Fig. 1: Analytical approach and precision of the new MT platform. | Communications Biology

Fig. 1: Analytical approach and precision of the new MT platform.

From: Detection of genetic variation and base modifications at base-pair resolution on both DNA and RNA

Fig. 1

a Schematic representation of a typical MT cycle. When the force increases, by approaching the magnets to the sample, the DNA hairpin molecule is denatured and binding molecules (either oligonucleotides or proteins) bind to the ssDNA nucleic acid. Upon reduction in force, the hairpin reforms and transient blockages occur at the binding positions. b All the cycles are overlaid, and a cumulative histogram of the blocking positions is built. In this example, a 11-base reference oligonucleotide that binds five times (red asterisks) was injected at the same time as an antibody against m5C modification (green arrow). c Mapping of reference blocking positions of a 11 DNA base oligonucleotide on a 600 bp hairpin (n = 80 individual molecules). The average experimental positions versus the expected positions were between ±one base for the majority of the molecules. Whisker boxes represent 50% of the points with the average as a line within the box and the median as a cross.

Back to article page