Table 5 Performance of DL (Yolo) risk model with respect to the different number of training samples for the training and validation cohorts.

From: Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans

Ā 

Test

Number of samples

Hazard ratio (95% CI)

p-value

C-index

Whole (n = 432)

7.6277 (2.2870–25.4399)

0.0027

0.7593

300

6.4256 (1.9081–21.6386)

0.0071

0.7950

200

4.0644 (1.2211–13.5284)

0.0478

0.6368

100

2.6913 (0.8064–8.9821)

0.1927

0.5988

Ā 

Validation

Number of samples

Hazard ratio (95% CI)

p-value

C-index

Whole (n = 432)

6.5362 (2.1773–19.6213)

0.0022

0.7696

300

3.9521 (1.3726–11.3794)

0.0228

0.7724

200

2.4826 (0.8542–7.2149)

0.1620

0.5135

100

2.2463 (0.8442–7.1475)

0.1686

0.5391