Table 1 Tested probability density functions.
From: Lévy walk dynamics explain gamma burst patterns in primate cerebral cortex
Model name | Probability density function |
---|---|
Truncated power law | \((-\lambda +1)({b}^{-\lambda +1}-{a}^{-\lambda +1})^{-1}{x}^{-\lambda }\) \((a\le x\le b)\)81 |
Exponential | \(\frac{1}{\lambda }{e}^{\frac{-x}{\lambda }}\) |
Normal | \(\frac{1}{\lambda \sqrt{2\pi }}{e}^{\frac{-{(x-\mu )}^{2}}{2{\lambda }^{2}}}\) |
Log-normal | \(\frac{1}{x\lambda \sqrt{2\pi }}{e}^{\frac{-{({\rm{ln}}(x)-\mu )}^{2}}{2{\lambda }^{2}}}\) (\(x \;> \; 0\)) |
Gamma | \(\frac{1}{{b}^{a}\Gamma (a)}{x}^{a-1}{e}^{\frac{-x}{b}}\) where \(\Gamma (a)\) is the Gamma function |