Table 2 Performance of various radiomics-guided DL models.

From: Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans

Ā 

Training

Hazard ratio (95% CI)

p-value

C-index

Radiomics

4.1384 (1.9140–8.9479)

0.0006

0.7459

Yolo

3.1728 (1.4675–6.8596)

0.0061

0.7994

DenseNet

4.4383 (2.0468–9.6241)

0.0003

0.7410

VGG

4.2454 (1.9658–9.1683)

0.0005

0.7660

Ā 

Test

Ā 

Hazard ratio (95% CI)

p-value

C-index

Radiomics

5.0566 (1.5379–16.6263)

0.0180

0.6837

Yolo

7.6277 (2.2870–25.4399)

0.0027

0.7593

DenseNet

5.3620 (1.7011–18.5774)

0.0116

0.7214

VGG

4.7060 (1.4333–15.4520)

0.0244

0.8009

Ā 

Validation

Ā 

Hazard ratio (95% CI)

p-value

C-index

Radiomics

–

–

–

Yolo

6.5362 (2.1773–19.6213)

0.0022

0.7696

DenseNet

4.2277 (1.4800–12.0768)

0.0153

0.7112

VGG

3.5488 (1.2409–10.1494)

0.0362

0.6757