[3-(4-Butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1) as a model for the rational design of a novel class of brain penetrant ligands with high affinity and selectivity for dopamine D4 receptor. J. Med. Chem. 61, 3712–3725 (2018).

    Article  PubMed  Google Scholar 

  22. Mackenzie, A. R., Marchington, A. P., Middleton, D. S., Newman, S. D. & Jones, B. C. Structure–activity relationships of 1-alkyl-5-(3,4-dichlorophenyl)-5-{2-[(3-substituted)-1-azetidinyl]ethyl}-2-piperidones. 1. Selective antagonists of the neurokinin-2 receptor. J. Med. Chem. 45, 5365–5377 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science 359, 1016–1021 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Li, B., Park, Y. & Chang, S. Regiodivergent access to five- and six-membered benzo-fused lactams: Ru-catalyzed olefin hydrocarbamoylation. J. Am. Chem. Soc. 136, 1125–1131 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, M. D. & Alper, H. Regioselective synthesis of piperidinones by metal catalyzed ring expansion–carbonylation reactions. Remarkable cobalt and/or ruthenium carbonyl catalyzed rearrangement and cyclization reactions. J. Am. Chem. Soc. 114, 7018–7024 (1992).

    Article  CAS  Google Scholar 

  26. Zhang, Z. et al. Lactamization of sp2 C–H bonds with CO2: transition metal-free and redox-neutral. Angew. Chem. Int. Ed. 55, 7068–7072 (2016).

    Article  CAS  Google Scholar 

  27. Mazumdar, W., Jana, N., Thurman, B. T., Wink, D. J. & Driver, T. G. Rh2(II)-catalyzed ring expansion of cyclobutanol-substituted aryl azides to access medium-sized N-heterocycles. J. Am. Chem. Soc. 139, 5031–5034 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Ye, Y. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Du, Y.-D. et al. Organophotocatalysed synthesis of 2-piperidinones in one step via [1 + 2 + 3] strategy. Nat. Commun. 14, 5339 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moor, L. F. E., Vasconcelos, T. R. A., Reis, R. d. R., Pinto, L. S. S. & da Costa, T. M. Quinoline: an attractive scaffold in drug design. Mini Rev. Med. Chem. 21, 2209–2226 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Bunz, U. H. F. & Freudenberg, J. N-heteroacenes and N-heteroarenes as N-nanocarbon segments. Acc. Chem. Res. 52, 1575–1587 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. El-Shahat, M. Advances in the reduction of quinolines to 1,2,3,4-tetrahydroquinolines. J. Heterocycl. Chem. 59, 399–421 (2022).

    Article  CAS  Google Scholar 

  33. Xie, L.-Y. et al. Fast, base-free and aqueous synthesis of quinolin-2(1H)-ones under ambient conditions. ACS Sustain. Chem. Eng. 5, 10407–10412 (2017).

    Article  CAS  Google Scholar 

  34. Tanaka, N. & Usuki, T. Can heteroarenes/arenes be hydrogenated over catalytic Pd/C under ambient conditions? Eur. J. Org. Chem. 2020, 5514–5522 (2020).

  35. Wagener, T., Lückemeier, L., Daniliuc, C. G. & Glorius, F. Interrupted pyridine hydrogenation: asymmetric synthesis of δ-lactams. Angew. Chem. Int. Ed. 60, 6425–6429 (2021).

    Article  CAS  Google Scholar 

  36. Dobereiner, G. E. et al. Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. J. Am. Chem. Soc. 133, 7547–7562 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Papa, V., Cao, Y., Spannenberg, A., Junge, K. & Beller, M. Development of a practical non-noble metal catalyst for hydrogenation of N-heteroarenes. Nat. Catal. 3, 135–142 (2020).

    Article  CAS  Google Scholar 

  38. Wang, Y. et al. Unmasking the ligand effect in manganese-catalyzed hydrogenation: mechanistic insight and catalytic application. J. Am. Chem. Soc. 141, 17337–17349 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Adam, R. et al. A general and highly selective cobalt-catalyzed hydrogenation of N-heteroarenes under mild reaction conditions. Angew. Chem. Int. Ed. 56, 3216–3220 (2017).

    Article  CAS  Google Scholar 

  40. Nagaraaj, P. & Vijayakumar, V. Oxidation of amine α-carbon to amide: a review on direct methods to access the amide functionality. Org. Chem. Front. 6, 2570–2599 (2019).

    Article  CAS  Google Scholar 

  41. Freifelder, M. & Stone, G. R. Reductions with ruthenium. II. Its use in the hydrogenation of pyridines. J. Org. Chem. 26, 3805–3808 (1961).

    Article  CAS  Google Scholar 

  42. Freifelder, M. Hydrogenation in the pyridine series. I. Catalytic reduction of the isomeric acetylpyridines. J. Org. Chem. 29, 2895–2898 (1964).

    Article  CAS  Google Scholar 

  43. Sowmiah, S., Esperança, J. M. S. S., Rebelo, L. P. N. & Afonso, C. A. M. Pyridinium salts: from synthesis to reactivity and applications. Org. Chem. Front. 5, 453–493 (2018).

    Article  CAS  Google Scholar 

  44. Wu, J. et al. Synthesis of chiral piperidines from pyridinium salts via rhodium-catalysed transfer hydrogenation. Nat. Catal. 5, 982–992 (2022).

    Article  CAS  Google Scholar 

  45. Wen, X., Wang, S.-B., Liu, D.-C., Gong, G.-H. & Quan, Z.-S. Synthesis and evaluation of the anti-inflammatory activity of quinoline derivatives. Med. Chem. Res. 24, 2591–2603 (2015).

    Article  CAS  Google Scholar 

  46. Quan, Z.-S. et al. Synthesis of 6-alkyloxyl-3,4-dihydro-2(1H)-quinoliones and their anticonvulsant activities. Bull. Korean Chem. Soc. 26, 1757–1760 (2005).

    Article  CAS  Google Scholar 

  47. Luo, L. et al. ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism. Nat. Chem. Biol. 3, 722–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Duffy, B. C. et al. Discovery of a new chemical series of BRD4(1) inhibitors using protein-ligand docking and structure-guided design. Bioorg. Med. Chem. Lett. 25, 2818–2823 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Khaskin, E. & Milstein, D. Simple and efficient catalytic reaction for the selective deuteration of alcohols. ACS Catal. 3, 448–452 (2013).

    Article  CAS  Google Scholar 

  50. Dawe, L. N., Karimzadeh-Younjali, M., Dai, Z., Khaskin, E. & Gusev, D. G. The Milstein bipyridyl PNN pincer complex of ruthenium becomes a Noyori-type catalyst under reducing conditions. J. Am. Chem. Soc. 142, 19510–19522 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Zeng, G. & Li, S. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)Ru(II) hydride complex: unusual metal–ligand cooperation. Inorg. Chem. 50, 10572–10580 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Li, H. et al. Computational study on the catalytic role of pincer ruthenium(II)-PNN complex in directly synthesizing amide from alcohol and amine: the origin of selectivity of amide over ester and imine. Organometallics 30, 5233–5247 (2011).

    Article  CAS  Google Scholar 

  53. Li, H. & Hall, M. B. Mechanism of the formation of carboxylate from alcohols and water catalyzed by a bipyridine-based ruthenium complex: a computational study. J. Am. Chem. Soc. 136, 383–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Wei, Z., Li, H., Wang, Y. & Liu, Q. A tailored versatile and efficient NHC-based NNC-pincer manganese catalyst for hydrogenation of polar unsaturated compounds. Angew. Chem. Int. Ed. 62, e202301042 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Efremenko for her valuable assistance with the computational work. C.Y. thanks the Sustainability and Energy Research Initiative-Weizmann Institute of Science for a research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.M., Y.L. and J.L. conceived and directed the project and designed the experiments. Y.L. and J.L. performed and analysed the experiments. C.Y. performed selected experiments and provided insightful discussions. Y.D.-P. analysed crystals. All authors were involved in paper preparation.

Corresponding author

Correspondence to David Milstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks David Morales-Morales, Jianliang Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13, Tables 1–6, Figs. 1–118, methods and references.

Supplementary Data 1

Coordinates for the calculated structures.

Supplementary Data 2

Crystallographic information file for Ru-9.

Supplementary Data 3

Crystallographic information file for Ru-10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Luo, J., You, C. et al. A hydrogenative oxidation strategy for the single-step synthesis of lactams from N-heteroarenes using water. Nat Catal 8, 98–106 (2025). https://doi.org/10.1038/s41929-024-01286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-024-01286-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing