Table 1 Tested probability density functions.

From: Lévy walk dynamics explain gamma burst patterns in primate cerebral cortex

Model name

Probability density function

Truncated power law

\((-\lambda +1)({b}^{-\lambda +1}-{a}^{-\lambda +1})^{-1}{x}^{-\lambda }\) \((a\le x\le b)\)81

Exponential

\(\frac{1}{\lambda }{e}^{\frac{-x}{\lambda }}\)

Normal

\(\frac{1}{\lambda \sqrt{2\pi }}{e}^{\frac{-{(x-\mu )}^{2}}{2{\lambda }^{2}}}\)

Log-normal

\(\frac{1}{x\lambda \sqrt{2\pi }}{e}^{\frac{-{({\rm{ln}}(x)-\mu )}^{2}}{2{\lambda }^{2}}}\) (\(x \;> \; 0\))

Gamma

\(\frac{1}{{b}^{a}\Gamma (a)}{x}^{a-1}{e}^{\frac{-x}{b}}\) where \(\Gamma (a)\) is the Gamma function