Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal vacancies in semiconductor oxides enhance hole mobility for efficient photoelectrochemical water splitting

Abstract

Achieving efficient carrier separation in transition-metal-oxide semiconductors is crucial for their applications in optoelectronic and catalytic devices. However, the substantial disparity in mobility between holes and electrons heavily limits device performance. Here we develop a general strategy for enhancing hole mobility via reducing their effective mass through metal vacancy (VM) management. The introduction of VM yields remarkable improvements in hole mobility: 430% for WO3, 350% for TiO2 and 270% for Bi2O3. To illustrate the importance of this finding, we applied the VM concept to photoelectrochemical water splitting, where efficient carrier separation is highly coveted. In particular, VM-WO3 achieves a 4.4-fold enhancement in photo-to-current efficiency, yielding a performance of 4.8 mA cm−2 for both small- and large-scale photoelectrodes with exceptional stability for over 120 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical calculation of the energy band structures.
Fig. 2: Material characterizations of WO3 samples.
Fig. 3: Hole mobility measurement by the SCLC method.
Fig. 4: Enhanced hole mobility for fast carrier transfer.
Fig. 5: PEC water-splitting characterization.
Fig. 6: General VM engineering induced hole mobility enhancement.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Xiao, Y. et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 3, 932–940 (2020).

    Article  CAS  Google Scholar 

  2. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100 m2 scale. Nature 598, 304–307 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Cho, H.-H. et al. A semiconducting polymer bulk heterojunction photoanode for solar water oxidation. Nat. Catal. 4, 431–438 (2021).

    Article  CAS  Google Scholar 

  4. Tan, J. et al. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat. Energy 7, 537–547 (2022).

    Article  CAS  Google Scholar 

  5. Zeng, G. et al. Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H2 production. Nat. Mater. 20, 1130–1135 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

    Article  CAS  Google Scholar 

  7. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  8. Luo, Y., Zhang, Z., Chhowalla, M. & Liu, B. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 34, 2108133 (2022).

    Article  CAS  Google Scholar 

  9. Liao, W. et al. Boosting nitrogen activation via Ag nanoneedle arrays for efficient ammonia synthesis. ACS Nano 17, 411–420 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, W., Prabhakar, R. R., Tan, J., Tilley, S. D. & Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 48, 4979–5015 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, S., Liu, G. & Wang, L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Sheng, X., Xu, T. & Feng, X. Rational design of photoelectrodes with rapid charge transport for photoelectrochemical applications. Adv. Mater. 31, 1805132 (2019).

    Article  Google Scholar 

  13. Ding, C., Shi, J., Wang, Z. & Li, C. Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 7, 675–688 (2016).

    Article  Google Scholar 

  14. He, B. et al. General and robust photothermal-heating-enabled high-efficiency photoelectrochemical water splitting. Adv. Mater. 33, 2004406 (2021).

    Article  CAS  Google Scholar 

  15. Wang, J. et al. Subsurface engineering induced fermi level de-pinning in metal oxide semiconductors for photoelectrochemical water splitting. Angew. Chem. Int. Ed. 62, e202217026 (2023).

    Article  CAS  Google Scholar 

  16. Andrei, V. et al. Long-term solar water and CO2 splitting with photoelectrochemical BiOI–BiVO4 tandems. Nat. Mater. 21, 864–868 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Jun, S. E. et al. Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 14, 609 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, R. T. et al. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting. Nat. Commun. 14, 2640 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhai, L. et al. Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer. Nat. Commun. 14, 2538 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu, J. et al. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 13, 729 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, Y. et al. Efficient interfacial electron transfer induced by hollow-structured ZnIn2S4 for extending hot electron lifetimes. Energy Environ. Sci. 16, 3462–3473 (2023).

    Article  CAS  Google Scholar 

  22. Pei, H. et al. A novel BiVO4/P3HT photoanode for highly efficient water oxidation and its hole energy offset effect with CuPc derivative. Appl. Catal. B 318, 121865 (2022).

    Article  CAS  Google Scholar 

  23. Ahn, H.-J. et al. Utilizing a siloxane-modified organic semiconductor for photoelectrochemical water splitting. ACS Energy Lett. 8, 2595–2602 (2023).

    Article  CAS  Google Scholar 

  24. Lin, R. et al. Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis. J. Am. Chem. Soc. 140, 9078–9082 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, G. et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Guan, M. et al. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135, 10411–10417 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J. et al. Enhanced photoelectrochemical degradation of tetracycline hydrochloride with FeOOH and Au nanoparticles decorated WO3. Chem. Eng. J. 407, 127195 (2021).

    Article  CAS  Google Scholar 

  28. Du, J., Li, C., Wang, X., Shi, X. & Liang, H.-P. Electrochemical synthesis of cation vacancy-enriched ultrathin bimetallic oxyhydroxide nanoplatelets for enhanced water oxidation. ACS Appl. Mater. Interfaces 11, 25958–25966 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Li, X., Wang, X., Ma, L. & Huang, W. Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 12, 2202068 (2022).

    Article  CAS  Google Scholar 

  30. Melzer, D. et al. Design and synthesis of highly active MoVTeNb-oxides for ethane oxidative dehydrogenation. Nat. Commun. 10, 4012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ye, C. et al. Activating metal oxides nanocatalysts for electrocatalytic water oxidation by quenching-induced near-surface metal atom functionality. J. Am. Chem. Soc. 143, 14169–14177 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, S. et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 30, 1800486 (2018).

    Article  Google Scholar 

  33. Lu, Y. et al. Boosting charge transport in BiVO4 photoanode for solar water oxidation. Adv. Mater. 34, 2108178 (2022).

    Article  CAS  Google Scholar 

  34. Zhang, D. et al. Regulating spin polarization through cationic vacancy defects in Bi4Ti3O12 for enhanced molecular oxygen activation. Angew. Chem. Int. Ed. 62, e202303807 (2023).

    Article  CAS  Google Scholar 

  35. Wang, D. et al. Neighboring cationic vacancy assisted adsorption optimization on single-atom sites for improved oxygen evolution. ACS Catal. 12, 12458–12468 (2022).

    Article  CAS  Google Scholar 

  36. Zhai, P. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Promchana, P., Choojun, K., Limphirat, W., Poo-arporn, Y. & Sooknoi, T. Selective acetylene removal from ethylene-rich feed by cross-metathesis over supported WO3 catalysts. Appl. Catal. A 650, 118972 (2023).

    Article  CAS  Google Scholar 

  38. Hou, T. et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Adv. Energy Mater. 9, 1902319 (2019).

    Article  CAS  Google Scholar 

  39. Chen, W. et al. Single tungsten atoms supported on MOF-derived n-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 30, e1800396 (2018).

    Article  PubMed  Google Scholar 

  40. Macdonald, T. J. et al. Phosphorene nanoribbon-augmented optoelectronics for enhanced hole extraction. J. Am. Chem. Soc. 143, 21549–21559 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Pan, L. et al. Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat. Commun. 11, 318 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, W. et al. Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nat. Nanotechnol. 17, 45–52 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Lang, F. et al. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy Environ. Sci. 12, 1634–1647 (2019).

    Article  CAS  Google Scholar 

  44. Hages, C. J. et al. Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials. Adv. Energy Mater. 7, 1700167 (2017).

    Article  Google Scholar 

  45. de Araújo, M. A. et al. Contrasting transient photocurrent characteristics for thin films of vacuum-doped “grey” TiO2 and “grey” Nb2O5. Appl. Catal. B 237, 339–352 (2018).

    Article  Google Scholar 

  46. Gupta, T., Samriti, Cho, J. & Prakash, J. Hydrothermal synthesis of TiO2 nanorods: Formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities. Mater. Today Chem. 20, 100428 (2021).

    Article  CAS  Google Scholar 

  47. Yu, X. et al. Facile synthesis of α/β-Bi2O3 hetero-phase junction by a solvothermal method for enhanced photocatalytic activities. Mol. Catal. 503, 111431 (2021).

    Article  CAS  Google Scholar 

  48. Wang, F., Di Valentin, C. & Pacchioni, G. Electronic and structural properties of WO3: a systematic hybrid DFT study. J. Phys. Chem. C 115, 8345–8353 (2011).

    Article  CAS  Google Scholar 

  49. Tosoni, S., Di Liberto, G. & Pacchioni, G. Structures and properties of Pd nanoparticles intercalated in layered TiO2: a computational study. Catal. Today 382, 96–103 (2021).

    Article  CAS  Google Scholar 

  50. Ugolotti, A., Dolce, M. & Di Valentin, C. Vitamin C affinity to TiO2 nanotubes: a computational study by hybrid density functional theory calculations. Nanomaterials 14, 261 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meng, Q. et al. Efficient BiVO4 photoanodes by postsynthetic treatment: remarkable improvements in photoelectrochemical performance from facile borate modification. Angew. Chem. Int. Ed. 58, 19027–19033 (2019).

    Article  CAS  Google Scholar 

  52. Ran, L. et al. Conformal macroporous inverse opal oxynitride-based photoanode for robust photoelectrochemical water splitting. J. Am. Chem. Soc. 143, 7402–7413 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Yi, S.-S., Wulan, B.-R., Yan, J.-M. & Jiang, Q. Highly efficient photoelectrochemical water splitting: surface modification of cobalt-phosphate-loaded Co3O4/Fe2O3 p–n heterojunction nanorod arrays. Adv. Funct. Mater. 29, 1801902 (2019).

    Article  Google Scholar 

  54. Zhang, H. et al. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat. Commun. 11, 4622 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huang, M. et al. Twin structure in BiVO4 photoanodes boosting water oxidation performance through enhanced charge separation and transport. Adv. Energy Mater. 8, 1802198 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (grant no. 52121004), National Natural Science Foundation of China (grant nos. 22376222, 52372253, 22002189 and 52202125), the Science and Technology lnnovation Program of Hunan Province (grant no. 2023RC1012), Central South University Research Programme of Advanced Interdisciplinary Studies (grant no. 2023QYJC012), Central South University Innovation-Driven Research Programme (grant no. 2023CXQD042) and China Postdoctoral Science Foundation (grant nos. 2022M723547, 2022M713548 and 2023T160735). We also acknowledge the funding and support from the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC 2089/1-390776260, the Bavarian Program Solar Technologies Go Hybrid (SolTech), the Center for NanoScience (CeNS) and the European Commission through the ERC grants CATALIGHT and SURFLIGHT. Y.K. and E.C. acknowledge the DFG excellence research cluster e-conversion for financing via the students exchange program the 4-month reseach stay of Y.K. from LMU to CSU. We are grateful for resources from the High Performance Computing Center of Central South University. We acknowledge the help from Beam Lines BL01C1 in the National Synchrotron Radiation Research Center (Hsinchu, Taiwan) for various synchrotron-based measurements.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and E.C. supervised the whole project. J.W. and W.L. conceived the research and designed the experiments. K.L. carried out the DFT calculations and wrote the corresponding section. J.W., W.L., Y.K., H.X., Y.C., Q.W., T.L. and J.C. synthesized the samples, performed the electrochemical experiments and catalyst characterizations, and analysed the results. H.L., S.C., E.P., F.L., L.J., C.L., L.C. and J.F. contributed to the manuscript editing and revising. T.-S.C. conducted the XAS measurements. J.W. and H.X. performed the SCLC measurements. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Emiliano Cortés or Min Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–56, Discussion and Tables 1–8.

Supplementary Data 1

Atomic coordinates of DFT calculation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, K., Liao, W. et al. Metal vacancies in semiconductor oxides enhance hole mobility for efficient photoelectrochemical water splitting. Nat Catal 8, 229–238 (2025). https://doi.org/10.1038/s41929-025-01300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01300-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing