Table 2 The Chaos Decision Tree Algorithm classified non-biological simulations as stochastic, periodic, or chaotic with high accuracy. These simulated systems include strange non-chaotic attractors (SNAs), linear stochastic processes, and nonlinear stochastic processes, all of which are classically difficult to distinguish from chaos.

From: A simple method for detecting chaos in nature

 

Measurement noise level (% of std. dev.)

System

0%

10%

20%

30%

40%

Cubic map50 (chaotic)

100/100

100/100

100/100

100/100

100/100

Cubic map50 (periodic)

100/100

100/100

100/100

100/100

100/100

Cubic map50 (SNA HH)

100/100

100/100

100/100

100/100

100/100

Cubic map50 (SNA S3)

100/100

100/100

100/100

100/100

0/100

GOPY map51 (SNA)

100/100

100/100

100/100

99/100

14/100

Logistic map52 (chaotic)

100/100

100/100

100/100

100/100

100/100

Logistic map52 (periodic)

100/100

100/100

100/100

100/100

100/100

Lorenz system53 (chaotic)

100/100

100/100

97/100

82/100

36/100

Generalized Hénon map54 (hyperchaotic)

100/100

100/100

100/100

100/100

93/100

Freitas map55 (nonlinear stochastic)

78/100

83/100

98/100

98/100

74/100

Noise-driven sine map55 (nonlinear stochastic)

55/100

3/100

22/100

5/100

78/100

Bounded random walk56 (nonlinear stochastic)

100/100

97/100

59/100

95/100

100/100

Cyclostationary process57 (linear stochastic)

99/100

100/100

99/100

100/100

100/100

ARMA process (linear stochastic)

85/100

98/100

99/100

99/100

100/100

Trended random walk (linear stochastic)

100/100

89/100

90/100

98/100

100/100

Random walk (linear stochastic)

100/100

98/100

100/100

100/100

100/100

Violet noise58 (linear stochastic)

99/100

    

Blue noise58 (linear stochastic)

100/100

    

White noise58 (linear stochastic)

100/100

    

Pink noise58 (linear stochastic)

100/100

    

Red noise58 (linear stochastic)

100/100