Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Selectively monitoring the operando temperature of active metal nanoparticles during catalytic reactions by X-ray absorption nanothermometry

Abstract

Heat involved in catalytic reactions can influence the local temperature and performance of the active site, potentially causing catalyst degradation and runaway scenarios. Yet, broadly applicable thermometry methods to selectively probe the temperature of the catalytically active phase—where reactions take place—are generally lacking. Here we explore extended X-ray absorption fine-structure thermometry to monitor the operando temperature of active Ni nanoparticles, fully deconvoluted from their metal-oxide support. During dry reforming of methane, the reaction’s endothermicity causes Ni nanoparticles to become local heat sinks with their temperature deviating 90 °C from the reactor temperature. By thermometry at the single nanoparticle level, we chart the energy balance of nanoparticles and relate their temperature to reaction kinetics. Covering the full temperature range relevant to catalysis, this broadly applicable method enables temperature monitoring of individual catalyst components separately. Applying extended X-ray absorption fine-structure thermometry to existing datasets worldwide can generate enhanced understanding on reaction-induced temperature phenomena in heterogeneous catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the concept of this study.
Fig. 2: Establishing a relation between EXAFS and temperature.
Fig. 3: Operando EXAFS thermometry to extract the Ni nanoparticle temperature during the DRM and RWGS reactions.
Fig. 4: Rationalizing the oscillatory temperature and energy balance in Ni nanoparticles during DRM.

Similar content being viewed by others

Data availability

All data are available from the corresponding authors upon reasonable request.

Code availability

Code to perform EXAFS thermometry is available via GitHub at https://github.com/matthiasfilez/EXAFS-thermometry.

References

  1. Dumesic, J. A., Huber, G. W. & Boudart, M. Handbook of Heterogeneous Catalysis (Wiley, 2008).

  2. Somorjai, G. A. & Li, Y. Introduction to Surface Chemistry and Catalysis (Wiley, 2010).

  3. Nørskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    Article  PubMed  Google Scholar 

  4. Marin, G. B. & Yablonsky, G. Kinetics of Chemical Reactions: Decoding Complexity (Wiley, 2011).

  5. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bañares, M. A. Operando spectroscopy: the knowledge bridge to assessing structure–performance relationships in catalyst nanoparticles. Adv. Mater. 23, 5293–5301 (2011).

    Article  PubMed  Google Scholar 

  7. Groppo, E., Rojas-Buzo, S. & Bordiga, S. The role of in situ/operando IR spectroscopy in unraveling adsorbate-induced structural changes in heterogeneous catalysis. Chem. Rev. 123, 12135–12169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Singh, J., Lamberti, C. & van Bokhoven, J. A. Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem. Soc. Rev. 39, 4754–4766 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Meirer, F. & Weckhuysen, B. M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 3, 324–340 (2018).

    Article  Google Scholar 

  11. Werghi, B. et al. Selective catalytic behavior induced by crystal-phase transformation in well-defined bimetallic Pt–Sn nanocrystals. Small 19, 2207956 (2023).

    Article  CAS  Google Scholar 

  12. Filez, M. et al. Formation and functioning of bimetallic nanocatalysts: the power of X-ray probes. Angew. Chem. Int. Ed. 58, 13220–13230 (2019).

    Article  CAS  Google Scholar 

  13. Roldan Cuenya, B. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 46, 1682–1691 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Sarma, B. B., Maurer, F., Doronkin, D. E. & Grunwaldt, J.-D. Design of single-atom catalysts and tracking their fate using operando and advanced X-ray spectroscopic tools. Chem. Rev. 123, 379–444 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Urakawa, A. & Baiker, A. Space-resolved profiling relevant in heterogeneous catalysis. Top. Catal. 52, 1312–1322 (2009).

    Article  CAS  Google Scholar 

  17. Mitchell, S., Qin, R., Zheng, N. & Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16, 129–139 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Marberger, A. et al. Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. 1, 221–227 (2018).

    Article  CAS  Google Scholar 

  19. Potter, M. E. et al. A high pressure operando spectroscopy examination of bimetal interactions in ‘metal efficient’ palladium/In2O3/Al2O3 catalysts for CO2 hydrogenation. Angew. Chem. Int. Ed. 62, e202312645 (2023).

    Article  CAS  Google Scholar 

  20. Qi, G. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 5, 45–54 (2022).

    Article  CAS  Google Scholar 

  21. Wei, J. On the maximum temperature inside a porous catalyst. Chem. Eng. Sci. 21, 1171–1183 (1966).

    Article  CAS  Google Scholar 

  22. Grunwaldt, J.-D., Wagner, J. B. & Dunin-Borkowski, R. E. Imaging catalysts at work: a hierarchical approach from the macro- to the meso- and nano-scale. ChemCatChem 5, 62–80 (2013).

    Article  CAS  Google Scholar 

  23. Tiburski, C., Nugroho, F. A. A. & Langhammer, C. Optical hydrogen nanothermometry of plasmonic nanoparticles under illumination. ACS Nano 16, 6233–6243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Georgiades, G., Self, V. A. & Sermon, P. A. IR emission analysis of temperature profiles in Pt/SiO2 catalysts during exothermic reactions. Angew. Chem. Int. Ed. 26, 1042–1043 (1987).

    Article  Google Scholar 

  25. Simeone, M., Salemme, L. & Allouis, C. Reactor temperature profile during autothermal methane reforming on Rh/Al2O3 catalyst by IR imaging. Int. J. Hydrogen Energy 33, 4798–4808 (2008).

    Article  CAS  Google Scholar 

  26. Hannemann, S. et al. Axial changes of catalyst structure and temperature in a fixed-bed microreactor during noble metal catalysed partial oxidation of methane. Top. Catal. 52, 1360–1370 (2009).

    Article  CAS  Google Scholar 

  27. Geitenbeek, R. G. et al. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions. ACS Catal. 8, 2397–2401 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019).

    Article  CAS  Google Scholar 

  29. Hartman, T., Geitenbeek, R. G., Wondergem, C. S., van der Stam, W. & Weckhuysen, B. M. Operando nanoscale sensors in catalysis: all eyes on catalyst particles. ACS Nano 14, 3725–3735 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Terlingen, B. J. P. et al. Bifunctional europium for operando catalyst thermometry in an exothermic chemical reaction. Angew. Chem. Int. Ed. 61, e202211991 (2022).

    Article  CAS  Google Scholar 

  31. Jacobs, T. S. et al. Mapping temperature heterogeneities during catalytic CO2 methanation with operando luminescence thermometry. ACS Nano 17, 20053–20061 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Munnik, P., de Jongh, P. E. & de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 115, 6687–6718 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Koptyug, I. V., Khomichev, A. V., Lysova, A. A. & Sagdeev, R. Z. Spatially resolved NMR thermometry of an operating fixed-bed catalytic reactor. J. Am. Chem. Soc. 130, 10452–10453 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Cale, T. S. Nickel crystallite thermometry during ethane hydrogenolysis. J. Catal. 90, 40–48 (1984).

    Article  CAS  Google Scholar 

  35. Van de Broek, B. et al. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy. Small 7, 2498–2506 (2011).

    Article  PubMed  Google Scholar 

  36. Rosen, D. J., Yang, S., Marino, E., Jiang, Z. & Murray, C. B. In situ EXAFS-based nanothermometry of heterodimer nanocrystals under induction heating. J. Phys. Chem. C 126, 3623–3634 (2022).

    Article  CAS  Google Scholar 

  37. Espinosa, A. et al. Photoactivated nanoscale temperature gradient detection using X-ray absorption spectroscopy as a direct nanothermometry method. Nano Lett. 21, 769–777 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Ano, T. et al. Probing the temperature of supported platinum nanoparticles under microwave irradiation by in situ and operando XAFS. Commun. Chem. 3, 86 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. López-Méndez, R. et al. X-ray nanothermometry of nanoparticles in tumor-mimicking tissues under photothermia. Adv. Healthc. Mater. 12, 2301863 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. La Fontaine, C., Belin, S., Barthe, L., Roudenko, O. & Briois, V. ROCK: a beamline tailored for catalysis and energy-related materials from ms time resolution to μm spatial resolution. Synchrotron Radiat. News 33, 20–25 (2020).

    Article  Google Scholar 

  41. Koningsberger, D. C., Mojet, B. L., Van Dorssen, G. E. & Ramaker, D. E. XAFS spectroscopy; fundamental principles and data analysis. Top. Catal. 10, 143–155 (2000).

    Article  CAS  Google Scholar 

  42. Rehr, J. J. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    Article  CAS  Google Scholar 

  43. Pinto, D., Hu, L. & Urakawa, A. Enabling complete conversion of CH4 and CO2 in dynamic coke-mediated dry reforming (DC-DRM) on Ni catalysts. Chem. Eng. J. 474, 145641 (2023).

    Article  CAS  Google Scholar 

  44. Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854–866 (2022).

    Article  Google Scholar 

  45. Filez, M. et al. Nanoscale chemical diversity of coke deposits on nanoprinted metal catalysts visualized by tip-enhanced Raman spectroscopy. Adv. Mater. 36, 2305984 (2024).

    Article  CAS  Google Scholar 

  46. Duan, M. et al. Reconstruction of supported metal nanoparticles in reaction conditions. Angew. Chem. Int. Ed. 57, 6464–6469 (2018).

    Article  CAS  Google Scholar 

  47. Chmielewski, A. et al. Reshaping dynamics of gold nanoparticles under H2 and O2 at atmospheric pressure. ACS Nano 13, 2024–2033 (2019).

    CAS  PubMed  Google Scholar 

  48. Solano, E. et al. Metal nanocatalyst sintering interrogated at complementary length scales. Small 19, 2205217 (2023).

    Article  CAS  Google Scholar 

  49. Dai, Y., Lu, P., Cao, Z., Campbell, C. T. & Xia, Y. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 47, 4314–4331 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article  PubMed  Google Scholar 

  51. Tian, Y. et al. Spatiotemporal heterogeneity of temperature and catalytic activation within individual catalyst particles. J. Am. Chem. Soc. 146, 4958–4972 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Taniike, T. & Takahashi, K. The value of negative results in data-driven catalysis research. Nat. Catal. 6, 108–111 (2023).

    Article  Google Scholar 

  53. Theofanidis, S. A., Galvita, V. V., Poelman, H. & Marin, G. B. Enhanced carbon-resistant dry reforming Fe–Ni catalyst: role of Fe. ACS Catal. 5, 3028–3039 (2015).

    Article  CAS  Google Scholar 

  54. De Coster, V., Srinath, N. V., Yazdani, P., Poelman, H. & Galvita, V. V. Does CO2 oxidize Ni catalysts? A quick X-ray absorption spectroscopy answer. J. Phys. Chem. Lett. 13, 7947–7952 (2022).

    Article  PubMed  Google Scholar 

  55. Briois, V. et al. ROCK: the new Quick-EXAFS beamline at SOLEIL. J. Phys. Conf. Ser. 712, 012149 (2016).

    Article  Google Scholar 

  56. Stötzel, J., Lützenkirchen-Hecht, D. & Frahm, R. A new flexible monochromator setup for quick scanning X-ray absorption spectroscopy. Rev. Sci. Instrum. 81, 073109 (2010).

    Article  PubMed  Google Scholar 

  57. Lesage, C. et al. High pressure cell for edge jumping X-ray absorption spectroscopy: applications to industrial liquid sulfidation of hydrotreatment catalysts. Catal. Today 336, 63–73 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.F. acknowledges the FWO for a senior postdoctoral research fellowship (1280621N). This work was supported by the Fund for Scientific Research Flanders (grant no. G0A5923N (M.B.J.R. and C.D.), 3G021220 (V.G. and C.D.), G093823N (M.F. and J.D.)) and the Special Research Fund BOF of Ghent University (grant no. GOA-01G02124 (M.F., J.D. and C.D.)). The research leading to these results is supported by the project CALIPSOplus under grant agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020, in supplying financing of subsistence costs for the synchrotron campaign (SOLEIL, proposal 20200555 (V.D.C., H.P. and V.G.). We acknowledge the assistance from the ROCK staff for a smooth beamtime.

Author information

Authors and Affiliations

Authors

Contributions

M.F., J.D., M.B.J.R. and C.D. conceived the research idea and project. V.D.C., H.P. and V.G. produced the samples and collected the XAS data together with V.B. and A.B. M.F., V.D.C. and A.B. preprocessed the data. M.F. developed the thermometry workflow and data analysis with the support of V.D.C. M.F. and V.G. collected the transmission electron microscopy data. M.F. analysed the transmission electron microscopy data and wrote the paper. All authors contributed to revising and optimizing the paper.

Corresponding authors

Correspondence to Matthias Filez or Christophe Detavernier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Ken Motokura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–4 and Notes 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filez, M., De Coster, V., Poelman, H. et al. Selectively monitoring the operando temperature of active metal nanoparticles during catalytic reactions by X-ray absorption nanothermometry. Nat Catal 8, 187–195 (2025). https://doi.org/10.1038/s41929-025-01295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01295-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing