Fig. 2: Hypoxia promotes loss of mitochondrial genes and genes involved in energy-consuming processes. | Communications Biology

Fig. 2: Hypoxia promotes loss of mitochondrial genes and genes involved in energy-consuming processes.

From: Genome-wide CRISPR/Cas9 deletion screen defines mitochondrial gene essentiality and identifies routes for tumour cell viability in hypoxia

Fig. 2

a Schematic diagram shows which datasets were compared in our analysis (hypoxia-glucose vs. normoxia-glucose). Sequencing reads from triplicate incubations were analysed by the MAGeCK analysis platform, and relative sgRNA abundances were calculated between experimental conditions. b Charts show FDR-corrected significance values of all sequenced genes, with significantly enriched (blue circles) or depleted (brown circles) sgRNAs in cells cultured in hypoxia-glucose compared to normoxia-glucose. n = 3. p < 0.05, FDR < 30%. c Pie charts show number of mitochondrial genes among the genes identified with significantly enriched or depleted sgRNAs from cells in (a). d Panel shows 31 selected mitochondrial genes with significantly enriched sgRNAs from (b). Genes significantly depleted in normoxia-glucose (plasmid vs. library) are highlighted in brown. e Western blots show expression of NDUFB10, SDHA, UQCRC2, COXIV, and BNIP3 in U2OS and HCT116 cells incubated for 5 days in normoxia (Nor) or hypoxia (Hyp, 1% O2). β-Actin used as a loading control. f Chart shows overrepresentation analysis of all genes with significantly enriched sgRNAs in hypoxia (hypoxia-glucose vs. normoxia-glucose). Gene sets involving translation (mRNA splicing and processing of pre-mRNA), and regulation of actin cytoskeleton are highlighted (*). g, h Schematic diagram shows clusters of interacting genes with significantly enriched sgRNAs in hypoxia (hypoxia-glucose vs. normoxia-glucose) involved in mRNA processing (g), and cytoskeleton arrangement (h).

Back to article page