Table 4 DL (Yolo) risk score model for prognosis and the associated DL features.

From: Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans

Prognostic DL feature

Category

Radiomics feature

Correlation

Yolo_Latent_1145

Ā 

Histogram

Entropy

0.4559

Ā 

Histogram

Uniformity

āˆ’0.4188

Ā 

GLCM

Difference average

0.481

Ā 

GLCM

Difference entropy

0.493

Ā 

GLCM

Inverse difference

āˆ’0.5057

Ā 

GLCM

IDM

āˆ’0.4893

Ā 

GLCM

IDMN

āˆ’0.4025

Ā 

GLCM

IDN

āˆ’0.4966

Ā 

GLCM

IMC2

0.4124

Ā 

GLCM

Inverse variance

āˆ’0.493

Ā 

GLCM

Sum entropy

0.4148

Ā 

GLSZM

Zone percentage

0.4718

Ā 

Margin

CDF slope skewness

āˆ’0.4467

Ā 

Margin

CDF slope kurtosis

āˆ’0.432

Yolo_Latent_1161

Ā 

Shape

Maximum 2D diameter

āˆ’0.4104

Ā 

Histogram

Entropy

0.5011

Ā 

Histogram

Uniformity

āˆ’0.4517

Ā 

GLCM

Contrast

0.4523

Ā 

GLCM

Difference average

0.5585

Ā 

GLCM

Difference entropy

0.5581

Ā 

GLCM

Inverse difference

āˆ’0.5742

Ā 

GLCM

IDM

āˆ’0.5538

Ā 

GLCM

IDMN

āˆ’0.4748

Ā 

GLCM

IDN

āˆ’0.5743

Ā 

GLCM

IMC1

āˆ’0.4199

Ā 

GLCM

IMC2

0.4441

Ā 

GLCM

Inverse variance

āˆ’0.5601

Ā 

GLCM

Sum entropy

0.4551

Ā 

GLSZM

Zone percentage

0.5417

Ā 

Margin

CDF slope skewness

āˆ’0.4905

Ā 

Margin

CDF slope kurtosis

āˆ’0.4665

Yolo_Latent_22664

Ā 

GLCM

IDN

0.4009

  1. GLCM gray-level co-occurrence matrix, GLSZM gray-level size-zone matrix, IMC informational measure of correlation.